20 research outputs found

    Latency Analysis of Systems with Multiple Interfaces for Ultra-Reliable M2M Communication

    Get PDF
    One of the ways to satisfy the requirements of ultra-reliable low latency communication for mission critical Machine-type Communications (MTC) applications is to integrate multiple communication interfaces. In order to estimate the performance in terms of latency and reliability of such an integrated communication system, we propose an analysis framework that combines traditional reliability models with technology-specific latency probability distributions. In our proposed model we demonstrate how failure correlation between technologies can be taken into account. We show for the considered scenario with fiber and different cellular technologies how up to 5-nines reliability can be achieved and how packet splitting can be used to reduce latency substantially while keeping 4-nines reliability. The model has been validated through simulation.Comment: Accepted for IEEE SPAWC'1

    Connectivity and coverage in machine-type communications

    Get PDF
    Machine-type communication (MTC) provides a potential playground for deploying machine-to-machine (M2M), IP-enabled 'things' and wireless sensor networks (WSNs) that support modern, added-value services and applications. 4G/5G technology can facilitate the connectivity and the coverage of the MTC entities and elements by providing M2M-enabled gateways and base stations for carrying traffic streams to/from the backbone network. For example, the latest releases of long-term evolution (LTE) such as LTE-Advanced (LTE-A) are being transformed to support the migration of M2M devices. MTC-oriented technical definitions and requirements are defined to support the emerging M2M proliferation. ETSI describes three types of MTC access methods, namely a) the direct access, b) the gateway access and c) the coordinator access. This work is focused on studying coverage aspects when a gateway access takes place. A deployment planar field is considered where a number of M2M devices are randomly deployed, e.g., a hospital where body sensor networks form a M2M infrastructure. An analytical framework is devised that computes the average number of connected M2M devices when a M2C gateway is randomly placed for supporting connectivity access to the M2M devices. The introduced analytical framework is verified by simulation and numerical results

    Evolution of 5G Network: A Precursor towards the Realtime Implementation of VANET for Safety Applications in Nigeria

    Get PDF
      A crucial requirement for the successful real-time design and deployment of Vehicular Adhoc Networks (VANET) is to ensure high speed data rates, low latency, information security, and a wide coverage area without sacrificing the required Quality of Service (QoS) in VANET. These requirements must be met for flawless communication on the VANET. This study examines the generational patterns in mobile wireless communication and looks into the possibilities of adopting fifth generation (5G) network technology for real-time communication of road abnormalities in VANET. The current paper addresses the second phase of a project that is now underway to develop real-time road anomaly detection, characterization, and communication systems for VANET. The major goal is to reduce the amount of traffic accidents on Nigerian roadways. It will also serve as a platform for the real-time deployment and testing of various road anomaly detection algorithms, as well as schemes for communicating such detected anomalies in the VANET.   &nbsp

    Ultra-Reliable Low Latency Communication (URLLC) using Interface Diversity

    Full text link
    An important ingredient of the future 5G systems will be Ultra-Reliable Low-Latency Communication (URLLC). A way to offer URLLC without intervention in the baseband/PHY layer design is to use interface diversity and integrate multiple communication interfaces, each interface based on a different technology. In this work, we propose to use coding to seamlessly distribute coded payload and redundancy data across multiple available communication interfaces. We formulate an optimization problem to find the payload allocation weights that maximize the reliability at specific target latency values. In order to estimate the performance in terms of latency and reliability of such an integrated communication system, we propose an analysis framework that combines traditional reliability models with technology-specific latency probability distributions. Our model is capable to account for failure correlation among interfaces/technologies. By considering different scenarios, we find that optimized strategies can in some cases significantly outperform strategies based on kk-out-of-nn erasure codes, where the latter do not account for the characteristics of the different interfaces. The model has been validated through simulation and is supported by experimental results.Comment: Accepted for IEEE Transactions on Communication

    Enhancing Radio Access Network Performance over LTE-A for Machine-to-Machine Communications under Massive Access

    Get PDF
    The expected tremendous growth of machine-to-machine (M2M) devices will require solutions to improve random access channel (RACH) performance. Recent studies have shown that radio access network (RAN) performance is degraded under the high density of devices. In this paper, we propose three methods to enhance RAN performance for M2M communications over the LTE-A standard. The first method employs a different value for the physical RACH configuration index to increase random access opportunities. The second method addresses a heterogeneous network by using a number of picocells to increase resources and offload control traffic from the macro base station. The third method involves aggregation points and addresses their effect on RAN performance. Based on evaluation results, our methods improved RACH performance in terms of the access success probability and average access delay

    Design Exploration of mm-Wave Integrated Transceivers for Short-Range Mobile Communications Towards 5G

    Get PDF
    This paper presents a design exploration, at both system and circuit levels, of integrated transceivers for the upcoming fifth generation (5G) of wireless communications. First, a system level model for 5G communications is carried out to derive transceiver design specifications. Being 5G still in pre-standardization phase, a few currently used standards (ECMA-387, IEEE 802.15.3c, and LTE-A) are taken into account as the reference for the signal format. Following a top-down flow, this work presents the design in 65nm CMOS SOI and bulk technologies of the key blocks of a fully integrated transceiver: low noise amplifier (LNA), power amplifier (PA) and on-chip antenna. Different circuit topologies are presented and compared allowing for different trade-offs between gain, power consumption, noise figure, output power, linearity, integration cost and link performance. The best configuration of antenna and LNA co-design results in a peak gain higher than 27dB, a noise figure below 5dB and a power consumption of 35mW. A linear PA design is presented to face the high Peak to Average Power Ratio (PAPR) of multi-carrier transmissions envisaged for 5G, featuring a 1dB compression point output power (OP1dB) of 8.2dBm. The delivered output power in the linear region can be increased up to 13.2dBm by combining four basic PA blocks through a Wilkinson power combiner/divider circuit. The proposed circuits are shown to enable future 5G connections, operating in a mm-wave spectrum range (spanning 9GHz, from 57GHz to 66GHz), with a data-rate of several Gb/s in a short-range scenario, spanning from few centimeters to tens of meters

    Enhancing Radio Access Network Performance over LTE-A for Machine-to-Machine Communications under Massive Access

    Get PDF
    The expected tremendous growth of machine-to-machine (M2M) devices will require solutions to improve random access channel (RACH) performance. Recent studies have shown that radio access network (RAN) performance is degraded under the high density of devices. In this paper, we propose three methods to enhance RAN performance for M2M communications over the LTE-A standard. The first method employs a different value for the physical RACH configuration index to increase random access opportunities. The second method addresses a heterogeneous network by using a number of picocells to increase resources and offload control traffic from the macro base station. The third method involves aggregation points and addresses their effect on RAN performance. Based on evaluation results, our methods improved RACH performance in terms of the access success probability and average access delay
    corecore