2,831 research outputs found

    Permission-Based Separation Logic for Multithreaded Java Programs

    Get PDF
    This paper presents a program logic for reasoning about multithreaded Java-like programs with dynamic thread creation, thread joining and reentrant object monitors. The logic is based on concurrent separation logic. It is the first detailed adaptation of concurrent separation logic to a multithreaded Java-like language. The program logic associates a unique static access permission with each heap location, ensuring exclusive write accesses and ruling out data races. Concurrent reads are supported through fractional permissions. Permissions can be transferred between threads upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary variables keep track of multisets of currently held monitors. Data abstraction and behavioral subtyping are facilitated through abstract predicates, which are also used to represent monitor invariants, preconditions for thread starting and postconditions for thread joining. Value-parametrized types allow to conveniently capture common strong global invariants, like static object ownership relations. The program logic is presented for a model language with Java-like classes and interfaces, the soundness of the program logic is proven, and a number of illustrative examples are presented

    Automating Deductive Verification for Weak-Memory Programs

    Full text link
    Writing correct programs for weak memory models such as the C11 memory model is challenging because of the weak consistency guarantees these models provide. The first program logics for the verification of such programs have recently been proposed, but their usage has been limited thus far to manual proofs. Automating proofs in these logics via first-order solvers is non-trivial, due to reasoning features such as higher-order assertions, modalities and rich permission resources. In this paper, we provide the first implementation of a weak memory program logic using existing deductive verification tools. We tackle three recent program logics: Relaxed Separation Logic and two forms of Fenced Separation Logic, and show how these can be encoded using the Viper verification infrastructure. In doing so, we illustrate several novel encoding techniques which could be employed for other logics. Our work is implemented, and has been evaluated on examples from existing papers as well as the Facebook open-source Folly library.Comment: Extended version of TACAS 2018 publicatio

    Steps in modular specifications for concurrent modules

    Get PDF
    © 2015 Published by Elsevier B.V.The specification of a concurrent program module is a difficult problem. The specifications must be strong enough to enable reasoning about the intended clients without reference to the underlying module implementation. We survey a range of verification techniques for specifying concurrent modules, in particular highlighting four key concepts: auxiliary state, interference abstraction, resource ownership and atomicity. We show how these concepts combine to provide powerful approaches to specifying concurrent modules

    Modular termination verification for non-blocking concurrency

    Get PDF
    © Springer-Verlag Berlin Heidelberg 2016.We present Total-TaDA, a program logic for verifying the total correctness of concurrent programs: that such programs both terminate and produce the correct result. With Total-TaDA, we can specify constraints on a thread’s concurrent environment that are necessary to guarantee termination. This allows us to verify total correctness for nonblocking algorithms, e.g. a counter and a stack. Our specifications can express lock- and wait-freedom. More generally, they can express that one operation cannot impede the progress of another, a new non-blocking property we call non-impedance. Moreover, our approach is modular. We can verify the operations of a module independently, and build up modules on top of each other

    Uniqueness Typing for Resource Management in Message-Passing Concurrency

    Get PDF
    We view channels as the main form of resources in a message-passing programming paradigm. These channels need to be carefully managed in settings where resources are scarce. To study this problem, we extend the pi-calculus with primitives for channel allocation and deallocation and allow channels to be reused to communicate values of different types. Inevitably, the added expressiveness increases the possibilities for runtime errors. We define a substructural type system which combines uniqueness typing and affine typing to reject these ill-behaved programs

    Specification and verification of atomic operations in GPGPU programs

    Get PDF
    We propose a specification and verification technique based on separation logic to reason about data race freedom and functional correctness of GPU kernels that use atomic operations as synchronisation mechanism. Our approach exploits the notion of resource invariant from Concurrent Separation Logic (CSL) to capture the behaviour of atomic operations. However, because of the different memory levels in the GPU architecture, we adapt this notion of resource invariant to these memory levels, i.e., group resource invariants capture the behaviour of atomic operations that access locations in local memory, while kernel resource invariants capture the behaviour of atomic operations that access locations in global memory. We show soundness of our approach and we provide tool support that enables us to verify kernels from standard benchmarks suites

    Specification and verification of synchronisation classes in Java:A practical approach

    Get PDF
    Digital services are becoming an essential part of our daily lives. To provide these services, efficient software plays an important role. Concurrent programming is a technique that developers can exploit to gain more performance. In a concurrent program several threads of execution simultaneously are being executed. Sometimes they have to compete to access shared resources, like memory. This race of accessing shared memories can cause unexpected errors. Programmers use synchronisation constructs to tame the concurrency and control the accesses. In order to develop reliable concurrent software, the correctness of these synchronisation constructs is crucial. In this thesis we use a program logic, called permission-based Separation Logic, to statically reason about the correctness of synchronisation constructs. The logic has the power to reason about correct ownership of threads regarding shared memory. A correctly functioning synchroniser is responsible for exchanging a correct permission when a thread requests access to the shared memory. We use our VERCORS verification tool-set to verify the correctness of various synchronisation constructs. In Chapter 1 we discuss the scope of the thesis. All the required technical background about permission-based Separation Logic and synchronisation classes is explained in Chapter 2. In Chapter 3 we discuss how threads' start and join as minimum synchronisation points can be verified. To verify correctness of the synchronisation classes we have to first specify expected behaviour of the classes. This is covered in Chapter 4. In this chapter we present a unified approach to abstractly describe the common behaviour of synchronisers. Using our specifications, one is able to reason about the correctness of the client programs that access the shared state through the synchronisers. The atomic classes of java.util.concurrent are the core element of every synchronisation construct implementation. In Chapter 5 and Chapter 6 we propose a specification for atomic classes. Using this contract, we verified the implementation of synchronisation constructs w.r.t to their specifications from Chapter 4. In our proposed contract the specification of the atomic classes is parameterized with the protocols and resource invariants. Based on the context, the parameters can be defined. In Chapter 7 we propose a verification stack where each layer of stack verifies one particular aspect of a specified concurrent program in which atomic operations are the main synchronisation constructs. We demonstrate how to verify that a non-blocking data structure is data-race free and well connected. Based on the result of the verification from the lower layers, upper layers can reason about the functional properties of the concurrent data structure. In Chapter 8 we present a sound specification and verification technique to reason about data race freedom and functional correctness of GPU kernels that use atomic operations as synchronisation mechanism. Finally, Chapter 9 concludes the thesis with future directions
    • …
    corecore