28 research outputs found

    IEEE 802.16J-Relay Fortified Aeromacs Networks; Benefits and Challenges

    Get PDF
    Aeronautical Mobile Airport Communications System (AeroMACS) is an IEEE 802.16 standard-based (WiMAX) broadband aviation transmission technology, developed to provide safety critical communications coverage for airport surface in support of fixed and mobile ground to ground applications and services. We have previously demonstrated that IEEE 802.16j-amendment-based WiMAX is most feasible for AeroMACS applications. The principal argument in favor of application of IEEE 802.16j technology is the flexible and cost effective extension of radio coverage that is afforded by relay fortified WiMAX networks, with virtually no increase in the power requirements. In this article, following introductory remarks on airport surface communications, WiMAX and AeroMACS; the IEEE 802.16j-based WiMAX technology and multihop relay systems are briefly described. The two modes of relay operation supported by IEEE 802.16j amendment; i.e., transparent (TRS) and non-transparent (NTRS) modes, are discussed in some detail. Advantages and disadvantages of using TRS and NTRS in AeroMACS networks are summarized in a table. Practical issues vis--vis the inclusion of relays in AeroMACS networks are addressed. It is argued that the selection of relay type may affect a number of network parameters. A discussion on specific benefits and challenges of inclusion of relays in AeroMACS networks is provided. The article concludes that in case it is desired or necessary to exclusively employ one type of relay mode for all applications throughout an AeroMACS network, the proper selection would be the non-transparent mode

    A Technical and Market study for WiMAX

    Get PDF
    Worldwide Interoperability for Microwave Access (WiMAX) is a broadband wireless technology based on IEEE 802.16-2004 and IEEE 802.16e-2005. This thesis is a study of WiMAX technology and market. The background of WiMAX development is introduced and opportunities and challenges for WiMAX are analyzed in the beginning. Then the thesis focuses on an overview of WiMAX technology, which addresses the physical layer, MAC layer and WiMAX network architecture. The deployment status is investigated in the fourth chapter. Both product development situation and market status are discussed in this section. In the last chapter, the future development trend of WiMAX is addressed

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Downlink Cell-Free Fixed Wireless Access: Architectures, Physical Realities and Research Opportunities

    Get PDF
    Recently a new paradigm of wireless access, termed as cell-free massive multiple-input multiple-output (MIMO), has drawn significant research interest. Its primary distinction from conventional massive MIMO aided cellular networks is the ability to eliminate the detrimental inter-cell interference (ICI), or to convert ICI into extra power for the intended signal via a multi-cell cooperation approach originated from network MIMO. However, the information-theoretical limit of cell-free access is achieved at the expense of large network configuration overhead and high MIMO processing complexity. Because of the dynamic nature of wireless channels, the global channel state information (CSI) invoked for network MIMO quickly becomes outdated, leading to performance degradation. This paper focuses on the cell-free implementation of fixed wireless access (FWA), a complementary solution to fibre-to-the-premise (FTTP) where the latter is prohibitively expensive. In particular, we discuss the centralisation architectures and channel characteristics of cellfree FWA, as well as their joint implications on imperfect CSI performance. Moreover, measurement-based offline simulations show that the long coherence time ('quasi-static') assumption of real-world FWA channels is only valid against a completely motionless background, and thus it should not be used in FWA system design or performance analysis. Finally, we present new research opportunities for cell-free FWA in terms of physical infrastructure, data processing as well as machine learning

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table

    Uplink Resource Allocation in Relay Enhanced LTE-Advanced Cellular Networks

    Get PDF
    In parallel to HSPA evolution, 3GPP has adopted the Long Term Evolution track to fulfill the performance targets of 4G cellular networks. Multi-hop networks consisting of fixed decode and forward relays nodes are proposed to relax the capacity and coverage limitations encountered by traditional macro base station deployments. The relays are designed to operate on the in-band spectrum and support self-backhauling of user data. This thesis work provides an insight into the impact of uplink resource allocation in delivering improved user experience in relay enhanced cellular networks. Radio resource allocation and power control play a crucial role in the performance of wireless communication systems. System level simulations reveal that reuse 1 based relay enhanced cells operate in an interference limited scenario. Therefore, a resource allocation scheme based on user grouping is investigated to coordinate and mitigate the negative effect of interference. It is shown that the proposed methodology is spectrally efficient and delivers improved system performance. In addition to improving system performance, relaying is seen to be beneficial in significantly reducing battery consumption in devices. This is highly appealing since the next generation cellular networks are targeted towards higher bit rates and extended periods of mobile data usage. This work provides specific insights into the performance limiting criteria of the envisaged multi-hop system and, furthermore, is expected to contribute towards 3GPP's standardization of the relaying study item
    corecore