2 research outputs found

    How affordances associated with a distractor object affect compatibility effects: a study with the computational model TRoPICALS.

    Get PDF
    Seeing an object activates both visual and action codes in the brain. Crucial evidence supporting this view is the observation of object to response compatibility effects: perception of an object can facilitate or interfere with the execution of an action (e.g., grasping) even when the viewer has no intention of interacting with the object. TRoPICALS is a computational model that proposes some general principles about the brain mechanisms underlying compatibility effects, in particular the idea that top-down bias from prefrontal cortex, and whether it conflicts or not with the actions afforded by an object, plays a key role in such phenomena. Experiments on compatibility effects using a target and a distractor object show the usual positive compatibility effect of the target, but also an interesting negative compatibility effect of the distractor: responding with a grip compatible with the distractor size produces slower reaction times than the incompatible case. Here, we present an enhanced version of TRoPICALS that reproduces and explains these new results. This explanation is based on the idea that the prefrontal cortex plays a double role in its top-down guidance of action selection producing: (a) a positive bias in favour of the action requested by the experimental task; (b) a negative bias directed to inhibiting the action evoked by the distractor. The model also provides testable predictions on the possible consequences of damage to volitional circuits such as in Parkinsonian patients

    On the Origin of the Functional Architecture of the Cortex

    Get PDF
    The basic structure of receptive fields and functional maps in primary visual cortex is established without exposure to normal sensory experience and before the onset of the critical period. How the brain wires these circuits in the early stages of development remains unknown. Possible explanations include activity-dependent mechanisms driven by spontaneous activity in the retina and thalamus, and molecular guidance orchestrating thalamo-cortical connections on a fine spatial scale. Here I propose an alternative hypothesis: the blueprint for receptive fields, feature maps, and their inter-relationships may reside in the layout of the retinal ganglion cell mosaics along with a simple statistical connectivity scheme dictating the wiring between thalamus and cortex. The model is shown to account for a number of experimental findings, including the relationship between retinotopy, orientation maps, spatial frequency maps and cytochrome oxidase patches. The theory's simplicity, explanatory and predictive power makes it a serious candidate for the origin of the functional architecture of primary visual cortex
    corecore