2,504 research outputs found

    The Critical Role of Public Charging Infrastructure

    Full text link
    Editors: Peter Fox-Penner, PhD, Z. Justin Ren, PhD, David O. JermainA decade after the launch of the contemporary global electric vehicle (EV) market, most cities face a major challenge preparing for rising EV demand. Some cities, and the leaders who shape them, are meeting and even leading demand for EV infrastructure. This book aggregates deep, groundbreaking research in the areas of urban EV deployment for city managers, private developers, urban planners, and utilities who want to understand and lead change

    Stochastic optimal energy management system for RTG cranes network using genetic algorithm and ensemble forecasts

    Get PDF
    In low voltage networks, Energy Storage Systems (ESSs) play a significant role in increasing energy cost savings, peak reduction and energy efficiency whilst reinforcing the electrical network infrastructure. This paper presents a stochastic optimal management system based on a Genetic Algorithm (GA) for the control of an ESS equipped with a network of electrified Rubber Tyre Gantry (RTG) cranes. The stochastic management system aims to improve the reliability and economic performance, for given ESS parameters, of a network of cranes by taking into account the uncertainty in the RTGs electrical demand. A specific case study is presented using real operational data of the RTGs netwrok in the Port of Felixstowe, UK, and the results of the stochastic control system is compared to a standard set-point controller. In this paper, two forecast data sets with different levels of accuracy are used to investigate the impact of the crane demand forecast error in the proposed ESS control system. The results of the proposed control strategies indicate that the stochastic management system successfully increases the electric energy cost savings, the peak demand reductions and successfully outperforms a comparable set-point controller

    Electric Vehicle Policy for the Midwest: A Scoping Report

    Get PDF
    Provides an overview of private and public efforts to expand the use of electrified vehicles and the implications for greenhouse gas emissions, with a focus on eight Upper Midwest states. Identifies relevant policies and recommends near-term initiatives

    A Call to Action

    Get PDF

    E-Mobility -- Advancements and Challenges

    Get PDF
    Mobile platforms cover a broad range of applications from small portable electric devices, drones, and robots to electric transportation, which influence the quality of modern life. The end-to-end energy systems of these platforms are moving toward more electrification. Despite their wide range of power ratings and diverse applications, the electrification of these systems shares several technical requirements. Electrified mobile energy systems have minimal or no access to the power grid, and thus, to achieve long operating time, ultrafast charging or charging during motion as well as advanced battery technologies are needed. Mobile platforms are space-, shape-, and weight-constrained, and therefore, their onboard energy technologies such as the power electronic converters and magnetic components must be compact and lightweight. These systems should also demonstrate improved efficiency and cost-effectiveness compared to traditional designs. This paper discusses some technical challenges that the industry currently faces moving toward more electrification of energy conversion systems in mobile platforms, herein referred to as E-Mobility, and reviews the recent advancements reported in literature

    Thermal Management of Electrified Vehicles—A Review

    Get PDF
    Vehicle electrification demands a deep analysis of the thermal problems in order to increase vehicle efficiency and battery life and performance. An efficient thermal management of an electrified vehicle has to involve every system of the vehicle. However, it is not sufficient to optimize the thermal behavior of each subsystem, but thermal management has to be considered at system level to optimize the global performance of the vehicle. The present paper provides an organic review of the current aspects of thermal management from a system engineering perspective. Starting from the definition of the requirements and targets of the thermal management system, each vehicle subsystem is analyzed and related to the whole system. In this framework, problems referring to modeling, simulation and optimization are considered and discussed. The current technological challenges and developments in thermal management are highlighted at vehicle and component levels

    An assessment of inductive coupling roadway powered vehicles

    Get PDF
    The technical concept underlying the roadway powered vehicle system is the combination of an electrical power source embedded in the roadway and a vehicle-mounted power pickup that is inductively coupled to the roadway power source. The feasibility of such a system, implemented on a large scale was investigated. Factors considered included current and potential transportation modes and requirements, economics, energy, technology, social and institutional issues. These factors interrelate in highly complex ways, and a firm understanding of each of them does not yet exist. The study therefore was structured to manipulate known data in equally complex ways to produce a schema of options and useful questions that can form a basis for further, harder research. A dialectical inquiry technique was used in which two adversary teams, mediated by a third-party team, debated each factor and its interrelationship with the whole of the known information on the topic

    Electrification of High-Mileage Mobility Services in Cities and at Airports

    Get PDF
    High-mileage vehicles serving airports offer significant potential for the electrification of transportation, in ways that enhance the affordability and sustainability of mobility for people and electric vehicle infrastructure development. As one example, by mid-2018, transportation network company (TNC) electric vehicles (EVs) in California—as a high-mileage mobility-as-a-service (MaaS) vehicle platform—was estimated to represent 30% of total non-Tesla EV charging demand, despite being only 0.5% of EVs in the State, and having sixty times higher levels of charging energy demand relative to the other EVs. This chapter explores the potential importance of this phenomena, the emergence of urban electric mobility developments and the co-benefits for economic, environment and equity. Through focus on the synergies of electrification with shared-use vehicles and trips, and with mobility options that include higher mileage, utilization, and occupancy, this chapter identifies emerging concepts that will have potential for impacting adoption rates, management, modeling and control for urban electric mobility systems. More specifically, this chapter explores emerging trends at and adaptations for airports. City airports, as critical hubs for TNC trip demand, and engines of regional economic growth, may be a critical locale for siting fast-charging infrastructure and planning new urban electric mobility operations across many metropolitan areas and cities of the United States and globally
    • …
    corecore