

Specification F Verification
of

Synchronisation Classes
in Java

A Practical Approach

Afshin Amighi

SPECIFICATION AND VERIFICATION

OF

SYNCHRONISATION CLASSES IN JAVA

A PRACTICAL APPROACH

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof.dr. T.T.M. Palstra,

on account of the decision of the graduation committee,
to be publicly defended

on Wednesday 17 January 2018 at 16:45 hrs.

by

Afshin Amighi
born on 22 June 1976

in Tabriz, Iran

iv

This dissertation has been approved by:

Supervisor: Prof.dr. M. Huisman

CTIT Ph.D. Thesis Series No. 17-451
Centre for Telematics and Information Technology
University of Twente, The Netherlands
P.O. Box 217 – 7500 AE Enschede, The Netherlands

IPA Dissertation Series No. 2018-01
The work in this thesis has been carried out under
the auspices of the research school IPA (Institute for
Programming research and Algorithmics).

European Research Council
The work in this thesis was supported by the VerCors
project (Verification of Concurrent Data Structures),
funded by ERC grant 258405.

ISBN: 978-90-365-4439-9
ISSN: 1381-3617 (CTIT Ph.D. Thesis Series No. 17-451)
DOI: 10.3990/1.9789036544399
Available online at https://doi.org/10.3990/1.9789036544399

Typeset with LATEX.
Cover design and printed by: Gildeprint.
Original image of the cover under license from Shutterstock.com.
Copyright c© 2018 Afshin Amighi, The Netherlands.

https://doi.org/10.3990/1.9789036544399

v

Graduation Committee:

Chairman: Prof.dr. P.M.G. Apers University of Twente
Supervisor: Prof.dr. M. Huisman University of Twente
Members:
Prof.dr.ir. J.C. van de Pol University of Twente
Prof.dr.ir. H. Wehrheim Paderborn University
Prof.dr. A. van Deursen Technical University of Delft
Prof.dr.ir. A. Pras University of Twente
Dr.ir. V. Vafeiadis Max Planck Institute for Software Systems

vii

Acknowledgements

On March 2011, when I started my journey of “ PhD candidate ”, to me, it
seemed like a magic to finish it. Now the journey is about to finish and the
magic is going to happen. I owe this to my kind and supportive supervisors,
colleagues, friends and family members. This work would not have been
possible without the valuable assistance of them. Here, I would like to
devote this space to thanking those who have walked alongside me during
this journey and made the magic happen.

To Jaco van de Pol and Marieke Huisman: thanks for providing me this
wonderful opportunity of being a member of the FMT family. I learned,
grew and enjoyed every moment of working there.

To my excellent supervisor, Marieke Huisman: I certainly would not
accomplish this without your patient guidance and useful critiques of my
research. I have been always impressed by the amount of the papers, reviews,
writings, meetings, trips and other work that you always manage to handle
and still within the deadlines you are able to be critical about the work with
helpful comments. You were not only my supervisor, but also a kind friend.
You have been always helpful, caring, encouraging and understanding to me
and my family.

I am also grateful to European Research Council (ERC), who funded
this work via the VerCors project.

To my committee members, Jaco van de Pol, Viktor Vafeiadis, Heike
Wehrheim, Arie van Deursen, and Aiko Pras: I am appreciative of you for
evaluating my thesis and be a member of my graduation committee.

To Viktor Vafieadis: thanks for providing me the chance to visit Max
Plank Institute-Software Systems and for all the valuable discussions and
comments.

To my project teammates, Stefan Blom, Wojciech Mostowski, Marina
Zaharieva-Stojanovski and Saeed Darabi : I am so grateful for the support

ix

x

and assistance provided by you. Thank you for all the generous advises.
Discussing with you about the challenges has been always constructive and
valuable to me. This thesis truly is the result of all those daily discussions.

To my creative and smart FMT colleagues, Arend Rensik, Gijs Kant,
Mariëlle Stoelinga, Amirhossein Ghamarian,Maarten de Mol, Eduardo Zam-
bon, Tom van Dijk, Ngo Minh Tri, Ketema Jeroen, Axel Belinfante, Lesley
Wevers, Stefano Schivo, Waheed Ahmad : I am indebted to you all. I en-
joyed every moment that we spent together. I will never forget all those
small chats, coffee breaks, Friday afternoon talks, lunch colloquiums, cam-
pus runnings.

To my new FMT colleague, Sebastiaan Joosten: I had a great time
discussing with you about the challenges provided in ICT with Industry
Workshop-University of Leiden. Thanks for all the detailed and helpful
feedback on my thesis.

To Ida, Jeanette and Joke: I am truly appreciated by the assistance
provided by you. You have been always there to help me with all the steps
that could accelerate required official procedures.

To my truly friends, Mohammad and Shahin: you have been always like
a brother to me. You and your lovely families; Leila, Soude; have been
always there to lend me and my family a hand without hesitate. Me and
my family will never forget your assistance and support.

To my kind friends, Hassan, Hamed, Meisam, Majid, Gerrie, Alireza,
Saeed, Sara, Zahra: thank you for all the warm and friendly gatherings.

To my amiable colleagues in RUAS, Ahmad, Mohammed, Tony, Andrea,
Anne, Hans, Marjon, Francesco, Giuseppe, Giulia, Hossein, Tanja, Albert,
Jan: thank you for providing me such a nice working environment.

To my kind in-laws, Jalil, Farah and Behnam: I owe a deep gratitude
and thanks for your positive attitude and encouragement in all the steps.
Thank you Farah for your support; the last steps were very difficult. You
made it easy for me.

To my incredible parents, Simin and Reza: I cannot express anything
that can show my gratefulness for your love and encouragement. You are
always ready to provide me hope and motivation for my next step. I would
never have enjoyed so many wonderful opportunities without your endless
sacrifice.

To my lovely sisters, Noushin and Farrin: I am more than grateful to
you. You were always kindly supporting my decisions. I hope I can spend

xi

more time later with you and your beloved families: Kasra, Kia, Koosha
and Reza.

I save the last for the best. To my lifelong friend, Elham: this would
not be achieved without your support and patience. During this journey
you have been always passionate, empathetic, persistent and considerate.
We started the journey together, we both will finish it. I will practice my
patience when you start writing your thesis in the coming months.

Abstract

Nowadays, concurrent programming is becoming a mainstream technique
to achieve high-performance computing. Implementing a correct program
using shared memory concurrency is challenging. This is because of the
unpredictable interleavings of threads that may cause unaccepted access to
the shared memory, known as data race. Programmers use synchronisers
to control thread interleaving and prevent data races. Coarse-grained syn-
chronisation constructs block threads for large parts of execution tasks, while
fine-grained synchronisation primitives employ atomic operations.

Using testing techniques to catch possible errors in concurrent programs
is not feasible, because the appearance of errors depends on the execu-
tion order of the participating threads, which varies in different runs. And
moreover, testing techniques are able only to show the presence of errors.
Formal techniques are needed to guarantee the absence of errors independ-
ently from execution environments. Axiomatic based approaches are one of
the common techniques that can verify the correctness of a given program
with respect to its specifications without executing the program. Axiomatic
based program verification employs a collection of formal rules that expresses
the correct behaviour of the program using a program logic. Program logic
shows how to formally derive correctness of the implementation w.r.t. its
specification.

Permission-based Separation Logic is a program logic that has been de-
veloped to reason about concurrent programs. In permission-based Separ-
ation Logic one can express and reason about the ownership of memory
locations. This is an important and powerful feature of this logic because
any data race becomes detectable. Verification techniques of concurrent
programs based on permission-based Separation Logic exploit this feature
of the logic to verify that a concurrent program is free from data races.

xiii

xiv ABSTRACT

In this thesis, we propose an approach to specify and verify synchronisa-
tion constructs which are at the heart of any concurrent program. The class
of synchronisers that we study here includes both coarse-grained and fine-
grained synchronisers. In our approach we lift formalised rules of permission-
based Separation Logic to the specification level. Our method offers a gen-
eralised, high-level and extendable approach to specify and verify arbitrary
synchronisation constructs. Our approach is a practical technique. Using
the VerCors tool set we demonstrate the practicality of our approach by
verifying a variety of examples implemented in Java. The VerCors tool
set and all the tool verified examples are available online.

In this thesis, first, we start with the basics of threads communication
and synchronisation primitives in Java. As a result, we verify the correct-
ness of a concurrent Java program where threads have multiple join points.
Then, we study the general behaviour of commonly used synchronisation
classes in Java. We propose a unified approach to specify the correct be-
haviour of synchronisers. Concretely, we discuss the formal specification of
the synchronisation classes implemented in the java.util.concurrent package.
This enables us to verify the correctness of the concurrent Java programs
that are using these synchronisation classes. Next, in order to verify that
the implementation of synchronisers satisfies our specifications we develop
techniques to reason about the verification of synchronisers. A common way
to implement such sychronisers is by using atomic operations. We identify
different synchronisation patterns that can be implemented by using atomic
operations. Moreover, we propose a specification of these operations in
Java’s AtomicInteger class, which is an essential class in the implementation
of Java’s synchronisers. We use our specification of the atomic operations
to verify the implementation of both exclusive access and shared-reading
synchronisation classes developed in java.util.concurrent.

Further to the results of reasoning about atomic operations, we propose
a verification stack where several concurrent program verification techniques
are combined. In each layer of the stack a particular property of a concur-
rent program is verified. In our three layer verification stack, the bottom
layer, reasons about data race freedom of programs. The second layer reas-
ons about properties that ties properties of both thread-local and shared
variables. The top layer adds a notion of histories to reason about func-
tional properties of concurrent data structures. We illustrate our technique
on the verification of a lock-free queue and reentrant lock both implemented
in Java.

xv

Finally, we propose a specification and verification technique to reason
about data race freedom and functional correctness of GPU kernels that use
atomic operations as synchronisation mechanism.

Altogether, the techniques proposed in this thesis are a step forward
towards the practical verification of non-trivial Java(-like) concurrent pro-
grams that are using either fine-grained or coarse-grained synchronisers. The
verified programs are guaranteed to be free from data races and the veri-
fication is done with a rich specification language that relies on the rules
developed by permission-based Separation Logic.

Contents

Abstract xiii

Contents xvii

Listings xix

1 Introduction 1
1.1 Concurrency . 4
1.2 Synchronisation . 7
1.3 Verification . 10
1.4 A Practical Approach . 11
1.5 Thesis . 12

2 Technical Background 17
2.1 Atomic Variables in Java . 19
2.2 Permission-based Separation Logic 20
2.3 VerCors Specification Language 25

3 Reasoning about Thread Creation and Termination 27
3.1 Reasoning about Dynamic Threads 29
3.2 Contract of Class Thread . 32
3.3 Example: Multi-threaded Data Processing 33
3.4 Conclusion and Related Work 36

4 Synchronisers Specifications 41
4.1 Locks in Java . 44
4.2 Semaphore Specification . 51
4.3 CountDownLatch Specification 52

xvii

xviii CONTENTS

4.4 CyclicBarrier Specification . 57
4.5 Examples . 58
4.6 Conclusion and Related Work 63

5 Verification of Synchronisers: Exclusive Access 67
5.1 Synchronisation Patterns . 70
5.2 Ownership Exchange via Atomics 73
5.3 Specifications of Atomics . 78
5.4 Contracts of AtomicInteger 86
5.5 Conclusion and Related Work 99

6 Verification of Synchronisers: Shared Reading 101
6.1 Synchronisation Classes . 104
6.2 Reasoning about Atomics . 105
6.3 Contract of AtomicInteger . 109
6.4 Verification . 111
6.5 Conclusion and Related Work 115

7 Multi-layer Verification based on Concurrent Separation
Logic 117
7.1 Layer 1: Permissions and Resource Invariants 121
7.2 Layer 2: Relating Thread-Local and Global Variables 124
7.3 Layer 3: Functional Properties using Histories 129
7.4 Conclusion and Related Work 136

8 Specification and Verification of Atomic Operations in GP-
GPU Programs 139
8.1 Background . 142
8.2 Specification . 144
8.3 Formalization . 149
8.4 Conclusion and Related Work 156

9 Conclusions 159

List of Publications 165

Bibliography 167

Listings

1 SampleThread class. 5
2 An implementation for a concurrent counter. 6
3 Counter class. 7
4 Intrinsic locking. 8
5 Explicit locking. 8
6 High-level data-race. 9
7 Atomic Increment. 10
8 The AtomicInteger class. 20
9 Specification of class Thread. 32
10 Class Buffer. 34
11 Class Sampler. 35
12 Class AFilter. 38
13 Class Plotter. 39
14 Verification of the main program. 40
15 Specification of the Lock interface. 47
16 Specification of the ReadWriteLock interface. 49
17 Specifications for lock initialization. 50
18 Specification of the Semaphore class. 51
19 Simplified specification of the CountDownLatch class. 54
20 Improved specification of the CountDownLatch class. 55
21 Specification of the CyclicBarrier class. 58
22 The producer. 59
23 The consumer. 60
24 Implementation of SProdMCons. 61
25 Client code using CountDownLatch 64
26 Client code using the CyclicBarrier 65
27 The processing code for the example in Listing 26. 66
28 ProducerConsumer: cooperation. 71

xix

xx LISTINGS

29 SpinLock: competition. 72
30 SingleCell: hybrid. 74
31 Contracts for AtomicInteger 90
32 Verification of SingelCell: constructor 94
33 Verification of SingelCell::findOrPut() 95
34 Veirication of ProducerConsumer 97
35 Verification of SpinLock. 98
36 Implementation of a Semaphore. 105
37 Implementation of a CountDownLatch. 106
38 Contracts for AtomicInteger: Exclusive and Shared 110
39 Verification of Semaphore: constructor. 113
40 Verification of Semaphore::acquire(). 114
41 Verification of Semaphore::release(). 115
42 CSL resource invariant of the lock-free queue. 123
43 Dequeue attempt. 125
44 Interface Lock. 127
45 The definition of the lock invariant in the Lock class. 128
46 The definition of the lockset predicate in the Thread class. . . 129
47 The method that encodes creating a history 131
48 Fragment of History Specification for Queues. 133
49 History specification of the get method. 134
50 Specified run method of the receiver 135
51 An example of a kernel with specifications 143
52 Specification of parallel add in a work group. 145
53 Specification of global parallel add. 147

CHAPTER 1
Introduction

1

3

We are quickly moving towards a fully digitalized society. We cannot
imagine anymore what life would be like without all the ICT-based services
that we depend upon. We expect these services to be available 24/7, that
they respond to all our needs immediately, and moreover that they do this
in a reliably and trustworthy manner.

These expectations on availability and responsiveness lead to ever in-
creasing demands on the performance of the software behind these services.
For a long time, these increasing demands have been answered by increasing
the speed of single processing units: according to Moore’s famous law [64],
the number of elements on a chip (and thus its processing speed) doubles
approximately every two years. However, due to physical limitations, we are
quickly approaching the maximal processor speed for single computing units,
and Moore’s law no longer applies. Instead, modern computing devices in-
corporate multiple processor units, i.e., multi-core computing is becoming
the new standard.

To make optimal use of a multi-core device, the software that runs on
it needs to support parallelism, i.e., it needs to provide support to divide
the computational job in multiple tasks which can be performed simultan-
eously1. Moreover, it also often happens that the intended computational
tasks are inherently parallel, and parallel (or concurrent) programming is the
natural and efficient way to implement it. Therefore, many modern high-
level programming languages provide built-in support, as well as extensive
libraries, to support concurrent programming.

Despite the programming language support, in the end the division of the
computational job into multiple parallel tasks is still the job of the program-
mer. Unfortunately, this task is error-prone, as it requires the programmer to
make a mental model of all the different interactions that can exist between
the different parallel threads of execution. As users do not only want high
performance, but also that computations are reliable, non-crashing, and
function correctly, we need techniques that help the programmer to avoid
such errors. This is precisely the focus of this thesis.

In the remainder of this introduction, we first briefly discuss the main
characteristics of shared memory concurrent programs, and then we de-

1Logically simultaneous processing is defined as concurrency and physically simultan-
eous processing is known as parallelism. In this thesis, concurrency and parallelism are
used interchangeably.

4 CHAPTER 1. INTRODUCTION

scribe our approach to reason about the behaviour of concurrent programs.
In shared memory concurrency, typically multiple parallel computations
(threads of execution) are created that all make use of a single shared
memory. If access to the shared memory is not properly controlled, a
program has data races, and its behaviour can become unpredictable. In
this thesis, we study synchronisation techniques to control access to shared
memory, in order to avoid this unpredictability. Standard techniques for
synchronisation are often based on locks. Their drawback is that they can
negatively impact the performance of a program, because threads might
have to wait for a long time before they are able to proceed. Therefore,
more efficient concurrent programs use fine-grained synchronisation using
atomic operations. We show how to reason about programs using atom-
ics for synchronisation directly. We also discuss how to reason about other
high-level synchronisation mechanisms that can be built on top of atomic
synchronisation primitives. Our approach is based on static verification, i.e.,
it works at compile-time. In this thesis, we focus mostly on Java(-like) pro-
grams, however, our techniques are also applicable for other programming
languages with similar concepts.

1.1 Concurrency

In a concurrent program, a number of parallel processes operate concurrently
to achieve a common task. In Java, a programmer can create such a parallel
process, called thread, by creating an object that is an instance of a class
that extends the Thread class2. Calling the start() method on this object
causes the Java virtual machine to start the execution of a new thread,
which executes the body of the run() method of the thread object. Listing 1
contains a very simple thread creation example.

A thread can wait for another thread to terminate by calling the join()
method on this other thread. This blocks the caller (provided the callee
thread has already been started) until the joined thread completes its exe-
cution.

A common way for threads to communicate with each other is via shared
memory, which they can access and update. If a thread updates a variable
in the shared memory, its new value is eventually made available to all other

2Another way of creating threads in Java is to implement the Runnable interface.

1.1. CONCURRENCY 5

public class SampleThread extends Thread {
2 public void run() { /∗ Task of the thread is implemented here. ∗/ }

public static void main(String[] args){
4 (new SampleThread()).start();

}
6 }

Listing 1: SampleThread class.

threads. The advantage of shared memory concurrency is that it is simple
and intuitive. However, its downside is that the order in which different
threads access the shared memory is not deterministic. This can cause a
bug. If two threads access the same memory location, and at least one
of these two accesses is a write operation, then we say that the accesses
are conflicting. If the program does not have sufficient synchronisation to
ensure that conflicting accesses cannot happen simultaneously, then we say
that the program has a data race [68]. Note that if the program is sufficiently
synchronised, the actual value stored in a variable might still depend on the
execution speed of another thread. This is called a race condition (or high-
level data race) [31] and might also indicate a bug in the program. However,
in this thesis, we concentrate on how to prove absence of data races. Data
races are considered to be bugs, and must be avoided. In particular, if a
program with data races is executed on a relaxed memory model, compiler
reorderings might be allowed which result in unexpected program executions.

As an example, Listing 2 shows a program3 that creates a number
of threads that concurrently increment the shared variable Counter::count,
which is initialized to 0. If n threads are created4, after termination of the
count method, we expect that the final value of Counter::count is n. List-
ing 3 shows a candidate implementation of the incr() method. Clearly, in
this implementation there is a conflicting access to the variable count, which
causes a data race5: threads can interfere with each other while executing
the instructions in lines 7 and 8.

For example, assume two threads t and t′ are trying to increment count

3For simplicity of the example, exception handling is omitted.
4The number of threads in the example can be any positive number.
5This example shows both data races and race conditions.

6 CHAPTER 1. INTRODUCTION

public class MainConcCounter{
2

public static void main(String[] args){
4 int num = 50; // number of threads; can be any number

Thread[] counterThreads;
6 Counter counter = new Counter();

8 for(int i = 0; i<num; i++)
counterThreads[i] = new ConcCounter(counter);

10

for(int i = 0; i<num; i++){ counterThreads[i].start(); }
12 for(int i = 0; i<num; i++){ counterThreads[i].join(); }

}
14 }

16 public class ConcCounter extends Thread{
private Counter counter;

18

public ConcCounter(Counter c){ counter = c; }
20 protected void run(){ counter.incr(); }

}
22

public class Counter{
24 private int count;

26 public Counter(){ count = 0; }
public void incr(){ /∗ increment count by one ∗/ }

28 }

Listing 2: An implementation for a concurrent counter.

in Listing 3. The processor picks t to run while t′ is sleeping. The following
execution scenario results in a data race:

• Thread t reads the current value of count, say k.

• Thread t sleeps.

• Thread t is resumed.

1.2. SYNCHRONISATION 7

public class Counter{
2 private int count;

4 public Counter(){ count=0; }

6 public void incr(){
int tmp = count; /∗ reading the shared variable ∗/

8 count = tmp+1; /∗ writing to the shared variable ∗/
}

10 }

Listing 3: Counter class.

• Thread t′ reads the current value of count.

• Thread t′ updates count to k + 1.

• Thread t′ is suspended.

• Thread t wakes up.

• Thread t updates count to k + 1.

As can be seen here, the contribution of t to the variable count is des-
troyed. The implementation for the method incr() is correct in a sequential
program, but is not thread safe.

1.2 Synchronisation

Thus, to prevent data races, we need to have ways to control the possible
interferences between the different threads. Monitors are a classical mech-
anism to protect and control access to shared variables: only a thread that
holds the monitor can be executing the code block, protected by the monitor.
In Java, every object has a built-in monitor. A code block B is protected by
the monitor associated to object obj by wrapping B with a synchronized:
i.e., synchronized(obj){B } guarantees that at most one thread at the time
is executing code block B. If another thread tries to acquire the monitor, it
will be blocked until the monitor is released by the first thread.

8 CHAPTER 1. INTRODUCTION

public class Counter{
2 private int count;

4

public Counter(){ count=0; }
6

public void incr(){
8 synchronized(this){

int tmp = count;
10 count = tmp+1;

}
12 }

}

Listing 4: Intrinsic locking.

public class Counter{
2 private int count;

private Lock sync =
4 new ReentrantLock();

public Counter(){ count=0; }
6

public void incr(){
8 sync.lock();

int tmp = count;
10 count = tmp+1;

sync.unlock();
12 }

}

Listing 5: Explicit locking.

Listing 4 shows a variant of the counter, which uses a synchronized
statement to prevent threads from interfering with each other. Any thread
entering the protected region will temporarily own the shared variable count
exclusively until it leaves the protected region.

The synchronisation mechanism as discussed above is built-in to Java,
which is often called intrinsic locking. In addition, the util.concurrent.lock
package also provides an alternative, often called explicit locking, by provid-
ing a Lock interface with methods lock() and unlock(). Usage of this interface
is illustrated in Listing 5 (using the ReentrantLock implementation of the
Lock interface). In Chapter 4: Synchronisers Specifications we will specify
the behaviour of the Lock interface in more detail.

If a programmer makes suitable use of locks, the data race problem can
be avoided. However, a program might still have race conditions (or high
level data races). For example, Listing 6 shows an implementation for the
incr() method which is free of data races, but suffers from race conditions.

However, the use of monitors can have a negative impact on the per-
formance of a program, because threads might be blocked, waiting for the
monitor to be released. To avoid this performance loss, atomic operations
could be used instead. But, in order for this to work, we need to guarantee
that an update will immediately be visible to other threads. To support this,
Java provides a notion of atomic variable, where all threads are guaranteed

1.2. SYNCHRONISATION 9

public void incr(){
2 sync1.lock();

int tmp = count;
4 sync1.unlock();

sync2.lock();
6 count = tmp+1;

sync2.unlock();
8 }

Listing 6: High-level data-race.

to see the latest value written to the variable. To make a lock-free imple-
mentation of the counter, we need to ensure that if a thread reads a value
k, before writing k + 1, k is still the value of the counter. For this purpose,
Java provides a compare-and-set (CAS) instruction. A CAS operation takes
three parameters as its arguments: 1. a memory location to update, 2. a
value expected to be seen in the location, and 3. a new value. The operation
inspects the value of the location. If the value is equal to the expected value,
it updates it to the new value. Otherwise, it terminates without changing
the variable. All these steps are done atomically, meaning that during the
operation the location is inaccessible to other threads.

In Listing 7 we implemented our counter example using atomic op-
erations. Later, in Chapter 2 we will discuss atomic variables and the
atomic package of Java in more detail. For the moment, let’s define the
AtomicInteger class (see Listing 7, line 2) as a wrapper for atomic (volatile)
variables in Java with three main atomic operations: get() for atomic read,
set(int v) for atomic write and, finally, compareAndSet(int x, int v) as the
CAS operation. Lines 8 - 10 of Listing 7 shows how a thread repeatedly
reads the current value and attempts to update. Essentially, the writing
thread calls the count.compareAndSet(current, next) method to first check if
count was updated in the mean time, i.e. between lines 8 and 10. If not, the
new value is written (in one atomic instruction, together with the compar-
ison). If yes, the thread will repeat the reading of the value of the counter
and the update process6.

6In fact, the AtomicInteger::incrementAndGet() method is implemented in this way.

10 CHAPTER 1. INTRODUCTION

public class Counter{
2 private AtomicInteger count;

4 public Counter(){ count=new AtomicInteger(0); }

6 public void incr(){
while(true) {

8 int current = count.get();
int next = current + 1;

10 if(count.compareAndSet(current, next))
return;

12 }
}

14 }

Listing 7: Atomic Increment.

1.3 Verification

In order to make sure a concurrent program always behaves as intended,
testing is not sufficient. In particular, because errors might only show up
if threads are interleaved in a particular order, and thus, even if the pre-
deployment testing phase does not reveal errors, errors might still pop-up
later after deployment. Therefore, more advanced techniques are needed,
which can analyse all possible behaviours of a program.

Therefore, this thesis advocates the use of static verification to analyse
the behaviour of concurrent programs. We use program logics to reason
about correct behaviour of concurrent programs. In program logic based
verification, first, a formal semantics is defined to describe the possible be-
haviour of a program. Second, a specification language is proposed (and
formalised), which allows one to express the intended properties of a pro-
gram. Third, a program logic is proposed that enables one (without ex-
ecuting the program) to derive whether the program indeed has the desired
properties.

Hoare Logic [43] is the common ancestor of many of these logics: it was
one of the first program logics that enabled reasoning about the behaviour of
a program purely syntactically. Using ideas from Hoare Logic, the Design-

1.4. A PRACTICAL APPROACH 11

by-Contract paradigm [62] proposed a systematic development approach to
produce more reliable object-oriented software components. The main idea
of Design-by-Contract is that for each element of the component its contract
should be specified. This contract makes the assumptions and guarantees
between the components and its user explicit. In particular, the contract
of a given method consists of a pre-condition, which specifies the state in
which the method may be called, and a post-condition, which describes the
properties on the state that the method guarantees after its execution. To
guarantee this, we need to ensure that there exists a relation between the
contract and the implementation. This is where the use of (an extension of)
Hoare logic comes into play. The proof rules allows one to verify that the
implementation indeed fulfills the specification, as expressed by the contract.

For a concurrent program, one of the critical properties that should be
verified is whether the program is free of data races. In this thesis, we develop
a verification approach using existing program logics to reason about data
race freedom of concurrent programs. This means that a verified concurrent
program is proven to lack data race in every possible run. Our main focus
is on three basic atomic operations, i.e. atomic read, atomic write and
compare-and-set. We propose specifications of the basic atomic operations
to verify the implementation of the synchronisation constructs. Moreover,
we also show how other, more involved, properties can be proven, once data
race freedom has been established.

1.4 A Practical Approach

Our ultimate target is to develop a practical technique for concurrent pro-
grams implemented in Java(-like) programming languages. However, what
we see is that even though formal verification is a very promising approach,
its practical applicability in industrial applications still is challenging. Typ-
ical multi-threaded industrial applications are large and complex. Therefore
a verification technique for concurrent software needs to be scalable, easy to
use, and automatic in order to be usable in such a setting.

A modular approach to verification is a well-known technique to improve
scalability. In modular program analysis [65], components are verified sep-
arately, using contracts for the other components. For the verification of
sequential programs, procedure-modularity is enough: whenever a method
call is encountered, it is verified that the pre-condition of this method is ful-

12 CHAPTER 1. INTRODUCTION

filled, and the post-condition of the called method is then simply assumed.
However, for multi-threaded programs, we also need a thread-modular veri-
fication technique, where the behaviour of the other (interferring) threads is
abstracted into environment actions. For the verification of a single thread,
it is then assumed that all possible interferences of other treads are captured
by these environment actions. This approach is used in well-known tech-
niques such as Assumptions-Commitments of Francez and Pnueli [37] and
Rely-Guarantee of Jones [51]. During the last decade, Separation Logic [76]
and its extensions for concurrent programs [68] opened more opportunities
for modular verification of non-trivial concurrent programs implemented in
real programming languages. More details about Separation Logic and its
role in our work will be discussed later in this thesis.

Certainly, full automation and tool support, to some extent can help
an approach to be accepted by the practitioners. Verification of a given
concurrent program using a fully automatic tool is still an active research
topic. In this thesis, we advocate an approach that can reason in a relatively
simple way about common synchronisation primitives. To achieve this, first,
we need to understand the basic machinery of how the specification and
verification should be done, and then once this is there, efforts are made to
reduce the number of auxiliary annotations that are needed. This effect is
clearly visible in the different chapters of the thesis.

1.5 Thesis

As explained above, synchronisation is a key component in concurrent pro-
gramming. The programmer either has to define his/her own synchron-
isation mechanism, using atomic operations, or use one of the available
constructs from a standard library, such as the java.util.concurrent package,
which provides synchronisation mechanisms for all common thread interac-
tion patterns.

In all cases, ensuring the correctness of the synchronisation mechanism is
essential, and this thesis provides the means to do this. The results described
in this thesis are part of a larger project, named VerCors [6], on the
static verification of concurrent software. Within this VerCors project,
we use permission-based Separation Logic [24], an extension of Hoare Logic
that is especially suited to reason about concurrent programs (written in
different programming languages). The verification techniques developed in

1.5. THESIS 13

the project are implemented as part of the VerCors tool set [87, 19].
This thesis develops a uniform specification and verification technique

for different synchronisation mechanisms. The main goal of the work is to
develop a simple specification language that does not require a lot of user
interactions for verification. To achieve this goal, instead of proposing a new
and powerful program logic, the focus is on reusing well-established logics
and to adapt them to our concrete verification problems. In this work we
consider atomic operations as the core building block of synchronisation in
Java. In addition to the specification and verification of various synchronisa-
tion classes, we also show how reasoning about atomic operations can help
to reason about non-blocking data-structures where atomic operations are
the only shared-variable interactions.

The remainder of this thesis is structured as follows:

• Chapter 1 (Introduction).

• Chapter 2 (Technical Background): presents the necessary technical
background for the rest of the dissertation. It covers the basics of
the atomic operations in Java, permission-based Separation Logic and
it introduces our VerCors specification language that we employ to
specify Java concurrent programs.

• Chapter 3 (Reasoning about Thread Creation and Termination): de-
scribes the basic approach that we use to reason about multi-threaded
Java programs using thread start and join as the only synchronisation
mechanism. Our contribution in this chapter is to use this approach
to verify a concurrent pipeline processing program with multiple joins.
This chapter is published as part of the following paper:

A. Amighi, C. Haack, M. Huisman, and C. Hurlin. Permission-based
Separation Logic for multithreaded Java programs. Logical Methods
in Computer Science, 11(1), 2015.

• Chapter 4 (Synchronisers Specifications): proposes contracts for syn-
chronisation constructs. Our contribution in this chapter is to propose
a unified approach to specify the behaviour of various synchronisa-
tion mechanisms, which are part of the Java concurrency package, i.e.
java.util.concurrent. The approach is illustrated through the verific-

14 CHAPTER 1. INTRODUCTION

ation of several client programs using synchronisation classes. This
chapter is based on the following paper:

A. Amighi, S. Blom, M. Huisman, W. Mostowski, and M. Zaharieva-
Stojanovski. Formal Specifications for Java’s Synchronisation Classes.
In 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2014, Torino, Italy, February 12-
14, 2014, pages 725–733, 2014..

• Chapter 5 (Verification of Synchronisers: Exclusive Access): proposes
a technique to reason about the implementation of exclusive access
synchronisation constructs. The main contributions of this chapter
are: 1. an overview of typical synchronisation patterns using the basic
atomic operations as synchronisation primitives; 2. a general specific-
ation for these basic atomic operations; 3. a simple, practical and
thread-modular contract for AtomicInteger as an exclusive access syn-
chroniser; and 4. verification of several examples implementing the
synchronisation patterns using our VerCors tool set. This chapter
is based on the following paper:

A. Amighi, S. Blom, and M. Huisman. Resource Protection Using
Atomics - Patterns and Verification. In Programming Languages and
Systems - 12th Asian Symposium, APLAS 2014, Singapore, November
17-19, 2014, Proceedings, pages 255–274, 2014..

• Chapter 6 (Verification of Synchronisers: Shared Reading): is an ex-
tension of Chapter 5 to reason about the implementation of shared-
reading synchronisation constructs. Our contribution in this chapter
is to extend the contract of the AtomicInteger class from Chapter 5
in order to verify both exclusive and shared-reading synchronisation
constructs. We used the unified contract to verify the implementation
of Semaphore, CountDownLatch and SpinLock with our VerCors tool
set. This chapter is based on the following paper:

A. Amighi, M. Huisman, and S. Blom. Verification of Shared-Reading
Synchronisers. SAC, 2018. Submitted.

• Chapter 7 (Multi-layer Verification based on Concurrent Separation
Logic): illustrates how the techniques developed in this thesis can
be integrated in a layered approach, to make verification of more in-
volved properties feasible. My contributions in this chapter are: 1. a

1.5. THESIS 15

layered verification architecture for concurrent programs where each
layer verifies one aspect of the program, and 2. verification of the im-
plementation of a lock-free pointer manipulating data structure. This
chapter is based on the following paper:

A. Amighi, S. Blom, and M. Huisman. VerCors: A Layered Approach
to Practical Verification of Concurrent Software. In 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2016, Heraklion, Crete, Greece, February 17-19, 2016,
pages 495–503. IEEE Computer Society, 2016.

• Chapter 8 (Specification and Verification of Atomic Operations in GP-
GPU Programs): discusses how our technique to reason about atomic
operations in concurrent programs can be extended to GPGPU pro-
grams. The contributions of this chapter are: 1. a specification and
verification technique that adapts the notion of Concurrent Separa-
tion Logic resource invariants to the GPU memory model and enables
us to reason about data race freedom and functional correctness of
GPGPU kernels containing atomic operations; 2. a soundness proof of
our approach; and 3. a demonstration of the usability of our approach
by developing automated tool support for it. This chapter is based on
the following paper:

A. Amighi, S. Darabi, S. Blom, and M. Huisman. Specification and
Verification of Atomic Operations in GPGPU Programs. In SEFM
2015, pages 69–83, 2015..

• Chapter 9 (Conclusions): Concludes the dissertation and discuss fu-
ture directions.

CHAPTER 2
Technical Background

17

2.1. ATOMIC VARIABLES IN JAVA 19

In this chapter we provide the background that is required for the fol-
lowing chapters. This chapter briefly explains how a set of threads can be
coordinated using atomic operations in Java. This helps to understand how
a synchronisation mechanism behaves, which is an essential step for reason-
ing. Then, the chapter provides a short overview of the program logic that
we employ to reason about correctness of concurrent programs with atomic
operations. Finally, a specification language will be introduced that is used
to capture the intended behaviour of concurrent programs.

2.1 Atomic Variables in Java

In Java, volatile fields are special fields which are used for communication
between threads. Writing to a volatile field has the same memory effect as if a
monitor is released and reading from a volatile variable has the same memory
effect as locking a monitor. This behaviour of volatile fields guarantees that
before reading from a volatile field or after writing to a volatile field, its
value is not cached locally. Therefore, when a thread reads a volatile field
it never sees a "stale" value. This makes volatile variables suitable for the
implementation of a synchronisation mechanism, where it is essential that
all threads have a consistent view of the state of the synchroniser.

Java provides a concurrency package called java.util.concurrent that sup-
plies library implementation required for concurrent programming [57]. To
support thread-safe access to single variables, java.util.concurrent provides
the atomic package. The atomic package provides a set of atomic classes as
wrappers for volatile variables with different types. Each atomic class ex-
ports appropriate atomic operations for read, write, and compare-and-set:

• get(): returns the value that was last written to the field;

• set(T v): atomically assigns the value v of type T to the field; and

• compareAndSet(T x,T n): atomically checks the current value of the
field and updates it to n, if it is equal to the expected value x, otherwise
leaves the state unchanged, and returns a boolean to indicate whether
the update succeeded.

To give an example of an atomic class, Listing 8 shows the AtomicInteger
class with its three basic operations, i.e. get, set and compareAndSet. This

20 CHAPTER 2. TECHNICAL BACKGROUND

public class AtomicInteger{
2 private volatile int value;

4 public AtomicInteger(int v){ ... }

6 public int get(){ ... }
public void set(int v){ ... }

8 public boolean compareAndSet(int x, int n){ ... }
}

Listing 8: The AtomicInteger class.

AtomicInteger class is the basis for almost all the implementations of the syn-
chronisation constructs provided in java.util.concurrent; like ReentrantLock
and other classes that are implementing the interface Lock, Semaphore,
CyclicBarrier and CountDownLatch.

In java.util.concurrent, the methods of each atomic class are not limited
to these three basic operations. For example, AtomicInteger also defines
a method for atomic increment: the method incrementAndGet() atomic-
ally increments the value by one and returns the new value. However,
incrementAndGet() and other similar methods are implemented on top of
these three basic operations.

In addition to the synchronisation constructs, atomic operations are
also employed directly to implement concurrent data-structures. The im-
plementations of non-blocking and lock-free pointer-based data-structures
in Java are extensively using AtomicReference. Similar to AtomicInteger,
AtomicReference provides three basic atomic operations to manipulate volat-
ile references in Java. As a well-known example, we refer to a concur-
rent queue, i.e. ConcurrentLinkedQueue implemented in java.util.concurrent,
which is the Java implementation of a lock-free queue proposed by Michael
and Scott [63].

2.2 Permission-based Separation Logic

Separation Logic [76] is a Hoare-style program logic which was originally
introduced to reason about imperative pointer-manipulating programs. In
order to reason about memory locations, which are as resources, the logic

2.2. PERMISSION-BASED SEPARATION LOGIC 21

extends the program state with the heap. A key characteristic of this logic
is that it allows to reason about disjointness of heaps. In Separation Logic,
in addition to the predicates and operators from first order logic, there are
two new constructs: points-to predicate and *-conjunction operator.

The points-to predicate e 7→ v describes that:

1. the location of the heap addressed by e is pointing to a location that
contains the value v, and

2. the program expression executing e 7→ v is the owner of e.

The *-conjunction operator in φ *ψ expresses that predicates φ and ψ hold
for two disjoint parts of the heap.

Below, we use [e] to denote the contents of the heap at location e and
we use e 7→ − to indicate that the precise contents stored at location [e] is
not important. Moreover, the function fv returns the set of free variables of
the given commands and assertions.

In addition to classical read and write axioms which ignore the heap, Sep-
aration Logic introduces axioms to specify pointer-based operations. Pre-
dicates P and Q of a Hoare-triple {P} C {Q} in Separation Logic are pre-
dicates on the state where the state is a pair of the store and the heap. If the
command C is a read/write operation on a store, then classical read/write
Hoare-triples are applied. To read and write an address of the heap in
Separation Logic, the following rules are used:

{e 7→ −} [e] := v {e 7→ v}
[Write]

x /∈ fv(e, e′)
{e 7→ e′} x := [e] {e 7→ e′ ∧ x = e′}

[Read]

One of the key advantages of Separation Logic is its power in local reas-
oning that is achieved by its frame rule:

{P} C {Q}
{P *R} C {R *Q}

[Frame]

where the command C does not modify the free variables in R. This rule
intuitively states that the correctness of {P} C {Q} still is valid in a heap
extended by R. P is an assertion that specifies only the memory that is
affected by the execution of C and after the execution satisfies Q. This

22 CHAPTER 2. TECHNICAL BACKGROUND

piece of the memory that is locally affected by the command C is called the
footprint of the command [38].

The expressiveness and power of Separation Logic to reason about local-
ity and disjoint heaps in imperative programs resulted in Concurrent Separ-
ation Logic (CSL) [68], which is an extension of Separation Logic to reason
about multi-threaded programs. In case of disjoint concurrency, where the
threads do not communicate, the following rule for parallel composition can
be applied:

{P} C {Q} {P ′} C ′ {Q′}
{P *P ′} C||C ′ {Q *Q′}

[Par]

where C does not mutate any free variable in P ′, C ′, Q′, and the other way
round.

To reason about interacting threads using shared memory, O’Hearn ex-
tended CSL rules to show how threads exchange exclusive ownership of a
memory location through a synchronisation construct [68]. In the rules re-
lated to shared memory, the shared state is specified by a resource invariant :
a predicate that expresses the properties of the shared variables that must
be preserved in all the states visible by all the participating threads.

The general judgement in CSL, denoted as I ` {P} C {Q}, expresses
that with a resource invariant I, if the execution of C starts with a state
satisfying P * I, then after the execution (provided that C terminates) the
final state will satisfy I *Q and C must not violate I throughout its ex-
ecution. Having synchronised a group of threads with a synchronisation
construct, the resource invariant must only be accessed inside the body of
the synchronisation construct by any thread that fulfils the conditions.

For example if the synchronisation construct is a single-entrant lock o
then any thread that successfully acquires the lock obtains the full ownership
of the resource invariant associated to o, i.e. the successful thread obtains
exclusive access to the shared data. The successful thread performs its action
on the shared variable and must re-establish the resource invariant before
releasing the lock. In fact, by acquiring the lock, the thread attaches the
shared data to its local state and by releasing the lock it detaches the shared
data from its local state. This behaviour of a single-entrant lock is expressed
in the following rules [39]:

emp ` {emp} acquire(o) {I}
[Acquire]

2.2. PERMISSION-BASED SEPARATION LOGIC 23

emp ` {I} release(o) {emp}
[Release]

where emp is a predicate that denotes the empty heap, I is the resource
invariant. We will discuss about rules and specifications of reentrant locks
in Chapter 4.

Reasoning about exclusive ownership of the shared data inside a syn-
chronisation construct paved the way to reason about atomic operations.
Vafeiadis presented CSL proof rules for a small language where atomic op-
erations are the only synchronisation constructs [85]. An atomic operation
on shared data performs like acquiring or releasing a lock protecting the
shared data: 1. the thread executing an atomic operation acquires the lock,
2. it adds the data that is expressed by the resource invariant to its local
state, 3. it performs its action on the data, 4. it establishes the resource
invariant, and finally, 5. it releases the lock by separating itself from the
resource invariant. This is described formally by the following rule:

emp ` {P * I} C {I *Q}
I ` {P} atomic{ C } {Q}

[Atomic]

where emp the empty heap, I is the resource invariant, atomic{ C } indicates
that the command C is executed atomically, P is the executing thread’s local
state before executing the atomic operation and Q is the local state of the
executing thread after execution of the atomic operation.

CSL has been extended with permissions [24] to specify and verify shared-
reading synchronisations [23]. In permission-based Separation Logic, any
location of the heap is decorated with a fractional permission π ∈ (0, 1]. Any
fraction π ∈ (0, 1) is interpreted as a read permission and the full permission
π = 1 denotes a write permission. Permissions can be transferred between
threads at synchronisation points (including thread creation and joining). A
thread can mutate a location if it has the write permission for that location.
Based on the following rule, permissions on a location can be split and
combined to change between read and write permissions:

e
π7→ v * e π′

7→ v ⇔ e
π+π′
7→ v

The addition of two permissions is undefined if the result is greater than the
full permission. Soundness of the logic ensures that the total number of per-
missions on a location never exceeds 1. Thus, at most one thread at a time

24 CHAPTER 2. TECHNICAL BACKGROUND

can be writing to a location, and whenever a thread has a read permission,
all other threads holding a permission on this location simultaneously must
have a read permission. As a result, a verified concurrent program using
permission-based Separation Logic is data-race free.

The sequential variant of Separation Logic has been extended for sequen-
tial Java programs by Parkinson [72]. This logic later has been extended
by Haack and Hurlin for multi-threaded Java programs with the support of:
1. thread creation and joining, and 2. reentrant locks [46, 10].

Building on the approach of Haack and Hurlin, we use a fragment of
Separation Language to specify synchronisation classes in Java. Here we
briefly explain this fragment of Permission-Based Separation Logic which is
used to define our VerCors specification language that is used to annotate
our programs.

Let E denote arithmetic expressions, B boolean expressions and R pure
resource formulas, i.e. predicates that specify properties of the heap. In our
fragment of CSL, the syntax for assertions P is defined as follows:

B ::= ¬B | B1 ∧B2 | B1 ∨B2

R ::= emp | E1
π7→ E2 | R1 *R2

P ::= B | R | B *R | B =⇒ R | ∀x. P | ∃x. P | ~
i∈I

Pi

In addition to the classical connectives and first order quantifiers, the
main assertions are:

1. the empty heap assertion, written emp,

2. the points-to predicate augmented with permissions, denoted E1
π7→

E2, meaning that expression E1 points to a location on the heap, has
permission π to access this location, and this location contains the
value E2,

3. the separating conjunction operator *, expressing that R1 *R2 holds
for a heap if: a) the heap can be split into two disjoint sub-heaps, with
the first sub-heap satisfying R1, and the second sub-heap satisfying
R2, or b) the permission of the heap, say π, can be divided into two
permissions π1 and π2 such that R1 expresses the permission π1 on
the heap and R2 expresses the permission π2 on the heap.

4. an iterative separating conjunction over a set I, written ~
i∈I

Pi.

2.3. VERCORS SPECIFICATION LANGUAGE 25

2.3 VerCors Specification Language

The concrete syntax of our VerCors specification language is a combina-
tion of permission-based Separation Logic with the Java Modeling Language
(JML) [25]. JML specifications are attached to the source code in specially
marked comments. Namely, all comments starting with an @ sign, i.e. //@
or /∗@...@∗/, indicate a formal specification that specify the behaviour of
the Java program elements in the comment’s context. Generally, JML is a
very elaborate language, however, we only use a small subset of it:

• the ghost keyword is used to introduce ghost fields, that is, class fields
only for specifications that extend the object state,

• the method’s pre- and post-conditions are given with the requires and
ensures keywords, respectively,

• multiple specification cases are conjoined with the also keyword.

In addition to JML conventions, in our examples, intermediate states of
the resources are indicated inside /∗! ... !∗/, which are considered as com-
ments for the verification tool. We present intermediate states of our ex-
amples merely for better understanding.

In our specification language we distinguish between resource expressions
(R, typical elements ri), i.e. expressions that specify properties about the
heap, and functional expressions (E, typical elements ei), with the subset
of logical expressions of type boolean (B, typical elements bi).

To annotate our Java programs, our fragment of Separation Logic is
expressed by the following grammar:

R ::= B | Perm(field, pi) | (\forall∗ T i;B;R)
| R1∗∗R2 | B==>R | E.P(E1, · · · , E2)

E ::= any pure expression
B ::= any pure expression of type boolean

where T is an arbitrary type, vi is a variable name, P is an abstract predic-
ate [71] of a special type resource, field is a field reference, and pi denotes a
fractional permission.

In our specification language, we divert from the classical Separation
Logic notation of * for the separating conjunction to ∗∗ in order to avoid a
syntactical clash with the multiplication operator of Java (and JML).

26 CHAPTER 2. TECHNICAL BACKGROUND

Intuitively, in a multi-threaded program an assertion Perm(e.f,pi) holds
for a thread t if the expression e.f points to a location on the heap and
the thread t has at least permission pi to access this location. When the
value is important, we sometimes use PointsTo(e.f, pi, v) which is equival-
ent to Perm(e.f, pi) ∗∗ e.f == v. In our VerCors specification language
fractional permissions are represented as 1/2n where n ≥ 0. Moreover, as-
sertions can use abstract predicates P to encapsulate the state space [71].
In order to open or close predicates we use unfold (open) and fold (close)
as proof (ghost) commands whenever necessary. Below, we sometimes use
an additional requirement that the abstract predicate is a group. A group
is an abstract predicate with multiple permission parameters and axioms
satisfying split/merge over permissions [42].

In addition to these classic JML constructs, our method and class spe-
cifications can be preceded by a given clause, declaring ghost parameters for
methods and classes. Ghost method parameters are passed at method calls,
ghost class parameters are passed at type declaration and instance creation,
resembling the parametric types mechanism of Java. In particular, this is
how we pass the resource invariants to the classes. Note, that due to implicit
framing of data provided by Separation Logic, there is no need to use the
well known JML assignable clause to explicitly state method frames. Fur-
thermore, we allow to declare abstract predicates within Java classes, these
are simply given by providing the name, typing and parameter declaration in
a JML comment inside the class. Building on the JML annotation language
allows us to specify permission access properties side by side with complex
functional properties. In the scope of the synchronisation classes, however,
the permissions are the main focus of this thesis. The exact use of JML
becomes apparent when we discuss our specifications in the next chapters.

CHAPTER 3
Reasoning about Thread

Creation and Termination

27

3.1. REASONING ABOUT DYNAMIC THREADS 29

The use of thread’s start and join operations is one of the commonly
used techniques to implement a divide-and-conquer strategy in a concurrent
application. The main thread divides a main task into a set of sub-tasks.
Then, for each sub-task the main thread starts a new thread of execution
and waits for each thread to join. Finally, the main thread completes its
computation by collecting the result(s) of each joining thread.

To reason about a multi-threaded application in an environment with
a dynamic thread mechanism, like Java, the specification and verification
of thread’s creation and termination detection are crucial steps. In Java,
threads can join a particular thread via multiple join points. This feature of
Java programs makes the reasoning challenging. In his PhD thesis, Hurlin
[46] proposed contracts for the class Thread to handle this. The contracts
are specified based on permission-based separation logic developed for multi-
threaded Java programs [10].

In this chapter, we first summarize the technique presented in [10] for
reasoning about thread’s start and join in Java and then illustrate it on a
larger case study. First, in Section 3.1 we shortly explain how thread’s start
and join work in Java. Then, in Section 3.2 we explain the specification
of the class Thread where a join token records the portion of the resources
that each thread can obtain in its join points. The new contribution of this
chapter (presented in Section 3.3) is that we will illustrate the technique on
an example with multiple join points. The example shows a general data-
processing pattern in a multi-threaded program, typically implemented in
efficient signal processing applications. The verification of this pattern in
Java has first been published in [10]. To present the example, we also discuss
the specification and reasoning technique, which is fully formalized in [10],
but that partly is based on the result of Hurlin’s PhD thesis [46].

3.1 Reasoning about Dynamic Threads

In Java, the start() and join() methods provided by the class Thread are im-
plemented natively. Calling the start() method from an instantiated object
obj : C (obj has type class C which inherits from Thread) causes the vir-
tual machine to create a new thread of execution associated with obj. The
created thread, after its initialization, invokes the obj.run() method. The
developer has to override the run() method in class C, to define the thread’s

30
CHAPTER 3. REASONING ABOUT THREAD CREATION AND

TERMINATION

Figure 3.1: Ownership transfer by start and join

task.
Threads can wait for each other until execution of the run() method is

terminated. Any thread t calling obj.join() will wait for thread t′ running
obj.run() to terminate. After calling obj.join(), t is blocked until the execu-
tion of obj.run() is finished. While obj.join() can be called several times by
different threads, the obj.start() method may not be called more than once.

3.1. REASONING ABOUT DYNAMIC THREADS 31

In reasoning about concurrent programs based on permissions, when
a thread starts its execution, it must obtain all the permissions it may
require for its processing. Similarly, when a thread t joins another thread t′,
permissions of the resources held by t′ should be transferred to the joining
thread t. Figure 3.1 presents a state machine diagram for ownership transfer
for a simple pattern of joining: a main program starts two threads and then
joins them later. The main program in this simple execution, at first, holds
the full ownership of a and b asserted as own(a) ∗ own(b). After starting
two threads ta and tb, the ownership of a and b are transferred to disjoint
threads ta and tb. Each thread has to give back these resources to the main
thread after termination as the main program is responsible to collect the
results of the concurrent processes.

Reasoning about thread’s start and join would be less challenging if the
starter thread was the only thread that could join, because in this case the
starter thread can keep track of the resources that it should expect at its
join point. In Java, however the creating thread is not necessarily the only
one that can join the thread t′. In fact, a group of threads can obtain obj,
i.e. the reference to the joined thread t′, from different sources, and each
thread separately and independently can call obj.join() to join t′.

This multiple join mechanism in Java provides a flexible and dynamic
framework for multi-threaded programming. However, this flexibility makes
it difficult to verify programs. This difficulty is mainly because, in contrast
to the single start-join context, in reasoning about multi-join points, the
joining thread does not have any information about the resources that it
should expect from the joined thread. Thus, there is a need for a technique
that specifies the resources that each thread can obtain at its join points.

Hurlin in his thesis [46, 10] proposed a fully formalized contract for the
class Thread. This contract, which is presented in Listing 9, is employed to
reason about the correctness of the joining threads. When verifying a thread
that creates or joins another thread, the calls to start and join are verified
using the standard verification rule for method calls. Complete collection
of verification rules is formally presented in [46, 10]. In the remainder of
this chapter, first, we explain the contract of the methods and then, based
on a general concurrent processing pattern we illustrate how one can verify
multi-joining concurrent programs in Java.

32
CHAPTER 3. REASONING ABOUT THREAD CREATION AND

TERMINATION

class Thread implements Runnable {
2

/∗@
4 resource start();

resource preFork() = true;
6 group resource postJoin(frac p) = true;

group resource join(frac p); @∗/
8

/∗@
10 requires true;

ensures start(); @∗/
12 public Thread();

14 /∗@
requires preFork();

16 ensures postJoin(1); @∗/
void run();

18

/∗@
20 requires start()∗∗preFork();

ensures join(1); @∗/
22 public void start();

24 /∗@
given frac p;

26 requires join(p);
ensures postJoin(p); @∗/

28 public void join();
}

Listing 9: Specification of class Thread.

3.2 Contract of Class Thread

In this section we use the VerCors specification language that (presented
in Chapter 2) to specify the contract of class Thread. The contract for class
Thread is presented in Listing 9 and will be explained in detail.

3.3. EXAMPLE: MULTI-THREADED DATA PROCESSING 33

Constructor To instantiate an object from the class Thread the creator
does not need to provide any resource. But, after instantiating the object,
the constructor ensures a token, named start. This token is returned by
the constructor to ensure that only one thread can call the start() method,
which consumes the start token.

Method run() To verify that the thread functions correctly, the body of
the run method is verified w.r.t. its specification. The contract of the run
method specifies what permissions are transferred when threads are cre-
ated and joined: the pre-condition of a thread is the pre-condition of the
run method; the post-condition of a thread is the post-condition of the run
method. For this purpose, we specify predicates preFork and postJoin that
denote this pre- and post-condition, respectively. These predicates have
trivial definitions to be extended in the classes extending and implement-
ing Thread. Every class that extends the class Thread, i.e. the child class,
extends the predicates preFork and postJoin to denote extra permissions that
are passed to the newly created thread.

Method start() Any object starting a thread has to provide the start()
token along with the resources specified by the preFork predicate. In return
the start() method ensures a join token. This join token has a fraction as
argument, which holds a fractional permission p. This permission specifies
which part of the postJoin predicate can be obtained by the thread invoking
the join method. It should be stressed here that both predicates postJoin
and join have to be splittable w.r.t. this permission. Thus, both are defined
as a group (see Chapter 2).

Method join() A thread that calls the join() method has to give up a
fraction p a fraction of its join token, and in return obtains a p fraction
of the resources specified by the postJoin predicate. The actual fraction of
the join token that the joining thread currently holds is passed as an extra
parameter to the join method, via the given clause.

3.3 Example: Multi-threaded Data Processing

To illustrate his approach in reasoning about thread start and termination
in Java, Hurlin verified a merge-sort algorithm [46]. To demonstrate the

34
CHAPTER 3. REASONING ABOUT THREAD CREATION AND

TERMINATION

public class Buffer {
2 /∗@ resource state(frac p)=

Perm(inp,p)∗∗Perm(outa,p)∗∗Perm(outb,p); @∗/
4 public int inp;

public Point outa, outb;
6 }

Listing 10: Class Buffer.

applicability of the approach in a concurrent program in presence of mul-
tiple joins, here we verify a well-known pattern used for pipe-line processing
algorithms. In this pattern there can be several data flows through a se-
quence of parallel tasks. This is a common pattern of signal-processing
applications, in which a chain of threads are connected through a shared
buffer. Each thread represents a sequence of processing units usually called
processing filters. Each filter obtains its input data, performs a sequence of
computational operations and produces its output for the next processing
filter.

Our example is a simplified version of this pattern, with one main pro-
gram initializing one data sampler, two processing filters and one monitoring
unit. The shared buffer is an instance of a Buffer class that encapsulates an
input field and two points, see Listing 10. The sampler thread is an instance
of the Sampler class, our processing filters are instances of the AFilter and
BFilter classes, and the monitoring is a thread instantiated from the Plotter
class. Listing 11 shows the sampler thread, Listing 12 shows the AFilter class
(class BFilter is similar and not shown here), Listing 13 shows the Plotter
class and finally Listing 14 shows the main application.

First, the sampler thread assigns a value to the input field of the buffer.
Next, it passes the buffer to processes A and B, which are executed in
parallel. Based on the value that the sampler thread stored in the inp field
of Buffer, each process calculates a point and stores its value in the shared
buffer. Finally, the computation results from both processes are displayed
by the plotter.

What makes this example interesting is that both processes A and B join
the sampler thread, i.e., they wait for the sampler thread to terminate, and
in this way they retrieve read permissions on the input data that was written
by the sampler thread. Moreover, the plotter waits for the two processing

3.3. EXAMPLE: MULTI-THREADED DATA PROCESSING 35

public class Sampler extends Thread {
2 /∗@

resource preFork = Perm(buffer.inp,1);
4 group resource postJoin(frac p) = Perm(buffer.inp,p); @∗/

Buffer buffer;
6

// constructor
8

/∗@
10 requires preFork();

ensures postJoin(1); @∗/
12 public void run(){

/∗@ unfold preFork; @∗/
14 /∗! { Perm(buffer.inp,1) } !∗/

sample();
16 /∗! { Perm(buffer.inp,1) } !∗/

/∗@ fold postJoin(1) ; @∗/
18 }

20 /∗@
requires Perm(buffer.inp,1);

22 ensures Perm(buffer.inp,1); @∗/
private void sample(){ /∗ fill buffer.inp ∗/ }

24 }

Listing 11: Class Sampler.

threads to terminate (by joining them), to collect read permissions on the
shared buffer. Then, the plotter combines the collected read permissions
into full write permission and passes it to the main thread.

In our example (see Listing 14), we sketch an outline of the correct-
ness proof. The main thread starts its execution with the full permission
of all the fields from the shared buffer. Then, after creating each thread,
the main method obtains a start() token for the created thread. To start
any thread, the main method has to provide the start() token and folds the
resources defined in the corresponding preFork(). For example, as shown in
line 8 of Listing 14, in order to provide the required resources of the sampler

36
CHAPTER 3. REASONING ABOUT THREAD CREATION AND

TERMINATION

thread, the main thread folds the full permission of the inp field from the
shared buffer. In return, the sampler thread ensures its join(1) token to the
main thread. Later (see lines 14 and 18), the main method splits the join
token of the sampler and transfers each half to the processing threads, as
specified by their preFork predicates. Thus, the processing threads (List-
ing 12) use a half join token to join the sampler thread, and to obtain half
the resources released by the sampler thread. Additionally, the join tokens
for the processing threads are transferred to the plotter by which the plotter
can join them (see line 24).

The sampler thread, upon its start is provided with the full permission
on inp. When starting each processing thread, full permission on the cor-
responding output field, i.e. outa and outb, along with a partial join token
for the sampler thread are transferred. Using the join token, each processing
thread joins the sampler thread. However, as each thread only has a frac-
tion of the join token they only obtain a fractional permission on inp field.
At the join point, the argument of the join token enforces the processing
thread to claim only a half permission on the inp field. Then, after reading
the provided input field the process is performed and the result is written
to the given output filed. Similarly, the plotter thread obtains a 1/2 read
permission on inp and a write permission on outa by joining process A, and
another 1/2 read permission on inp and a write permission on outb by join-
ing process B. It then combines the read permissions into a write permission
on inp to invoke its plot method. Finally, by joining the plotter thread, the
main thread captures all the given permissions.

3.4 Conclusion and Related Work

In this chapter we applied the technique proposed by Haack and Hurlin to
verify data race freedom of a concurrent Java program with multiple join
points. This program is an example of a typical signal processing applic-
ation. We used a permission-based Separation Logic specification for the
class Thread of the java.lang package, which enables verification of concur-
rent programs with thread’s start and join as concurrency primitives.

The contract of class Thread defines a pre-condition and a post-condition
for thread’s start, run, and join methods in terms of abstract predicates
preFork and postJoin. Any thread (i.e. a class inheriting from Thread) should
instantiate the definition of these predicates with the resources that the

3.4. CONCLUSION AND RELATED WORK 37

thread needs when it is started, respectively releases when it is terminated.
As demonstrated in the examples, our approach supports multiple joins.
Employing a join token in the contract, we keep track of the fractions that
the thread should deliver at its join points. The postJoin token should be
splittable over the resources, which ensures that it can be used to reason
soundly about programs that joins a thread multiple times. We use a special
join token to keep track of the fraction of the postJoin predicate a thread
should obtain upon joining.

The downside of our approach is that the verification may require a
specific order for thread creation and start. For example, in our example,
in order to create the data processing threads, we have to start the sampler
thread first. Only in this way, the main method can obtain the join token
of the sampler thread. This is a restriction for the programmer as the start
of the threads could be done as soon as all the threads are instantiated.

A general solution to specify and reason about tokens can be an inter-
esting direction for future work to solve this restriction. In this direction,
Penninckx employed Petri nets to model and reason about concurrent I/O
based programs [73]. His technique for the specification and reasoning about
tokens may be applicable here.

38
CHAPTER 3. REASONING ABOUT THREAD CREATION AND

TERMINATION

public class AFilter extends Thread {
2 private Sampler sampler;

private Buffer buffer;
4

/∗@
6 resource preFork() = Perm(buffer.outa,1)∗∗sampler.join(1/2);

group resource postJoin(frac p) =
8 Perm(buffer.outa,p)∗∗Perm(buffer.inp,p/2); @∗/

10 // constructor

12 /∗@
requires preFork();

14 ensures postJoin(1); @∗/
public void run(){

16 /∗@ unfold preFork; @∗/
/∗! { Perm(buffer.outa,1)∗∗Join(sampler, 1/2) } !∗/

18 sampler.join();
/∗! { Perm(buffer.outa,1)∗∗sampler.postJoin(1/2) } !∗/

20 /∗@ unfold sampler.postJoin(1/2); @∗/
/∗! { Perm(buffer.outa,1)∗∗Perm(buffer.inp, 1/2) } !∗/

22 processA();
/∗! { Perm(buffer.outa,1)∗∗Perm(buffer.inp, 1/2) } !∗/

24 /∗@ fold this.postJoin(1); @∗/
}

26

/∗@
28 requires Perm(buffer.outa,1)∗∗Perm(buffer.inp, 1/2);

ensures Perm(buffer.outa,1)∗∗Perm(buffer.inp, 1/2); @∗/
30 private void processA(){ /∗ read buffer.inp and fill buffer.outa. ∗/ }

}

Listing 12: Class AFilter.

3.4. CONCLUSION AND RELATED WORK 39

public class Plotter extends Thread {
2 private Buffer buffer; private AFilter ta; private BFilter tb;

/∗@
4 resource preFork() = ta.join(1)∗∗tb.join(1);

group resource postJoin(frac p) = buffer.state(p); @∗/
6

/∗@
8 requires true;

ensures start()∗∗Perm(buffer,1)∗∗Perm(ta,1)∗∗Perm(tb,1); @∗/
10 public Plotter(Buffer buf, AFilter fa, BFilter fb){

buffer=buf; ta=fa; tb=fb; }
12

/∗@
14 requires preFork(); ensures postJoin(1); @∗/

public void run(){
16 /∗@ unfold preFork @∗/

/∗! { ta.join(1)∗∗tb.join(1) } !∗/
18 ta.join();

/∗! { ta.postJoin(1)∗∗tb.join(1) } !∗/
20 tb.join();

/∗! { ta.postJoin(1)∗∗tb.postJoin(1) } !∗/
22 /∗@

unfold ta.postJoin(1); unfold tb.postJoin(1);
24 fold buffer.state(1); @∗/

/∗! { buffer.state(1) } !∗/
26 plot();

/∗! { buffer.state(1) } !∗/
28 /∗@ fold this.postJoin(1); @∗/

}
30

/∗@
32 requires buffer.state(1); ensures buffer.state(1); @∗/

private void plot(){ /∗ plots the processed data from the buffer ∗/ }
34 }

Listing 13: Class Plotter.

40
CHAPTER 3. REASONING ABOUT THREAD CREATION AND

TERMINATION

/∗@ requires buf.state(1); ensures buf.state(1); @∗/
2 void main(){

/∗! {buf.state(1) } !∗/
4 Sampler s=new Sampler(buf);

/∗! {s.start()∗∗buf.state(1) } !∗/
6 /∗@ unfold buf.state(1); @∗/

/∗!{s.start()∗∗Perm(buf.inp,1)∗∗Perm(buf.outa,1)∗∗Perm(buf.outb,1)}!∗/
8 /∗@ fold s.preFork(); @∗/

/∗! {s.start()∗∗s.preFork()∗∗Perm(buf.outa,1)∗∗Perm(buf.outb,1) } !∗/
10 s.start();

/∗! {s.join(1)∗∗Perm(buf.outa,1)∗∗Perm(buf.outb,1) } !∗/
12 AFilter a = new AFilter(buf, s);

/∗! {a.start()∗∗s.join(1)∗∗Perm(buf.outa,1)∗∗Perm(buf.outb,1) } !∗/
14 /∗@ fold a.preFork; @∗/

/∗! {a.start()∗∗a.preFork()∗∗s.join(1/2)∗∗Perm(buf.outb,1) } !∗/
16 BFilter b = new BFilter(buf, s);

/∗!{b.start()∗∗a.start()∗∗a.preFork()∗∗s.join(1/2)∗∗Perm(buf.outb,1)}!∗/
18 /∗@ fold b.preFork; @∗/

/∗! {b.preFork()∗∗b.start()∗∗a.start()∗∗a.preFork() } !∗/
20 a.start(); b.start();

/∗! {a.join(1)∗∗b.join(1) } !∗/
22 Plotter p = new Plotter(buf, a, b);

/∗! {p.start()∗∗a.join(1)∗∗b.join(1) } !∗/
24 /∗@ fold p.preFork; @∗/

/∗! {p.start()∗∗p.preFork() } !∗/
26 p.start();

/∗! {p.join(1) } !∗/
28 p.join();

/∗! {p.postJoin(1) } !∗/
30 /∗@ unfold p.postJoin(1); @∗/

/∗! {buf.state(1) } !∗/
32 }

Listing 14: Verification of the main program.

CHAPTER 4
Synchronisers Specifications

41

43

In Chapter 3, the contract of class Thread is explained. This can be used
to reason about thread’s start and join, which are considered as the most
basic concurrency primitives. In addition to thread’s start and join there
are other synchronisation mechanisms provided in java.util.concurrent, which
can be used to develop shared memory concurrent programs. The concurrent
package contains implementations of several synchronisation classes, in par-
ticular variants of lock, a semaphore, a count-down latch, and a cyclic bar-
rier.

In this chapter we discuss the specification of the main synchronisation
classes in java.util.concurrent. To find out which classes are used most often,
and thus, where our specifications efforts are most useful, we consider the
number of references to classes in the concurrency packages for each of the
projects in the standard Qualitas Corpus benchmark suite [83] using the
Histogram tool [20]. In essence, the tool efficiently analyses a large collection
of Java bytecode classes to build statistics on class and method usage. The
result of the analysis shows [20] that the reentrant family of locks is used
most often. Moreover, it reveals that CountDownLatch is used far more often
in practice than it is explained in textbooks, while the CyclicBarrier, which
is very similar to the latch, did not score very high in the overall statistics.

The contracts presented here for the different synchronisation classes
lift all the elements of the formalization of reentrant Java locks [46, 10] to
the specification layer. Therefore, the underlying concepts can be shared,
reused, and adapted by the different synchronisation classes of the Java’s
util.concurrent package. In particular, the notion of a resource invariant is
at the base of all the specifications: all specifications of the synchronisation
methods express how permissions are transferred between the thread and
the resource invariant.

Below, in Section 4.1, we first start with the specification of the lock
family provided in the Java concurrent package. We present how the logic
for built-in reentrant locks from [10, 41] is generalized to specify the Lock
interface, and how the specifications of ReentrantLock and ReadWriteLock
both are built on top of this general specification for Locks. Then, we dis-
cuss how we treat lock initialization at specification level. Next, in Sec-
tion 4.2, Section 4.3 and Section 4.4 we discuss specifications of three other
frequently used synchronisation classes: Semaphore, CountDownLatch, and
CyclicBarrier. Finally, in Section 4.5 we end the chapter with a collection
of examples to show how a client program can be verified using our specific-

44 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

ations. Our examples cover verification of the client programs synchronised
with locks, latch and barrier. We will not show any example for semaphore
as it is very similar to CountDownLatch. Our approach along with examples
illustrate that synchronisation mechanisms can be specified using a unified
approach. This chapter is based on [4, 1]. However, the specification of the
CyclicBarrier has not been published yet.

4.1 Locks in Java

In Java, every object can function as a lock, using the synchronized keyword.
Synchronisation using the synchronized keyword makes it impossible to for-
get to release a lock. However, its syntactic limitations make it impossible
to acquire and release locks at arbitrary points in the code.

In the Java concurrency package java.util.concurrent, Lea introduced a
set of synchronisation classes to address various synchronisation mechan-
isms [57]. Among other things, this package features: (1) locks and other
synchronisation primitives, (2) the Executor framework, providing task-based
parallelism, (3) thread-safe data structures, such as maps and queues, and
(4) support for atomic variables.

The synchronisation classes in the Lock hierarchy in the concurrency
package (see Figure 4.1) are devoted to resource locking scenarios where
either full (write) access is given to one particular thread or partial (read)
access is given to an indefinite number of threads. For situations where,
depending on the execution context, either shared or exclusive access is
required, the API defines a ReadWriteLock interface. All interfaces are im-
plemented by classes that support lock re-entrancy. We first discuss the
specification of the Lock interface, and then we proceed with specifications
of different lock implementations.

Lock Interface Specification

As explained above, our specification approach of the different synchronisa-
tion mechanisms is inspired by the logic developed by Haack et al. [46, 10].
First, we briefly describe the logic to reason about built-in Java reentrant
locks. Then, we explain how we lift this logic to specification-level and
generalise it to other synchronisation mechanisms in the Java API.

In the logic developed for reasoning about reentrant locks, for each lock,
an abstract predicate inv describing the resource invariant is specified, de-

4.1. LOCKS IN JAVA 45

«interface»
Lock

+lock() : void
+unlock() : void

ReentrantLock

«interface»
ReadWriteLock

+readLock() : Lock
+writeLock() : Lock

ReentrantReadWriteLock

ReentrantReadWriteLock:
ReadLock

ReentrantReadWriteLock:
WriteLock

Figure 4.1: The hierarchy of locks in the java.util.concurrent package.

scribing which locations are protected by the lock. Whenever a lock is
acquired for the first time, the locking thread obtains these protected loc-
ations, and thus can access the protected data. Upon final release of the
lock, the thread is forced to give up the protected data. To reason about
reentrant locks, the reasoning logic must be aware of the level of entrance.
It means that the acquiring thread must not obtain the resource invariant if
it acquires a lock that it already holds. To distinguish initial acquirings and
final releases from reentrant acquirings and releases, each thread maintains a
multi-set LockSet that keeps track of all locks (including their multiplicity)
that the thread currently holds. The lock sets are necessary to properly
treat lock reentrancy : if a thread acquires a lock that is already in the lock
set, it does not obtain any permissions, and if a thread releases a lock, it
does not have to give up any permissions if the lock afterwards is still in the
lock set.

To give a flavour of this logic, Figure 4.2 quotes the proof rules from [41],
preserving the original syntax, for initial and reentrant acquiring of a lock.
The first rule states that if a thread locks u, and the set of currently held
locks does not contain u yet, and the lock is initialised, then upon completion
of the u.lock() statement, u is in the lock set, and the resource invariant has
been transferred to the thread holding the lock on u. However, as indicated
by the second rule, if u is already held by the current thread, no permissions
are transferred, only bookkeeping of the additional acquiring of the lock is

46 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

Γ ` u, S : Object, lockset

Γ; v `
{LockSet(S) *u 6∈ S *u.init}

u.lock()
{LockSet(u · S) *u.inv}

[Lock]

Γ ` u, S : Object, lockset

Γ; v `
{LockSet(u · S)}

u.lock()
{LockSet(u · u · S)}

[Re-Lock]

Figure 4.2: Proof rules for initial and reentrant acquiring of a lock.

done.
Now we explain how to translate the rules from this logic into method

specifications of the Lock interface, because the Lock interface can be used
in different and wider settings. In particular, Lock implementations may be
non-reentrant; they may be used to synchronise non-exclusive access; and
they may be used in coupled pairs to change between shared and exclusive
mode (see the read-write lock specification below).

Therefore, compared to the logic presented in [46, 10], the following
changes for the specification given in Listing 15 are necessary:

• The locks are parametrized by two boolean variables isExclusive and
isReentrant, which can be correspondingly instantiated by implement-
ations (line 2).

• To allow non-exclusive synchronisation, resource invariants have to be
groups (line 3).

• For the non-exclusive locking scenarios, the client program has to re-
cord the amount of the resource fraction that was obtained during
locking, so that the lock can reclaim the complete resource fraction
upon unlocking. This information is passed around in the held predic-
ate, which holds this fraction (line 7). This is purposely not declared
as a group, so that clients are obliged to return their whole share of

4.1. LOCKS IN JAVA 47

/∗@
2 given boolean isExclusive, isReentrant;

given group (frac −> resource) inv; @∗/
4 public interface Lock {

/∗@
6 group resource initialized(frac p);

resource held(frac p);
8 ghost public final Object parent; @∗/

10 /∗@ given bag<Object> S, frac p;
requires initialized(p);

12 requires LockSet(S) ∗∗ !(S contains this);
requires parent != null ==> !(S contains parent);

14 ensures LockSet(this::parent::S) ∗∗
inv(isExclusive ? 1 : p) ∗∗ held(p);

16 also
requires isReentrant ∗∗ LockSet(S) ∗∗

18 (S contains this) ∗∗ held(p);
ensures LockSet(this::S) ∗∗ held(p); @∗/

20 void lock();

22 /∗@ given bag<Object> S, frac p;
requires LockSet(this::S) ∗∗ (S contains this) ∗∗ held(p);

24 ensures LockSet(S) ∗∗ held(p);
also

26 requires held(p) ∗∗ inv(isExclusive ? 1 : p);
requires LockSet(this::parent::S) ∗∗ !(S contains this);

28 ensures LockSet(S) ∗∗ initialized(p); @∗/
void unlock();

30 }

Listing 15: Specification of the Lock interface.

resources. The held predicate is returned during locking in exchange
for the initialized predicate which is temporarily revoked for the time
that the lock is acquired.

• For situations where several locks share the same resource and are

48 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

effectively coupled as one lock, we need to ensure that only one lock is
locked at a time. The coupling itself is realized by holding a reference
to the parent object that maintains the coupled locks (line 8). The
exclusive use of coupled locks is ensured by storing and checking this
parent object in the set of currently held locks.

• A separate specification case is given for reentrant locking (when the
parameter isReentrant is true).

As a result, in the specification of method lock() in Listing 15, given
the multi-set of locks, i.e. bag<Object> S, when the lock is acquired for the
first time (lines 10–15), the locking thread gets permissions from the lock.
If the lock is reentrant, and the thread already holds the lock (lines 17–19),
then no new permission is gained, only the multi-set of locks held by the
current thread is extended with this lock (where :: denotes bag addition).
For coupled locks (where the parent is not null) the presence of the parent
in the lock set is also checked and recorded, to prevent parallel use of the
coupled locks. The specification of method unlock() in Listing 15 describes
the reverse process: if the multi-set of locks contains the specific lock only
once (lines 26–28), then this means the return of permissions to the lock
(i.e., inv does not hold in the post-condition) according to the held predicate;
otherwise (lines 22–24), the thread keeps the permissions, but one occurrence
of the lock is removed from the multi-set.

ReentrantLock Specification

Class ReentrantLock implements the Lock interface as an exclusive, reentrant
lock. Thus, it inherits all specifications from Lock and appropriately instan-
tiates the two class parameters isReentrant and isExclusive both to true:

/∗@ given group (frac −> resource) inv; @∗/
class ReentrantLock implements Lock /∗@<inv,true,true>@∗/ {
...
}

ReadWriteLock Specification

The ReadWriteLock is not a lock itself, but a wrapper of two coupled Lock
objects: one of them provides exclusive access for writing (WriteLock), while
the other allows concurrent reading by several threads (ReadLock). The

4.1. LOCKS IN JAVA 49

/∗@
2 given group (frac −> resource) inv;

given boolean reentrant; @∗/
4 interface ReadWriteLock {

/∗@ group resource initialized(frac p); @∗/
6

/∗@ given frac p;
8 requires initialized(p);

ensures \result.parent==this ∗∗ \result.initialized(p); @∗/
10 /∗@pure@∗/ Lock /∗@<inv,false,reentrant>@∗/ readLock();

12 /∗@ given frac p;
requires initialized(p);

14 ensures \result.parent==this ∗∗ \result.initialized(p); @∗/
/∗@pure@∗/ Lock /∗@<inv,true,reentrant>@∗/ writeLock();

16 }

Listing 16: Specification of the ReadWriteLock interface.

two classes are commonly implemented as inner classes of the class that
implements the ReadWriteLock interface (see Figure 4.1 on page 45). The
two locks are intended to protect the same memory resources. Hence our
specifications in Listing 16 state that the two getter methods (expressed
with pure) for obtaining the two locks return a lock object with the same
resource inv, but which are non-exclusive (line 10) and exclusive (line 15),
respectively. The aggregate read-write lock has to be initialized itself (lines 8
and 13). Further, using the return value keyword \result, we state in the
respective post-conditions of the getter methods (lines 9 and 14) that the
obtained locks are initialized and hence can be acquired, and that they have
the same parent object, which is an instance of the class implementing the
ReadWriteLock interface. In Section 4.5 we illustrate how this specification
can be employed to verify a concurrent producer-consumer.

Initialization of Resource Invariants

In the specification of the synchronisation classes, resource invariants have
to be initialized, i.e., the permissions have to be transferred “into” the syn-
chroniser, before the synchronisation mechanism can be used. This ensures

50 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

/∗@
2 ghost boolean initialized = false;

group resource initialized(frac p) = PointsTo(initialized, p/2, true);
4 requires inv(1) ∗∗ PointsTo(initialized, 1, false);

ensures initialized(1); @∗/
6 public void commit();

Listing 17: Specifications for lock initialization.

that the resources can be passed to a user program upon synchronisation
without introducing new resources.

Initialization of the resource invariant is done in the same way for all
synchronisation mechanisms: class Object declares a ghost boolean field
initialized that tracks information about the initialization state of the re-
source invariant. Newly created locks are not initialized; the specification-
only method commit (see Listing 17) can be used by the client code to
irreversibly initialize the lock. This means that the resources protected by
the lock, as specified in inv, become shared. To achieve this, commit requires
the client to provide the complete resource invariant inv(1), together with
an exclusive permission to change initialized (line 4). The method consumes
the invariant (“stores it into the lock”). Moreover, it ensures that initialized
cannot be changed anymore by consuming part of the permission to access
this field, effectively making it read-only (lines 3 and 5). For convenience,
the result of commit is encapsulated in a single resource predicate initialized,
which can be passed around and used as a permission ticket for locking op-
erations, see below. The default location for the call to commit is at the
end of the constructor of the synchronisation object. More complex lock
implementations (that we do not discuss in this here) may require moving
this call to another location in the program.

The actual resource invariant is typically decided by the user of the
synchronisation class, therefore it is passed as a class parameter with the
type (frac −> resource). For example, in order to protect a shared location
x using a reentrant lock, the resource invariant that protects the location
x is specified with xInv, which is passed both during type declaration and
during instantiation of the lock:

/∗@ resource xInv(frac p) = Perm(x, p); @∗/
Lock/∗@<xInv, . . . >@∗/ xLock = new ReentrantLock/∗@<xInv>@∗/();

4.2. SEMAPHORE SPECIFICATION 51

/∗@ given group (frac −> resource) inv; @∗/
2 public class Semaphore {

/∗@
4 resource held(frac p) = initialized(p);

ghost final int permits; @∗/
6

/∗@
8 requires inv(1) ∗∗ permits > 0;

ensures initialized(1) ∗∗ this.permits == permits; @∗/
10 public Semaphore(int permits);

12 /∗@
given frac p;

14 requires initialized(p);
ensures inv(1/permits) ∗∗ held(p); @∗/

16 public void acquire();

18 /∗@
given frac p;

20 requires inv(1/permits) ∗∗ held(p);
ensures initialized(p); @∗/

22 public void release();
}

Listing 18: Specification of the Semaphore class.

In our specifications such parameters (of which there will be more, hence
the “. . . ” above) are received through parameters specified with the given
keyword.

4.2 Semaphore Specification

The Semaphore class represents a counting semaphore. It is used to control
threads’ accesses to a shared resource, by restricting the number of threads
that can access a resource simultaneously. Each semaphore is provided with
a property permits, that represents the maximum number of threads that
can access the protected resource. Accessing the resource must be preceded

52 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

by acquiring a permit from the semaphore. A semaphore with n permits
allows a maximum of n threads to access the same resource simultaneously.
If n threads are holding a permit, a new thread that tries to acquire a permit
blocks until it is notified that a permit is released.

When initialized with more than 1 permit, a semaphore closely corres-
ponds to a non-reentrant ReadLock, but with the number of threads ac-
cessing the shared resource explicitly stated and controlled. When initial-
ized with 1 permit, it provides exclusive access, and behaves the same as
a non-reentrant WriteLock. Therefore, the specification of the semaphore is
a stripped-down version of the Lock specification, see Listing 18. In par-
ticular, semaphores are never reentrant, and they are not used in coupled
combinations. Moreover, since the maximum number of threads that can
access the shared resource is predefined with the permits field, we can also
limit ourselves to simply providing each acquiring thread with an equal split
of 1/permits of the resource invariant (lines 15 and 20). Note also that there
is no access permission required for the permits field as it is declared to be
final and hence can never change after initialization.

4.3 CountDownLatch Specification

Essentially, a count-down latch is a scattered multi-threaded lock. Typically,
a parent thread initializes a latch with a count and then passes it to a number
of worker threads together with some shared resource for the threads to
work on. Each worker thread, once finished, calls method countDown() on
the latch to signal that it releases its share on the resource. Threads can
wait for all worker threads to finish by calling the blocking await() method.
Each call to countDown() decreases the internal latch counter, and once this
reaches zero, all awaiting threads unblock and can use the protected resource
again.

In the context of our work, the await() is technically a locking operation
– permissions are transferred to the calling thread – while countDown() is an
unlocking operation – the calling thread gives up permissions for resources
it worked on. Thus, intuitively, compared to the lock, the flow of resource
permissions is reversed. Moreover, latches are scattered: each worker thread
performs only a partial unlock to collectively achieve a full one, and all await-
ing threads do a collective lock. Because of this scattered synchronisation,
the specification method that employs one resource invariant inv does not
work as good as it worked for the reentrant locks and semaphores. Yet, it is

4.3. COUNTDOWNLATCH SPECIFICATION 53

still possible to provide a specification for simplified latch use scenarios where
only one inv resource predicate is used. In this simplified scenario the distri-
bution of the resources between the worker threads and the awaiting threads
is considerably limited, we discuss this first. We then discuss an improved
specification that accounts for arbitrary distribution of resources between n
worker threads that call countDown and a different number m of awaiting
threads. Later, in Section 4.5 we use our improved specification to verify a
client program that is synchronised with an instance of CountDownLatch.

Simplified Scenario

Our simplified scenario assumes that each worker thread gets an equal non-
exclusive share of some resource, and awaiting threads receive a fractional
split of the whole resource. In particular, if there is only one awaiting
thread, it automatically reclaims the whole resource invariant protected by
the latch. The associated specifications are shown in Listing 19. When the
latch is constructed (lines 6–9) two predicates are returned: initialized(1),
reflecting the ability of the receiving thread to call await, plus count number
of equal held predicates. The thread that created the latch should pass
these to each of the worker threads, along with a corresponding split of the
resource invariant, i.e., it is not the responsibility of the latch to distribute
the resource invariant at this point. When calling countDown (lines 12–13),
the worker thread presents its held predicate and an associated fraction of the
resource invariant, which is then consumed back into the latch. The await
method (lines 16–19) expects at least a fraction of the initialized predicate
and returns an associated split of the resource invariant. In case there is
only one awaiting thread and the initialized predicate is unsplit, the complete
resource invariant inv(1) is returned.

Generalized Scenario

A generalized usage scenario for the latch requires to arbitrarily split the re-
source invariant for the worker threads, e.g., in such a way that each worker
has an exclusive access to part of the resource, rather than a shared access
to the whole resource, or, in fact, any combination of the two possibilities.
Upon completion of all n countDown calls, the resource invariant is recon-
structed into a full one and then split again according to another division
schema for the m awaiting threads.

54 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

/∗@ given group (frac −> resource) inv; @∗/
2 public class CountDownLatch {

/∗@ resource held(frac p); @∗/
4

/∗@
6 requires count > 0;

ensures initialized(1);
8 ensures (\forall∗ int i;0 <= i && i < count; held(1/count)); @∗/

public CountDownLatch(int count);
10

/∗@
12 requires held(1/count) ∗∗ inv(1/count);@∗/

public void countDown();
14

/∗@
16 given frac p;

requires initialized(p);
18 ensures inv(p); @∗/

public void await();
20 }

Listing 19: Simplified specification of the CountDownLatch class.

The core idea for this generalized case is to provide separate splits of
the resource for the countDown and await operations, and carry around the
identity of the corresponding calling thread in an integer parameter of the
corresponding predicate. In total, there are four groups of predicates in-
volved in the specification (see Listing 20):

• cdRes(i) represents a resource that an i-th worker thread calling the
countDown method works with,

• held(i) represents a permission for the i-th worker thread to actually
call countDown,

• awRes(j) represents a resource that the j-th awaiting thread shall re-
ceive,

4.3. COUNTDOWNLATCH SPECIFICATION 55

/∗@
2 given (int −> resource) cdRes;

given (int −> resource) awRes;
4 given int nCountDown, mAwait; @∗/

public class CountDownLatch{
6 /∗@ resource held(int i), awCall(int j); @∗/

8 /∗@
requires count == nCountDown;

10 requires
(\forall∗ int i; 0 <= i && i < nCountDown; cdRes(i))

12 ∗−∗ (\forall∗ int j; 0 <= j && j < mAwait; awRes(j));
ensures (\forall∗ int i; 0 <= i && i < nCountDown; held(i));

14 ensures (\forall∗ int j; 0 <= j && j < mAwait; awCall(j)); @∗/
public CountDownLatch(int count);

16

/∗@
18 given int i;

requires held(i) ∗∗ cdRes(i); @∗/
20 public void countDown();

22 /∗@
given int j;

24 requires awCall(j);
ensures awRes(j); @∗/

26 public void await();
}

Listing 20: Improved specification of the CountDownLatch class.

• and awCall(j) represents a permission for the j-th awaiting thread to
call await.

In principle the i and j represent different numbers of different worker
and awaiting threads. Furthermore, all these predicates are not declared
to be group and they are not parametrised by a fraction, i.e., the resource
shares for all the threads involved with the latch are predefined up front
and are not allowed to be further split by any of the threads. Otherwise,

56 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

the specifications would become unnecessarily complex to cover scenarios
that are not really found in practice (i.e., when resources are lost during
the operation of the latch). The soundness requirement for the specification
is that the whole group of cdRes(i) predicates is resource equivalent to the
whole group of awRes(j) predicates. That is, the following should hold:

(\forall∗ int i; 0 <= i && i < nCountDown; cdRes(i))
∗−∗ (\forall∗ int j; 0 <= j && j < mAwait; awRes(j))

where ∗−∗ denotes separating equivalence, while nCountDown and mAwait
correspond to the numbers of worker and awaiting threads, respectively. Vir-
tually, both of these groups of resources would be equivalent to the regular
resource invariant inv(1) that we used in the simplified specification.

Overall, this gives rise to the CountDownLatch specification given in List-
ing 20. Some of the main differences compared to the simplified specification
in Listing 19 are the following. As mentioned, the threads that work with the
latch are not allowed to split the given resource in any way and every thread
involved with the latch has its own resource predicate. Hence, there is no
frac parameter to any of the predicate class parameters. Moreover, it is the
responsibility of the specifier of the client code to provide the partitioning of
the resources between the worker threads and awaiting threads by providing
appropriate definitions for cdRes and awRes. The specification only checks
that the two groups of predicates are equivalent, see line 11 in Listing 20, to
maintain soundness. Also, the number of worker and awaiting threads has
to be known a priori. This is not limiting for the worker threads, as the API
itself requires to pass the count parameter to the constructor, but the client
code is not free to allow for arbitrary await calls. This was not the case
in the simplified specification, where the initialized(p) predicate could have
been split arbitrarily after the construction of the latch and consequently
allow for arbitrary many await calls. Otherwise, the specification allows
for arbitrary resource distribution between all involved threads. The con-
structor issues nCountDown and mAwait tickets for the worker and awaiting
threads, respectively (lines 13–14 in Listing 20). Then, each worker thread
presents its ticket and the corresponding part of the resource upon the call
to countDown, at which point the resource is consumed by the latch (lines
18–20 in Listing 20). Then, the awaiting threads present their tickets when
calling await and receive their corresponding part of the resource (lines 23–26
in Listing 20).

4.4. CYCLICBARRIER SPECIFICATION 57

4.4 CyclicBarrier Specification

The CyclicBarrier class in Java is useful when a set of threads has to wait
for each other to reach a common execution point. The difference with
CountDownLatch is that the waiting threads can re-use the CyclicBarrier after
they have finished a part of their execution. So, essentially a barrier allows
a group of threads to periodically re-synchronise. A barrier object is in-
stantiated with a fixed number of participating threads, called parties. Each
thread, finishing its portion of the global task, calls the blocking await()
method and waits for the other threads to enter the barrier. When all the
threads are in the barrier, the await() method returns, upon which all the
waiting threads start the next stage (cycle) of their work.

Listing 21 presents our specification for the CyclicBarrier class. Using
a barrier, the participating threads in each cyclic round call the await()
method to get synchronised. Therefore, using a similar mechanism as with
the improved specification of the CountDownLatch, the resource that the
barrier protects is parametrized with the identifier of the thread that calls
await() and a cycle number of the barrier. Also, as in the latch, the threads
that work with the barrier are not allowed to further split the resource.
When entering the barrier, all the participating threads have to temporarily
release the resource corresponding to the given cycle, represented by res(c, i)
(line 15). When leaving the barrier, each thread obtains its portion of the
resource corresponding to the new cycle number res(c+1, i) (line 16). The
handle predicate represents the permission ticket to make a cyclic call to
await(). These tickets are issued by the barrier’s constructor, which witness
the current cycle number of the calling thread. Similar to the specification of
the latch, the main thread is responsible for distributing the actual resource
among the worker threads.

The CyclicBarrier class as defined in the Java API contains another con-
structor which takes an instance of a class implementing the Runnable in-
terface. This parameter assigns a task to the barrier object to be internally
executed inside the barrier when all the parties arrive at the barrier. Specify-
ing this barrier constructor is considerably more challenging. In particular,
we would need to provide a very specific and detailed specification of the
otherwise very general Runnable interface that would allow us to connect
the Runnable’s resources with the barrier and worker threads’ resources in
a sound way. We were not yet able to come up with a correct specification
for this case, this is part of our future work.

58 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

/∗@
2 given (int, int −> resource) res; @∗/

public class CyclicBarrier {
4

/∗@
6 resource handle(int c, int p); @∗/

8 /∗@
requires parties > 0;

10 ensures (\forall∗ int i; i>=0 && i<parties; handle(0,i)); @∗/
public CyclicBarrier(int parties);

12

/∗@
14 given int i, c;

requires handle(c,i) ∗∗ res(c,i);
16 ensures handle(c+1,i) ∗∗ res(c+1,i); @∗/

public int await();
18

}

Listing 21: Specification of the CyclicBarrier class.

4.5 Examples

In this section we discuss the verification of several client programs that
are synchronised with ReadWriteLock, CountDownLatch and CyclicBarrier,
making use of our specifications.

Example use of ReadWriteLock

In this example we show how the specification of ReadWriteLock helps us to
reason about a single-producer multiple-consumer application. Assume an
application where a single producer produces data to be used by two separate
consumer threads. The producer implemented as a Producer class (see List-
ing 22) obtains the write lock and then exclusively accesses the shared data
field. Then, each consumer (see Listing 23) tries to obtain a fractional per-
mission of the shared data to use the value written by the producer. The
producer and consumers are then combined together in class SProdMCons

4.5. EXAMPLES 59

/∗@ given group (frac −> resource) pcinv; @∗/
2 public class Producer extends Thread {

private final Lock/∗@<pcinv, true, true>@∗/ lock;
4 private final SProdMCons example;

6 /∗@
given frac p;

8 requires lock.initialized(p);
ensures lock.initialized(p); @∗/

10 public void produce(){
/∗! { lock.initialized(p) } !∗/

12 lock.lock();
/∗! { lock.inv(1) ∗∗ lock.held(p) } !∗/

14 /∗@ unfold lock.inv(1); @∗/
/∗! { Perm(example.data, 1) ∗∗ lock.held(p) } !∗/ // from pcinv

16 sample();
/∗! { Perm(example.data, 1) ∗∗ lock.held(p) } !∗/

18 /∗@ fold lock.inv(1); @∗/
lock.unlock();

20 /∗! { lock.initialized(p) } !∗/
}

22 // method run
}

Listing 22: The producer.

implemented in Listing 24.

Example use of CountDownLatch

In Listing 25 we present a simple annotated client program that uses our
improved latch specification. Each of the worker threads (instances of the
Worker class) works with an exclusive access to one element of the locations
array of the Example class. This is specified with the cdRes that returns
a single full permission to one array element given by the i parameter. In
this example there are N worker threads, but only one awaiting thread.
Hence, the awRes predicate returns full permission to the whole locations
array if j==0, this is specified with the separating quantification \forall∗,

60 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

/∗@ given group (frac −> resource) pcinv; @∗/
2 public class Consumer extends Thread {

private final Lock/∗@<pcinv, false, true>@∗/ lock;
4 private final SProdMCons example;

private boolean flag;
6 private int value;

8 /∗@
given frac p;

10 requires lock.initialized(p) ∗∗ Perm(this.value,1);
ensures lock.initialized(p) ∗∗ Perm(this.value,1); @∗/

12 public void consume(){
/∗! { lock.initialized(p) } !∗/

14 lock.lock();
/∗! { lock.inv(p) ∗∗ lock.held(p) } !∗/

16 /∗@ unfold lock.inv(p); @∗/
/∗! { Perm(example.data, p) ∗∗ lock.held(p) } !∗/ // from pcinv

18 this.value = example.data;
if(flag == this.example.PRINT) print();

20 if(flag == this.example.LOG) log();
/∗@ fold lock.inv(p); @∗/

22 /∗! { lock.held(p) ∗∗ lock.inv(p) } !∗/
lock.unlock();

24 /∗! { lock.initialized(p) } !∗/
}

26 // methods run, print and log
}

Listing 23: The consumer.

otherwise no permissions are granted. These two predicates are passed to the
CountDownLatch constructor along with the numbers of worker and awaiting
threads, N and 1 respectively. The pre-condition of the constructor that
all cdRes and awRes are resource equivalent is clearly met. At this point
the main thread executing in the splitWork method is in possession of the
complete set of held and awCall predicates (from the post-condition of the
CountDownLatch constructor) and full permissions to access all elements of

4.5. EXAMPLES 61

public class SProdMCons {
2 /∗@ group resource pcinv(frac p) = Perm(data, p); @∗/

public final boolean PRINT = true, LOG = false;
4 public int data;

private ReadWriteLock/∗@<pcinv, true>@∗/ rwl;
6

void main(){
8 rwl = new ReentrantReadWriteLock/∗@< pcinv >@∗/();

10 Producer producer =
new Producer/∗@< pcinv >@∗/(this, rwl.writeLock());

12 Consumer printer =
new Consumer/∗@< pcinv >@∗/(this, PRINT, rwl.readLock());

14 Consumer log =
new Consumer/∗@< pcinv >@∗/(this, LOG, rwl.readLock());

16

producer.start(); printer.start(); log.start();
18 producer.join(); printer.join(); log.join();

}
20 }

Listing 24: Implementation of SProdMCons.

locations (from the pre-condition of splitWork()). When the worker threads
are started in the loop, the corresponding held and cdRes predicates required
by the pre-condition of run() method can be passed on through the call to
start().

The awCall(0) predicate remains with the main thread and is used by the
call to doneSignal.await() to regain the complete permission to the locations
array through the awRes(0) predicate. This in turn establishes the post-
condition of the splitWork() method.

Example use of CyclicBarrier

Assume the scenario implemented in Listings 26 and 27 where a set of
threads is collecting data in a matrix to be plotted by a plotter thread.
In each cycle of the process the plotter plots the currently available data,
while in parallel the collector threads are collecting data to be displayed

62 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

in the next round. The plotter thread is the thread with an id = 0 and
any thread with id > 0 is considered as a collector thread. There is a global
two-layered two-dimensional matrix (line 3). In each cycle the plotter thread
displays data related to the current cycle (line 18) in one layer, in parallel
the collector threads are collecting (new) data in the other layer to be plot-
ted in the next cycle (line 19). That is, the plotter thread and the collector
threads use the two layers of the matrix interchangeably in between the sub-
sequent barrier calls. Each collector thread is responsible to fill one row of
the two-dimensional matrix.

The res(c, t) represents (1) the full permission of the elements of one layer
(current cycle) for the plotter thread (line 15), and (2) the full permission
of the elements of one row from other layer (next cycle) with index t for the
collector thread associated with t (line 16).

When initializing the CBExample class, the full permission of the matrix
in layer 0 is transferred to the plotter thread (line 20) and the full permission
of each row from layer 1 of the matrix is transferred to the corresponding
collector (line 22). In the first round of the execution, the plotter displays
the initialized data. In parallel, the collectors are filling data for layer 1 to be
displayed in the next round. The plotter thread is synchronised with all the
collector threads through the barrier call (line 20), after which each thread
increments its cycle number to change its associated layer of the matrix.

The barrier is in some ways similar to the count down latch, yet there
are some crucial differences. The exchange of the resources between the
worker threads that use the barrier happens in one place, i.e., upon the
call to await. In the count down latch, this exchange is done in two phases
– the resources are transferred into the latch upon countDown and out of
the latch upon await. Moreover, the latch has only one cycle, while the
barrier can have infinitely many. This is reflected in the specification of
the barrier with the additional integer parameter c to the res and handle
predicates that represents the cycle number. Finally, note that a similar
numbering mechanism could have been used to merge the two predicates
cdRes and awRes into one, where the corresponding phase (count down or
await) would be identified with a cycle number equal to 0 or 1, respectively.
However, we believe it would make the client code specification unnecessarily
more complex.

4.6. CONCLUSION AND RELATED WORK 63

4.6 Conclusion and Related Work

In this chapter, based on examples of the family of Java locks, the sema-
phore, the count-down latch, and the cyclic barrier from the Java API, we
presented a generalized approach for handling synchronisation primitives in
permission-based Separation Logic for concurrent Java. We lift all mechan-
isms associated with synchronisation handling, and the corresponding per-
mission transfer, to the specification layer of the logic. This way we provide
a modular verification mechanism that is applicable to arbitrary concurrent
Java programs, and we enable the verification of the synchronisation routine
implementations themselves (as discussed in the next chapter).

The work presented here extends earlier formalisation of reentrant locks
[46, 10]. Several other built-in formalizations of locks and synchronisation
primitives exist. The Chalice system [58] formalizes simple non-reentrant
locks built into the Chalice language. The work of Gotsman et al. [40]
is similar to our earlier formalization, and we believe that our high-level
approach could also be easily applied there to treat a wider range of syn-
chronisation primitives. Similarly, the work of Hobor and Gherghina on
formalizing barriers in Separation Logic [45] follows very similar principles
that we used in our barrier specification presented in this paper. Finally,
the VeriFast tool [49] adopts an approach similar to ours where locking is
also specified on the API level, but only for simple and non-reentrant locks,
and so-called higher-order abstract predicates are functionally similar to our
class level specification parameters.

64 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

class Example {
2 public static final int N = 20;

private int[] locations = new int[N];
4 /∗@ requires (\forall∗ int i; i>=0 && i<N; Perm(locations[i], 1));

ensures (\forall∗ int i; i>=0 && i<N; Perm(locations[i], 1)); @∗/
6 void splitWork() throws InterruptedException {

/∗@ resource cdRes(int i) = Perm(locations[i], 1);
8 resource awRes(int j) = j != 0 ? true :

(\forall∗ int k; k>=0 && k<N; Perm(locations[k],1)); @∗/
10 CountDownLatch/∗@<cdRes,awRes,N,1>@∗/ latch =

new CountDownLatch/∗@<cdRes,awRes,N,1>@∗/(N);
12 for (int i = 0; i < N; ++i) {

new Thread(new Worker(this, i, latch)).start();
14 }

doneSignal.await();
16 }

public int[] getLocations() { return locations; }
18 }

20 class Worker implements Runnable {
private final CountDownLatch latch;

22 private final Example example;
private final int id;

24

Worker(Example example, int id, CountDownLatch latch) {
26 this.example = example; this.id = id; this.latch = latch;

}
28 /∗@ requires latch.held(id) ∗∗ latch.cdRes(id); @∗/

public void run() {
30 try {

shared.getLocations()[id] = id;
32 latch.countDown();

} catch (InterruptedException ex) {}
34 }

}

Listing 25: Client code using CountDownLatch

4.6. CONCLUSION AND RELATED WORK 65

class CBExample {
2 public static final int N = 20, M = 50;

private int[][][] matrix = new int[2][N][M];
4

/∗@
6 resource row(int h, int r) =

(\forall∗ int i; i >= 0 && i < M; Perm(matrix[h][r][i], 1)); @∗/
8

/∗@
10 requires (\forall∗ int i; i>=0 && i<N; row(0, i) ∗∗ row(1, i));

ensures (\forall∗ int i; i>=0 && i<N; row(0, i) ∗∗ row(1, i)); @∗/
12 void splitMatrix() throws InterruptedException {

/∗@
14 resource res(int c, int i) = (i==0) ?

(\forall∗ int i; i>=0 && i<N; row((c % 2), i)) :
16 row(((c+1) % 2), i−1); @∗/

CyclicBarrier /∗@<res>@∗/ barrier =
18 new CyclicBarrier/∗@<res>@∗/(N);

20 new Thread(new Process(this, 0, barrier)).start();

22 for (int i = 1; i < N+1; i++) {
new Thread(new Process(this, i, barrier)).start();

24 }
}

26

public int[] getRow(int h,int i) { return matrix[h][i]; }
28 }

Listing 26: Client code using the CyclicBarrier

66 CHAPTER 4. SYNCHRONISERS SPECIFICATIONS

class Process implements Runnable {
2 private final CyclicBarrier barrier;

private final CBExample example;
4 private final int id;

private int cyc;
6

Process(CBExample example, int id, CyclicBarrier barrier) {
8 this.example = example;

this.id = id;
10 this.barrier = barrier;

cyc = 0;
12 }

public void run(){ while(true) process(); }
14 /∗@ given int c;

requires barrier.handle(c, id) ∗∗ barrier.res(c, id); @∗/
16 private void process() {

try {
18 if(id == 0) plot();

if(id > 0) collect();
20 barrier.await();

this.cyc++;
22 } catch (InterruptedException ex) {}

}
24

/∗@ requires (\forall∗ int i; i>=0 && i<N; row((cyc % 2), i));
26 ensures (\forall∗ int i; i>=0 && i<N; row((cyc % 2), i)); @∗/

public void plot(){
28 /∗ display matrix[(cyc+1)%2][n][m] for 0 ≤m<M and 0≤n<N ∗/

}
30

/∗@ requires row(((cyc+1) % 2), id−1);
32 ensures row(((cyc+1) % 2), id−1); @∗/

public void collect(){
34 /∗ fill matrix[(cyc+1)%2][id−1][m] for 0 ≤m<M ∗/ }

}

Listing 27: The processing code for the example in Listing 26.

CHAPTER 5
Verification of Synchronisers:

Exclusive Access

67

69

To reason about concurrent programs, it is vital to have the contracts of
the synchronisation classes. In Chapter 4 we have presented the contracts
of several synchronisation classes provided in java.util.concurrent. Our pro-
posed specifications are justified by a set of examples. However, still the
correctness of these specifications has not been discussed. In this chapter
we propose a technique to verify the correctness of the implementation of
the synchronisation mechanisms with respect to their specification.

In Chapter 2 we have discussed how atomic classes are used to imple-
ment synchronisation mechanisms. This chapter first identifies which dif-
ferent synchronisation patterns can be implemented by using atomic op-
erations. Then, it proposes an approach to specify the behavior of an
atomic class as a synchroniser. Additionally, the approach is used to specify
Java’s AtomicInteger class, and it is discussed how different synchronisation
mechanisms can be built and verified using atomic integer as the synchron-
isation primitive.

In our approach, any thread has a local view of the atomic variable. The
global state is then defined in terms of the atomic variable and all the local
views. In addition, the atomic variable is instrumented with a protocol that
describes what the legal state transitions are. The protocol is used by the
thread to derive the guarantees that the environment provides. Additionally,
a resource invariant is declared, which specifies which resources are protected
by the synchroniser. The derived specifications for the AtomicInteger op-
erations are thus parameterized by this protocol and the resource invariant.
This specification expresses how AtomicInteger, as an atomic synchroniser,
grants and retains permissions to access the shared resource specified by
the resource invariant exclusively. To describe the specifications and the
predicates encoding the views and the protocol, we use permission-based
Separation Logic for Java [23, 10].

The specifications for the methods in the AtomicInteger class are derived
from the classical concurrent Separation Logic rule [85] for atomic opera-
tions. A main characteristic of our specification is its ease of use. To verify
an implementation of a synchronisation mechanism, only a few intuitive
parameters have to be provided. Particularly, the user only has to specify
(1) what are the different roles of the threads participating in the synchron-
isation, (2) what are the legal state transitions in the synchroniser, and
(3) what share of the resource invariant can be obtained in a certain state,
given the role of the current thread. For all implementations, we provide

70
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

a machine-checked proof that the implementations correctly implement the
synchroniser.

This chapter is structured as follows: in Section 5.1 we introduce several
synchronisation patterns using AtomicInteger as a synchronisation primitive,
each supported by an example. Section 5.2 derives contracts for atomic
read, write, and compare-and-set. Section 5.4 explains the generalized
specification of the AtomicInteger class and discusses correctness proofs of
the clients using AtomicInteger. Finally, Section 5.5 draws conclusions and
presents related work.

5.1 Synchronisation Patterns

As we discussed in Chapter 2, to support thread-safe access to single vari-
ables, Java provides the package java.util.concurrent.atomic, as part of Java’s
general concurrency API. This package provides wrappers for volatile vari-
ables with appropriate atomic operations for read, write, and compare-and-
swap. As a commonly used atomic class, the AtomicInteger class encapsulates
a volatile field of type integer. Essentially, it provides the following meth-
ods: get(), returning the value that was last written to the field; set(int v),
atomically assigning the value v to the field; and compareAndSet(int x,int n),
atomically checking the current value and updating it to n, if it is equal to
the expected value x, otherwise leaving the state unchanged, and returning
a boolean to indicate whether the update succeeded.

In a shared-memory concurrency setting, two kinds of thread interactions
via a synchroniser can be distinguished: cooperation and competition [75].
In a cooperative interaction, threads employ a cooperative synchroniser as
a communication channel to cooperatively share a resource. In a competit-
ive interaction, a competitive synchroniser runs a competition and provides
(temporary) access to the shared resource to the winner. A synchroniser
can behave cooperatively or competitively in different states, this is called
a hybrid interaction. Various patterns of synchronisation can be described
in terms of atomic integer operations:

Pattern GS (get and set)

Threads can cooperatively interact using atomic read and write. Every
thread has a designated state in which it obtains the resource, and all
threads attempt to reach their designated state. When a thread writes

5.1. SYNCHRONISATION PATTERNS 71

public class ProducerConsumer{
2 private final int E = 0, F=1;

private AtomicInteger sync;
4 private int data; // shared buffer

6 ProducerConsumer(){ sync = new AtomicInteger(E); }

8 void produce(){
write();

10 sync.set(F); // signal
while(sync.get() == F); // wait

12 }
void consume(){

14 while(sync.get()==E); // wait
read();

16 sync.set(E); // signal
}

18 // methods write() and read()
}

Listing 28: ProducerConsumer: cooperation.

to the atomic integer, it implicitly signals who should own the resource next
(cooperation). Based on the value written into the synchroniser, ownership
of the resource is transferred to the appropriate thread waiting for that par-
ticular value. Producer-Consumer and Dekker’s critical section algorithm
are examples of this pattern. Listing 28 shows ProducerConsumer with two
methods produce and consume, sharing a field data, that implements this al-
gorithm. Typically, these methods will be executed as part of a surrounding
loop. The AtomicInteger denotes the state of the buffer: full (F) or empty
(E). Both the producer and the consumer wait until the buffer gets into
their desired state. As soon as the state changes to the expected value, the
waiting thread obtains the shared resource. When it is done, it changes the
state, so that the other thread can access the resource.

72
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

public class SpinLock{
2 private final int U = 0, L=1;

private AtomicInteger sync;
4 SpinLock(){ sync = new AtomicInteger(U); }

6 void lock(){
while(!sync.compareAndSet(U,L));

8 }

10 void unlock(){
sync.set(U);

12 }
}

Listing 29: SpinLock: competition.

Pattern SC (set and compareAndSet)

Atomic write and conditional update can be used to implement a compet-
itive synchroniser. Threads are competing to obtain the protected resource
by calling compareAndSet. A thread that succeeds in changing the state, ob-
tains the resource. When it no longer needs the resource, it sets the state to
the initial value, to signal its availability. Failing threads continue to try to
acquire the resource by checking whether the state is reverted back to the ini-
tial state. A spin-lock implementation using AtomicInteger (see Listing 29) is
a known example of this pattern where the atomic integer value encapsulates
the state of the lock: locked (L) or unlocked (U). If a thread successfully
updates the state from U to L, it acquires the lock (method lock). Con-
sequently, failing threads enter a try-wait loop, until the lock is released. To
release the lock, the thread holding the lock executes set(U) (method unlock).

Pattern GC (get and compareAndSet)

Atomic read and compare-and-set are suited to implement a synchronisation
mechanism that partially transfers the resources between the participating
threads. Shared reading synchronisation mechanisms using AtomicInteger
like Semaphore and CountDownLatch are typical instances of this pattern.
Also lock-free pointer-based data structures using AtomicReference are ex-

5.2. OWNERSHIP EXCHANGE VIA ATOMICS 73

amples of this pattern. Since, here, we are only looking at exclusive syn-
chronisation mechanisms, we do not discuss this pattern further. However,
a generalization of our approach to reason about partial resource ownership
using atomics is the topic of Chapter 6.

Pettern GSC (get, set and compareAndSet)

All basic operations of AtomicInteger can be used together to implement a
hybrid synchroniser. Threads compete with each other to obtain the resource
by calling compareAndSet. A thread that succeeds in changing the state,
wins the resource. Failing threads may not compete any more to change the
state. But, they have to wait for the resource availability. When the winner
thread no longer needs the resource, it updates the state to signal how the
resource should be used afterwards. Listing 30 shows the implementation
of a SingleCell algorithm, which illustrates a hybrid pattern1. It provides a
single method to find or put a value in a shared storage cell. The storage
cell is always in one of these states: empty (E), writing (W) or done (D).
The cell containing the value (the state D) must be immutable. Initially, all
threads are competing to assign their value. If a thread succeeds in obtaining
writing access to the resource, the state becomes W. After completing the
assignment, it will report its success (returns PUT). All other threads have
to wait until the value is assigned, and then they check the stored value. If
the value in the cell is equal to the value the thread holds, it will return the
value SEEN, otherwise it will signal a collision (returns COLN).

5.2 Ownership Exchange via Atomics

In this section we show how the contracts in permission-based Separation
Logic for the basic atomic operations can be derived. We base ourselves
on the work by Vafeiadis [85], which enables us to define a language where
atomic commands, denoted atomic{ C }, are the only constructs for syn-
chronisation.

We divide the domain of the heap into a set of atomic locations ALoc
(e.g., the volatile field of AtomicInteger) and a set of non-atomic locations

1This is a simplified version of a lock-less hash table, especially designed for state
space exploration in the multi-core model checker LTSmin [56].

74
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

public class SingleCell{
2 final private int E = 0, W=1, D=2;

final private int PUT = 0, SEEN = 1, COLN = 2;
4 private AtomicInteger sync;

private int data;
6

SingleCell(){ sync=new AtomicInteger(E); }
8

int findOrPut(int v){
10 if(sync.compareAndSet(E,W)){ data=v; sync.set(D); return PUT; }

if(sync.get()!=E){
12 while(sync.get()==W); // wait

if(sync.get() == D)
14 if(data == v) return SEEN;

else return COLN;
16 }

}
18 }

Listing 30: SingleCell: hybrid.

NLoc (e.g., data in Listing 28). An atomic location s ∈ ALoc may only be
accessed using:

1. get(s) for atomic read of the atomic location s,

2. set(s, n) for atomic update of s with n, and

3. cas(s, x, n) for atomic conditional update of s.

We use the term atomic value to refer to the value that an atomic variable
contains and the term resources to refer to non-atomic locations of the heap.

As proposed by O’Hearn, in a concurrent setting a resource invariant is
attached with a synchroniser. This associates ownership of a part of the
state space with possible states of the synchroniser [68]. For example, the
resource invariant for a lock lock ∈ ALoc that protects the resource x ∈ NLoc
is defined as:

Ilock = ∃ v ∈ {0, 1}. lock 17→ v *((v = 1 =⇒ emp) *(v = 0 =⇒ x 17→ −))

5.2. OWNERSHIP EXCHANGE VIA ATOMICS 75

This expresses that full ownership of the location x is available to win
when [lock] = 0, while if [lock] = 1 then emp (interpreted as nothing) can
be obtained.

In general, using a function res that maps an atomic value to a set of
disjoint resources, given Val as the set of values and s ∈ ALoc, the resource
invariant Is is defined as:

Is = ∃ v ∈ Val. s
17→ v * S(s, v) where S(s, v) = ~

r∈res(s,v)
r

17→ −

In CSL, a judgment I ` {P} C {Q} expresses the following: given a glob-
ally accessible resource invariant I and a local pre-condition P , if a statement
C starts its execution in a state satisfying P * I, and if C terminates, then
its final state satisfies Q * I. The proof rule for atomic commands [85] ex-
presses that to prove correctness of atomic{ C }, the resource invariant I can
be used for the verification of the atomic body C. Thus, I is not accessible
to the environment. Moreover, within the body C, the resource invariant I
may be invalidated, because it is not visible to the environment, but it must
be re-established before C is finished:

emp ` {P * I} C {I *Q}
I ` {P} atomic{ C } {Q}

[Atomic]

We use the rule [Atomic] to derive specifications for the basic atomic
operations get, set and cas when they are coordinating a set of threads
to (exclusively) access a shared resource. The specifications should capture
all exclusive synchronisation patterns mentioned above: cooperative, com-
petitive and hybrid. Therefore, we need to enrich the resource invariant
definition with an abstraction of local state and feasible states, which allows
one to deduce what the environment guarantees. Next, we instantiate the
[Atomic] rule to derive the resources that set, get and cas exchange to
perform exclusive access synchronisation.

Synchronisation Protocol

Assuming a set of threads Thr, for each atomic location s that is synchron-
ising the threads, we define the view of a thread t ∈ Thr as an atomic ghost
variable, denoted st. Each thread stores the last visited atomic value in its
view. We define the view to be atomic in order to restrict the thread t,
using ghost code, to update its view only inside an atomic block. To do

76
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

so, the ownership of a view is split in half between the owner thread and
the resource invariant, i.e. the shared state. Therefore, a thread can al-
ways read its own view, but it can only update its view when it captures
the other half permission inside an atomic block by accessing the resource
invariant. Views of threads indexed by thread identifiers are written as a
vector of views →st. Similarly, →vt denotes a vector of values pointed to by
the views, indexed by the corresponding thread identifiers, while →vt{vτ=x}
denotes a vector such that the item indexed with τ is equal to x. For the
sake of simplicity we assume that there is only one single atomic location s
functioning as the synchroniser. However, the approach is generalizable for
multiple atomic location.

We define the (global) atomic state as a tuple of the atomic value and
all thread local views of it, denoted (s,

→
st). An atomic state is admissible if

at least one thread has a correct view of the synchroniser. An admissible
atomic state is feasible if either (1) it is an initialization state where all the
threads have an identical view of the initialized atomic location, or (2) it is
reachable from the initialization state by a finite set of atomic operations.

As the views must be updated only inside the atomic operations, they
can reflect the actions that the environment can perform w.r.t. the atomic
location. The current definition of the resource invariant is too restrictive
to reflect this. So, first, we define the protocol of the synchroniser in terms
of the atomic state:

PThr
s =

∨
v,

→
wt∈Val·fsbl(v,

→
wt)

([s] = v ∧
→

[st] =
→
wt)

where fsbl determines whether the atomic state is feasible.

Example 5.2.1. Protocol for ProducerConsumer
To illustrate our definition of feasible states, consider ProducerConsumer,

where we have two threads p (producer) and c (consumer) with corresponding
views, i.e. sp and sc, respectively, given an atomic variable s:

P{p,c}s =
(([s] = E ∧ [sp] = E ∧ [sc] = E) ∨ ([s] = F ∧ [sp] = F ∧ [sc] = E)∨
([s] = F ∧ [sp] = F ∧ [sc] = F) ∨ ([s] = E ∧ [sp] = F ∧ [sc] = E))

Note that ([s] = F, [sp] = E, [sc] = F) is not a feasible state. Therefore,
when p believes that the buffer is empty (E), it can safely rely on the fact

5.2. OWNERSHIP EXCHANGE VIA ATOMICS 77

that no other thread is allowed to modify s to full (F). Thus, p deduces that
it exclusively owns s, so [s] must be E when [sp] = E.

Example 5.2.2. Protocol for SpinLock
Consider the SpinLock example, which is a competitive pattern. Its pro-

tocol is defined as follows:

PThr
s = ([s] = U ∧ (∀ t ∈ Thr. [st] = U)) ∨

([s] = L ∧ (∃ τ ∈ Thr. [sτ] = L ∧ ∀ t ∈ Thr \ {τ}. [st] = U))

This expresses that either the lock is available and all threads have a correct
view of the state, or there is only one thread that has acquired the lock and
updated its view while all others have failed to change their beliefs. This
makes it possible for the unlocking thread to rely on its view, knowing that
it will be the only one that has the correct view.

The protocol suffices to derive the contracts for the basic atomic opera-
tions when they are involved in a competitive pattern. To cover cooperative
patterns, where threads obtain the shared resources based on their views, in
addition, the resource invariant has to express what resources are protected
in terms of the atomic state. In fact, instead of one single atomic variable s,
(s,
→
st) plays the role of a global synchroniser. Similar to res, we define ares

to map the atomic state to a set of disjoint resources. Therefore, we replace
S(s, v) with R(s, v,

→
st,
→
wt) to denote all the resources associated with [s] = v

and
→

[st] =
→
wt.

Now we are ready to define precisely what we mean by a synchronisation
primitive, based on our extended definition of resource invariant.

Definition 5.2.1. State-based synchroniser
An atomic location s together with the basic atomic operations ACmd =

{get, set, cas} define a state-based primitive synchronisation mechanism
for a set of threads Thr if it is instrumented with a resource invariant defined
as follows:

Is = ∃v, →wt ∈ Val · s 17→ v *(~
t∈Thr

st
1
27→ wt) *R(s, v,

→
st,
→
wt) *PThr

s

where R(s, v,
→
st,
→
wt) = ~

r∈ares(s,v,
→
st,

→
wt)

r
17→ −.

78
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

Example 5.2.3. Synchroniser for ProducerConsumer
Based on the protocol defined in Example 5.2.1, we define the resource

invariant of the atomic synchroniser s to synchronise p and c:

Is = ∃v, wp, wc ∈ {E,F} · s
17→ v * sp

1
27→ wp * sc

1
27→ wc *R(s, v,

→
st,
→
wt) *P{p,c}s

where R(s, v,
→
st,
→
wt) is data 17→ − if v = E, wp = F , wc = E and v = F ,

wp = F , wc = E, and R(s, v,
→
st,
→
wt) is emp if threads agree on the value of s.

This expresses that s holds the full ownership of data when threads do not
agree on the value of the synchroniser (i.e., during the transition phase).

Example 5.2.4. Synchroniser for SpinLock
Considering the SpinLock protocol in Example 5.2.2, we define the re-

source invariant for s. Here, regardless of the views of the threads, the
resource invariant holds the full resource when the state is U , otherwise the
winning thread holds it.

Is = ∃v, →wt ∈ {U,L} · s
17→ v *(~

t∈Thr
st

1
27→ wt) *R(s, v,

→
st,
→
wt) *PThr

s

where R(s, v,
→
st,
→
wt) will be data 17→ − when v = U and emp when v = L.

Next we investigate how the three basic atomic operations can exchange
the shared resources.

5.3 Specifications of Atomics

This section derives contracts for the three basic atomic operations for state-
based synchronisation. The contracts, shown in Figure 5.1, essentially ex-
press that in an exclusive state-based synchronisation, the thread τ execut-
ing an atomic operation to update the state of the synchroniser, should
provide the resources associated with the state after the operation, and in
return will receive the resources associated with the previous state of the
synchroniser. In Figure 5.1, we used RThr

s (τ, x, y) to denote all the re-
sources when s = x and sτ = y. First, we explain the specification for each
atomic operation. Then, we present their derivations, and finally, we discuss
how the specification can be adopted to thread-modular contracts.

5.3. SPECIFICATIONS OF ATOMICS 79

Let RThr
s (τ, x, y) = ~

→
vt{vτ=y}∈Val.fsbl(x,

→
vt{vτ=y})

R(s, x,
→
st,
→
vt{vτ=y})

∀ v,→vt ∈ Val. vτ = d ∧ fsbl(v,
→
vt{vτ=d}) =⇒ fsbl(n,

→
vt{vτ=n})

Is `
{sτ

1
27→ d *RThr

s (τ, n, n)}
setτ (s, n)

{sτ
1
27→ n *RThr

s (τ, d, d)}

[WAtm]

Is `
{sτ

1
27→ d}

getτ (s)

{sτ
1
27→ ret *(RThr

s (τ, ret, ret) -* RThr
s (τ, ret, d))}

[RAtm]

∀ v,→vt ∈ Val. vτ = x ∧ fsbl(v,
→
vt{vτ=x}) =⇒ fsbl(n,

→
vt{vτ=n})

Is ` {sτ
1
27→ x *RThr

s (τ, n, n)}
casτ (s, x, n)

{(ret = true ∧ sτ
1
27→ n *RThr

s (τ, x, x)) ∨

(ret = false ∧ sτ
1
27→ x *RThr

s (τ, n, n)}

[CAtm]

Figure 5.1: Contracts derived for set, get and cas

Specification: Atomic Write

Operation setτ (s, n) denotes the atomic update of s with n by a particular
thread τ . We derive rule [WAtm], expressing that the executing thread
with the view d delivers all the resources associated with the feasible atomic
state after the update. We should stress here that this contract is specific to
using atomic write for synchronisation, it is not the most general contract
possible.

For an atomic synchroniser for exclusive resource access, it is crucial
that the value inferred by the protocol coincides with the thread’s view. In

80
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

other word, the protocol embedded in the resource invariant must prove that
the thread executing an atomic write has the full permission to do the set
action, otherwise, it is not guaranteed that the thread intended to execute
set, can indeed accomplish this safely.

Specification: Atomic read

The read action for a particular thread τ ∈ Thr with a view sτ that has
the last visited value d from the atomic value s is indicated by getτ (s). In
the rule [RAtm], the contract of the atomic read specifies that the atomic
variable does not change its value, while the atomic state is modified because
the reading thread updates its view. So the thread has to establish the
resource invariant with the resources associated with the updated view inside
the atomic body. As a result, it obtains the remainder as its post-condition,
which is formalized using a magic wand operator. A magic wand (also
known as resource implication) formula R1 -* R2 which holds for any heap
that has the following property: if the heap is extended with a disjoint
heap that satisfies R1, then the combined heap satisfies R2, and finally
According to [76] this rule is correct if our resource assertions are strictly
exact2. Syntactically any formula that only consists of points-to predicate
and * operator is a strictly exact formula [88]. In a fragment of CSL that
we use as our specification language (see Section 2.3), all resource formulas
are indeed strictly exact.

Specification: Conditional update

Finally, rule [CAtm] specifies casτ (s, x, n) with the expected value x and the
value to be updated n. The calling thread assumes that the synchroniser
contains a value equal to an expected value and then calls the operation
to try to modify the atomic synchroniser to n. Therefore, the thread has
to provide the resources associated with the updated atomic state and it
will gain the resources associated with the expected value, if the operation
succeeds. Otherwise, the operation returns all the provided resources.

2 A formula in Separation Logic is strictly exact if it satisfies a unique heap [76].

5.3. SPECIFICATIONS OF ATOMICS 81

Derivation of the Specifications

In order to derive the specifications, for each basic atomic operation we
propose an implementation using basic instructions. We instantiate the
[Atomic] rule for each operation with a pre-condition about the thread’s
view and thread’s local state, containing the required resources. Then, we
derive the post-condition from the pre-condition and the body, taking into
account that Is is available inside the body, providing the resources asso-
ciated to the current state of the synchroniser. Inside the body, either the
atomic location or the view of the thread is updated. Reasoning of the body
is straightforward as it uses sequential SL rules. Folding the resource invari-
ant at the end of the body, we can derive the predicates that the operation
ensures. The derivations show that the thread consumes the resources it
currently holds to re-establish Is and exits the atomic body with an up-
dated atomic state and the resources it obtains as the result of the update.
The derivation of the contracts presented for the basic atomic operations
in Section 5.2 are shown in Figure 5.2, Figure 5.3 and Figure 5.4.

As shown in Figure 5.2, the thread executing set obtains Is inside the
atomic block and using the feasible atomic state encoded inside Is, it proves
that after its last visit, the environment has not updated the atomic value.
As we stressed in Section 5.2 it is crucial that the executing thread and the
atomic value both have an identical value, otherwise the execution of set is
not safe.

The implementation of the atomic read (get) (see Figure 5.3) updates
the thread’s view and stores the atomic value to a local variable named ret.

Similarly, the thread calling the atomic conditional update (see Fig-
ure 5.4) assumes that the atomic value equals to an expected value x and
then calls the operation, trying to modify the atomic synchroniser into n.
The executing thread reads the atomic synchroniser and compares it with
the expected value. If it is equal to the expected value then the thread
updates both the synchroniser and its view with n and re-establishes the
resource invariant with the resources associated with n provided in the pre-
condition. Otherwise, the thread establishes Is without changing its view.
The result of the operation is stored in the variable ret.

82
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

Let RThr
s (τ, x, y) = ~

→
vt{vτ=y}∈Val

R(s, x,
→
st,
→
vt{vτ=y})

and Is = (∃ v, →wt ∈ Val. s
17→ v *(~

t∈Thr
st

1
27→ wt) *R(s, v,

→
st,
→
wt)) *PThr

s

1: {sτ
1
27→ d *RThr

s (τ, n, n)}
setτ (s, n) , 〈

2:

{sτ
1
27→ d *RThr

s (τ, n, n) *(
∃ →vt ∈ Val. s

17→ − *(~
t∈Thr

st
1
27→ −) *R(s, [s],

→
st,
→
vt{vτ=d})

)
*PThr

s }

3: {RThr
s (τ, n, n) * sτ

17→ d * s 17→ d *(~
t∈Thr\{τ}

st
1
27→ −) *RThr

s (τ, d, d)}

4: [s]:= n; [sτ]:= n;

5: {RThr
s (τ, n, n) * sτ

17→ n * s 17→ n *(~
t∈Thr\{τ}

st
1
27→ −) *RThr

s (τ, d, d)}

6:

{sτ
1
27→ n *RThr

s (τ, d, d) *(
∃ →vt ∈ Val. s

17→ n *(~
t∈Thr

st
1
27→ −) *R(s, [s],

→
st,
→
vt{vτ=n})

)
*PThr

s }

7: {sτ
1
27→ n *RThr

s (τ, d, d) * Is} 〉

8: {sτ
1
27→ n *RThr

s (τ, d, d)}

Figure 5.2: Derivation of the specification for set

Thread-Modular Contracts

The last step is to adapt the derived contracts for the atomic operations to
a thread-modular specification. In particular, this means that the specific-
ations should express the pre- and post-conditions using local information
only, i.e., using:

1. the atomic value as a globally known state, and

5.3. SPECIFICATIONS OF ATOMICS 83

Let RThr
s (τ, x, y) = ~

→
vt{vτ=y}∈Val

R(s, x,
→
st,
→
vt{vτ=y})

and Is = (∃ v, →wt ∈ Val. s
17→ v *(~

t∈Thr
st

1
27→ wt) *R(s, v,

→
st,
→
wt)) *PThr

s

1: {sτ
1
27→ d}

getτ (s) , 〈

2: {sτ
1
27→ d *(
∃ →vt ∈ Val. s

17→ − *(~
t∈Thr

st
1
27→ −) *R(s, [s],

→
st,
→
vt{vτ=d})

)
*PThr

s }

3: {sτ
17→ d * s 17→ − *(~

t∈Thr\{τ}
st

1
27→ −) *RThr

s (τ, [s], d)}

4: sτ:= [s]; ret:= [s];

5: {sτ
17→ ret * s 17→ ret *(~

t∈Thr\{τ}
st

1
27→ −) *RThr

s (τ, ret, d)}

6: {sτ
17→ ret * s 17→ ret *(~

t∈Thr\{τ}
st

1
27→ −) *

RThr
s (τ, ret, ret) *(RThr

s (τ, ret, ret) -* RThr
s (τ, ret, d))}

7: {sτ
1
27→ ret * Is *(RThr

s (τ, ret, ret) -* RThr
s (τ, ret, d))} 〉

8: {sτ
1
27→ ret *(RThr

s (τ, ret, ret) -* RThr
s (τ, ret, d))}

Figure 5.3: Derivation of the specification for get

2. local information that contains the view of the executing thread.

Note that the resource invariant expresses when the synchroniser holds
the resources. For example, the resource invariant of ProducerConsumer does
not specify when a particular thread can obtain the buffer. Generally, in
cooperative patterns, the synchroniser holds the resource temporarily, until
one of the waiting threads updates its view. We take advantage of this to
simplify the contracts by defining the resources using two components:

1. the resources that the synchroniser holds for the competition, which is
used to associate resources to the atomic values in classical definition

84
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

Let RThr
s (τ, x, y) = ~

→
vt{vτ=y}∈Val

R(s, x,
→
st,
→
vt{vτ=y})

and Is = (∃ v, →wt ∈ Val. s
17→ v *(~

t∈Thr
st

1
27→ wt) *R(s, v,

→
st,
→
wt)) *PThr

s

1: {sτ
1
27→ x *RThr

s (τ, n, n)}
casτ (s, x, n) , 〈

2: {sτ
1
27→ x *RThr

s (τ, n, n) *(
∃ →vt ∈ Val. s

17→ − *(~
t∈Thr

st
1
27→ −) *R(s, [s],

→
st,
→
vt{vτ=x})

)
*PThr

s }

3: if([s] = x)

4: {RThr
s (τ, n, n) * sτ

17→ x * s 17→ x *(~
t∈Thr\{τ}

st
1
27→ −) *RThr

s (τ, x, x)}

5: { [s]:= n; sτ:= n; ret:= true; }
6: {ret = true ∧ (RThr

s (τ, n, n) *

sτ
17→ n * s 17→ n *(~

t∈Thr\{τ}
st

1
27→ −) *RThr

s (τ, x, x))}

7: {ret = true ∧ (Is * sτ
1
27→ n *RThr

s (τ, x, x))}
else

8: ret:= false;

9: {ret = false ∧ (Is * sτ
1
27→ x *RThr

s (τ, n, n))}
〉

10: {(ret = true ∧ sτ
1
27→ n *RThr

s (τ, x, x))∨

(ret = false ∧ sτ
1
27→ x *RThr

s (τ, n, n))}

Figure 5.4: Derivation of the specification for cas

of the resource invariant, i.e. S, and

2. the resources that threads obtain when they are updating their views,
denoted with T. Basically, T(sτ , v) indicates resources to be held by
thread τ when sτ = v.

5.3. SPECIFICATIONS OF ATOMICS 85

∀ v,→vt ∈ Val. vτ = d ∧ fsbl(v,
→
vt{vτ=d}) =⇒ fsbl(n,

→
vt{vτ=n})

Is `
{sτ

1
27→ d * S(s, n) *T(sτ , d)}

setτ (s, n)

{sτ
1
27→ n * S(s, d) *T(sτ , n)}

[WAtm]

Is `
{sτ

1
27→ d *T(sτ , d)}
getτ (s)

{sτ
1
27→ ret *T(sτ , ret)}

[RAtm]

∀ v,→vt ∈ Val. vτ = x ∧ fsbl(v,
→
vt{vτ=x}) =⇒ fsbl(n,

→
vt{vτ=n})

Is ` {sτ
1
27→ x * S(s, n) *T(sτ , x)}

casτ (s, x, n)

{(ret = true ∧ sτ
1
27→ n * S(s, x) *T(sτ , n)) ∨

(ret = false ∧ sτ
1
27→ x * S(s, n) *T(sτ , x)}

[CAtm]

Figure 5.5: Thread-modular specifications of atomic operations

We exploit these two components to decompose RThr
s (τ, x, y) (defined in

Figure 5.1) into a global and a thread local components.
These resources are either associated to the atomic value x, which will be

obtained competitively using a cas operation, or associated to a particular
view of a thread, which will be obtained by updating the view. We can
formally express this decomposition for τ ∈ Thr, x, y ∈ Val as:

RThr
s (τ, x, y)⇔ S(s, x) * ~

t∈Thr,vt∈Val
(T(st, vt) -* T(st, x))

where T(st, vt) -* T(st, x) specifies the resources that thread t exchanges
when it updates its view from vt to x.

In summary, for a competitive pattern, resources are merely associated
with the state of the synchroniser using S(s, x). A cooperative pattern ex-
ploits the definition of T(st, vt), which associates the resources to the view

86
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

of a thread expressing when the thread holds a resource. A hybrid pattern
uses both T(st, vt) and S(s, x) to reason about the resource exchanges.

We use this decomposition and update the contracts based on the fact
that the executing thread may have resources obtained based on its current
view. This results in thread-modular specifications for the basic atomic op-
erations, as shown in Figure 5.5. which generally express that the executing
thread must provide

1. the resources associated with its current view, and

2. the resources associated with the new state of the synchroniser.

In return the thread obtains

1. the resources associated with its updated view, and

2. the resources associated with the previous state of the synchroniser.

Note that in the patterns that we studied, the cas and set operations do
not exchange resources using the thread views, and we are not aware of
algorithms where these operations can transfer ownership based on their
views.

5.4 Contracts of AtomicInteger

Based on the specifications derived above, we specify the behavior of the
AtomicInteger class as an exclusive-access atomic synchronisation primitive.
First, we explain all predicates and functions that we use in our specification
of AtomicInteger, and then, we present the complete specification.

Predicates and Parameters

Any client program instantiating the AtomicInteger class as an exclusive
atomic synchronisation primitive has to provide the protocol of the syn-
chroniser object. In fact, a protocol of a synchronisation construct is an
abstract state machine instrumented with an interpretation function that
maps each state of the state machine to a fraction of the resources that the
synchroniser object or a particular thread must hold in that state. Espe-
cially, in our settings, a protocol of a synchronisation construct must specify:

5.4. CONTRACTS OF ATOMICINTEGER 87

1. identification of the participants,

2. the shared resource that has to be protected by the synchronisation
construct,

3. the fraction of the shared resource to be held by the synchroniser or a
thread in each atomic state, and

4. the transitions that are valid for the synchroniser object.

To make a single specification of AtomicInteger that can capture all ex-
clusive access patterns, the specification is parameterized by

1. a set of roles, which basically is an abstraction of the identification of
the participating threads,

2. an abstract predicate as a resource invariant, specifying the shared
resources to be protected by AtomicInteger,

3. a function to associate the states of the atomic integer as the syn-
chroniser with the fraction of the shared resource,

4. a boolean predicate, encoding all the valid transitions that a particular
instance of AtomicInteger can take, and

5. a handle token.

To make a single specification of AtomicInteger that can capture all ex-
clusive access patterns, the specification is parameterized by

1. a set of roles,

2. valid transitions,

3. a resource invariant,

4. a function to specify the fraction of the shared resource, and

A role abstraction abstracts the identity of threads to a set of roles.
This makes our specification unbounded in the number of threads. The
synchroniser is defined as a globally known, special role, written S, that
coordinates the threads. This role is declared as a publicly visible constant in
class AtomicInteger, to hold the resource when the class runs the competition.

88
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

The validity of the transitions is encoded in the trans predicate. More
importantly this encoding enables us to extract the set of the feasible states.
The trans predicate expects as arguments the role of the invoking thread,
the current and the intended update state of the synchroniser.

The shared resources are described by inv(frac p), a resource formula
parameterized with permissions (of type frac), and defined as a group,
i.e. it should be splittable over permissions. To associate the fraction of
the shared resources with the state of the atomic integer, we define the
function share, which is parameterized by a role, and the value of the atomic
integer. Our role abstraction allows us to express S and T in the specification
presented in Figure 5.5 using only inv parameterized with share.

For example, instantiating AtomicInteger for ProducerConsumer we define:
/∗@ group inv(frac p) = Perm(data,p);
pred trans(role r,int c,int n)=
(r==P && c==E && n==F) || (r==C && c==F && n==E);

frac share(role r,int s){
return (r==P && s==E) ? 1: ((r==C && s==F) ? 1: 0); } @∗/

where the definition of share shows that the full ownership of the shared
resource, i.e. data, is only associated with the views of the threads. In the
specification presented in Figure 5.5 this would mean that the S component
would be emp and the T component associates the full ownership of data to
the views of the threads. Similarly, instantiating AtomicInteger for SpinLock
we use these definitions:

/∗@ group inv = resinv;
pred trans(role r,int c,int n) = (c==U && n==L)||(c==L && n==U);
frac share(role r,int s){ return (r==S && s==U)?1:0; }; @∗/

where resinv would be the shared resource to be protected by the lock which
is passed as a class parameter to SpinLock. As it is specified in the definition
of share the synchroniser, defined with the globally known role S, will hold
the full resource when its state is U (unlocked). This can be expressed in
the specification presented in Figure 5.5 with T defined as emp while the
component S associates the full ownership of resinv to the unlocked state of
the atomic location.

To invoke an operation from AtomicInteger, the calling thread must
provide the correct required arguments which are demanded by the con-
tracts. For this purpose, the AtomicInteger specification defines a special
token, called handle, which can be used to prove that a thread has the

5.4. CONTRACTS OF ATOMICINTEGER 89

right to invoke an action. The post-condition ensures that appropriate new
handles for new actions are handed out to the invoking thread. The handle
is carrying the role of the calling thread which witnesses its role and its
view from the state (last observed value) of AtomicInteger. Any instance of
a synchronisation mechanism is associated with a particular set of threads.
Therefore any thread (1) without a handle (i.e. outside of the coordinated
threads), (2) with an incorrect role, or (3) with a visited value that is outside
of the synchroniser’s reachable states, will therefore not be able to interfere
with the threads that participate in this synchronisation.

Handles are specified as group without a definition. At the initialization
of the AtomicInteger, the constructor issues a full handle for all roles that
are passed to the synchroniser. These full handles are all given back to the
thread that created the AtomicInteger. These full handles may then be split
and passed on to any other thread participating in the synchronisation.

Specification

Finally, Listing 31 shows the complete specification of class AtomicInteger.
We briefly discuss the method specifications.

The constructor requires the fraction associated to the initial value of the
atomic integer. These are the resources that are initially stored inside the
synchroniser (S), and that can be won by the winning thread in a competi-
tion. Notice that in a cooperative synchronisation mechanism, the resources
initially are supposed to be with one of the threads, and the synchroniser
is only used as a medium to pass the resources on to the next thread. The
post-condition of the constructor provides handles for all roles (except the S
role) that are involved in the synchronisation, which can be split and passed
to all threads that want to access the shared resource.

The contracts of the methods in AtomicInteger are all specified based
on the specifications we derived in Figure 5.5 of Section 5.2. Given the
role of the invoking thread, its last visited value from the state (view) and
the fraction of handle, they all require handles carrying this information.
New handles are returned as part of the post-conditions. State changing
methods, i.e. set and compareAndSet, require that the intended transition
is valid, as specified by the trans predicate. Finally, the fraction of the
resource invariant to be exchanged is specified using inv and share based on
the specifications derived for the basic atomic operations.

90
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

/∗@
2 given group (frac−>group) inv;

given (role,int−>frac) share;
4 given (role,int,int−> boolean) trans;

given Set<role> rs; @∗/
6 class AtomicInteger {

private volatile int value;
8 /∗@ group handle(role r,int d,frac p); @∗/

/∗@
10 requires inv(share(S,v));

ensures (\forall∗ role r; rs.has(r) ; handle(r,v,1)); @∗/
12 AtomicInteger(int v);

/∗@ given role r, int d, frac p;
14 requires handle(r,d,p) ∗∗ inv(share(r,d));

ensures handle(r,\result,p) ∗∗ inv(share(r,\result)); @∗/
16 public int get();

/∗@ given role r, int d, frac p;
18 requires handle(r,d,p) ∗∗ trans(r,d,v);

requires inv(share(S,v)) ∗∗ inv(share(r,d));
20 ensures handle(r,v,p) ∗∗ inv(share(S,d)) ∗∗ inv(share(r,v)); @∗/

public void set(int v);
22 /∗@ given role r, frac p;

requires handle(r,x,p)∗∗ trans(r,x,n);
24 requires inv(share(S,n)) ∗∗ inv(share(r,x));

ensures \result==> (handle(r,n,p)∗∗inv(share(S,x))∗∗inv(share(r,n)));
26 ensures !\result==> (handle(r,x,p)∗∗inv(share(S,n))∗∗inv(share(r,x)));

@∗/
28 boolean compareAndSet(int x, int n);

}

Listing 31: Contracts for AtomicInteger

5.4. CONTRACTS OF ATOMICINTEGER 91

Verification

In verifying client programs using AtomicInteger, it is vital to check the defin-
ition of share, as it should not allow the synchroniser to invent permissions.
The distribution defined by share should satisfy the following property: in
all states, the total sum of the permissions held by the threads for a resource
must not exceed the full permission. To ensure that the definition of share
fulfills the condition, we generate proof obligations stating that in any snap-
shot of the execution, the sum of the fractions assigned to all the threads
and the synchroniser must not exceed 1. To show that this proof obligation
is respected, we use the definitions of trans to extract the set of the valid
states, and share to determine the resource distribution. The former draws
the maximal state machine for each role, which shows all possible trans-
itions that a role can take. The latter assigns the fraction that each role
must hold in each state. Finally, the product of the maximal state machines
is exploited to reason about the sum of the shares for each feasible snapshot.

This section presents how the contract for AtomicInteger is used to prove
the correctness of the examples in Section 5.1. As explained, the func-
tion share together with predicate trans define a protocol by which the syn-
chroniser controls the fractions of the resources that each thread must hold
in each state. The correctness of the programs are accomplished in two steps:
first we have to check if the definition of the protocol does not produce re-
sources out of thin air. Then, having a correct definition of the protocol we
can verify the correctness of the program. The verification of the programs
are presented as proof outline where the specifications is annotated with the
VerCors syntax and the intermediate states (shown inside the brackets)
express the resources that the executing thread hold. For clarity, the inter-
mediate states are only presenting the predicates that transform resources
between the synchroniser and the participating threads. All the predicates
that evaluated to true are omitted.

Verification of Case Studies

In the following we explain the correctness of the SingleCell in detail as it in-
volves all the basic operations from AtomicInteger. Then, it should be easy to
see how ProducerConsumer and SpinLock can be verified. Based on the given
definitions for inv, share and trans, Listing 34 and Listing 35, annotated with
in the VerCors syntax, show how the specification of AtomicInteger verifies

92
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

ProducerConsumer and SpinLock along with the sanity condition check for
the given definition of share depicted in Figure 5.7 and Figure 5.8.

Protocol of SingleCell In order to check the sanity condition of the
defined protocol, we start with introducing some notations. This technique is
presented for each case study along with its proof-outlines in Figure 5.6, Fig-
ure 5.7 and Figure 5.8.

In our representations for verifying protocols, Ar denotes the state ma-
chine for the role r. The maximal model is represented as ΠA . Nodes are
annotated with rπv to denote that the role r assumes value v as its last ob-
served state; and, based on function share, holds fraction π. Transitions are
labelled w, denoting a write to the synchroniser, and r, indicating a read of
state of the synchroniser. The transitions of the special role S (i.e. the syn-
chroniser) are not labeled, since these transitions are due to received method
calls. Finally, dashed transitions and nodes indicate impossible actions and
states, respectively.

In SingleCell, the permissions are defined with three different values:
nothing, full or immutable, see lines 3 - 6 of Listing 32. So to check the
sanity condition of the share function in SingleCell (see Figure 5.8), it suffices
to show the reachable states for only two arbitrary threads (t and t′ are two
threads with role T) and an instance of the synchroniser. For clarity, in ΠA ,
the self-loops and unreachable states are not shown. Moreover, we just show
the subset of states where thread t is the winning thread.

State machines AT and AS show the one way protocol of SingleCell. As
can be seen, restricting w.r.t the one way protocol of the atomic integer
prunes many traces in ΠA that are not feasible in the execution. Further,
in ΠA , the protocol allows t to update the state (n0) from E to D, and
to obtain the resource (see node n1). As long as t holds the resource, t′

(or any failing thread) can only update its view by reading the state: see
transitions n1

rt′−→ n2, n3
rt′−→ n5 and n4

rt′−→ n5. The reading in n3 → n4
is not valid since t′ is taking an invalid step by this read operation. All
other transitions labeled with wt, interpreted as the write action taken by t,
are valid transitions based on the contracts and definitions provided for the
protocols. Finally, from the feasible maximal model, it is easy to conclude
that the sum of shares never exceeds the full share.

5.4. CONTRACTS OF ATOMICINTEGER 93

T0
E

T0
W

Tε
DAT :

w

r

r

w

r

r

S1
E

S0
W

Sε
DAS :

t0E, t
′0
E, s

1
E

t1W , t
′0
E, s

0
W

t1W , t
′0
W , s

0
W tεD , t

′0
E, s

ε
D

tεD , t
′0
W , s

ε
D tεD , t

′ε
D , s

ε
D

n0

n1

n2 n3

n4 n5

ΠA :

wt

rt′ wt

wt rt′

rt′

Figure 5.6: Verified SingleCell

Proof outline of SingleCell Having a definition of share that fulfils the
sanity condition, we continue with the correctness proof of SingleCell. As
shown, in the constructor the full permission on the shared resource data,
is stored in the synchroniser. Then, the constructor ensures a full handle
for role T initialized with E. The main program splits the handle, defined
as a group, among the participating threads. So any thread calling the
method findOrPut holds a fraction of the handle containing the view E.

The pre-condition of the compareAndSet operation in line 12 (see List-
ing 33), i.e. sync.compareAndSet(E,W), requires predicates inv(share(S,W)),
inv(share(T,E)) and trans(T,E,W), which all are true. If the call is success-
ful, the thread obtains the permission associated to the expected value,
i.e. inv(share(S,E)), which can be opened to obtain the full permission to
write data. Next sync.set(D) will be called for which inv(share(S,D)) is closed
using the full permission. After the call, this thread only holds inv(+0), and
knows that data == v. It will return with value PUT and the method’s
post-condition is established.

If the call to compareAndSet was not successful, the thread calls the
sync.get() method, which only requires a handle on E. When the thread
calling get updates its view to D, the thread obtains inv(+0), and thus it can
read data. If data == v, the method returns SEEN and satisfies the post-
condition. Otherwise, the method returns COLN and the post-condition
trivially holds.

The verification of SingleCell class that we have explained so far, illus-
trates reasoning about the GSC synchronisation pattern (explained in Sec-
tion 5.1), which employs all the methods and specification of AtomicInteger.
The verification of ProducerConsumer shows an example of verifying the GS

94
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

public class SingleCell{
2 /∗@

group inv(frac p) = Perm(data,p);
4 pred trans(role r,int c,int n)=(c==E && n==W)||(c==W && n==D);

frac share(role r,int v){ return (r==S && v==E) ? 1:
6 ((r==S && v==D) ? +0: ((r==T && v==D) ? +0:0)); } @∗/

/∗@
8 requires Perm(data,1); ensures handle(T,E,1); @∗/

SingleCell(){
10 /∗! {inv(share(S,E))} !∗/

sync = new AtomicInteger(E);
12 /∗! {handle(T,E,1)} !∗/

}
14 /∗@ given frac f;

requires handle(T,E,f);
16 ensures handle(T,D,f);

ensures \result == PUT ==> PointsTo(data,+0,v);
18 ensures \result == SEEN ==> PointsTo(data,+0,v); @∗/

int findOrPut(int v){ ... }
20 }

Listing 32: Verification of SingelCell: constructor

pattern and the verification of SpinLock presents a reasoning of the SC pat-
tern. Correctness proof of these two case studies, i.e. ProducerConsumer
and SpinLock are shown in Listing 34 and Listing 35, respectively. Fig-
ure 5.7 represents the sanity condition for ProducerConsumer and Figure 5.8
depicts our check for the sanity condition of SpinLock. Based on our explan-
ation for SingleCell it should be straightforward to follow the definitions and
correctness proofs of the later case studies.

All the case studies discussed above are verified with our VerCors tool
set available at [87]. This tool set has been developed to reason about
multi-threaded Java programs annotated with permission-based SL. The
tool leverages existing verification solutions to multi-threaded Java pro-
grams, by encoding verification problems into the Chalice language [58]. The
Chalice verifier is then used to prove the translated program correct w.r.t.
its specification. All case studies are verified automatically, after providing

5.4. CONTRACTS OF ATOMICINTEGER 95

public class SingleCell{
2 ...

4 /∗@
given frac f;

6 requires handle(T,E,f);
ensures handle(T,D,f);

8 ensures \result == PUT ==> PointsTo(data,+0,v);
ensures \result == SEEN ==> PointsTo(data,+0,v); @∗/

10 int findOrPut(int v){
/∗!{handle(T,E,f)∗∗trans(T,E,W)∗∗inv(share(T,E))∗∗inv(share(S,W))}!∗/

12 if(sync.compareAndSet(E,W)){
/∗! {handle(T,W,f)∗∗inv(share(T,W))∗∗inv(share(S,E))} !∗/

14 /∗! {handle(T,W,f)∗∗Perm(data,1)} !∗/
data = v;

16 /∗! {handle(T,W,f)∗∗PointsTo(data,1,v)} !∗/
/∗!{handle(T,W,f)∗∗trans(T,W,D)∗∗inv(share(S,D))

18 ∗∗inv(share(T,W))}!∗/
sync.set(D);

20 /∗! {handle(T,D,f)∗∗inv(share(S,W))∗∗inv(share(T,D))∗∗(data==v)} !∗/
/∗! {handle(T,D,f) ∗∗ Perm(data,+0) ∗∗ (data==v)} !∗/

22 return PUT;
}

24 /∗! {handle(T,E,f) ∗∗ inv(share(T,E)) ∗∗ inv(share(S,W)) } !∗/
if(sync.get()!=E){

26 /∗! {handle(T,val,f) ∗∗ inv(share(T,val)) ∗∗ (val!=E) } !∗/
while(sync.get()==W);

28 /∗! {handle(T,val,f) ∗∗ inv(share(T,val)) ∗∗ (val!=E) ∗∗ (val!=W)} !∗/
if(sync.get() == D)

30 /∗! {handle(T,D,f) ∗∗ inv(share(T,D))} !∗/
/∗! {handle(T,D,f) ∗∗ Perm(data,+0)} !∗/

32 if(data == v) return SEEN;
else return COLN;

34 }
}

36 }

Listing 33: Verification of SingelCell::findOrPut()

96
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

P1
E

P0
F

AP :

w

r

r

r

C0
E

C1
F

AC :

r

r

w

r

S0
E

S0
F

AS :

P1
E,C

0
E

P1
E,C

1
F

P0
F,C

1
F

P0
F,C

0
E

ΠA :

wP

rP, rC

wC
rP, rC

wP r

rP, rC

wC

rP, rC

rP

Figure 5.7: Verified ProducerConsumer

T0
U

T0
L

AT :

w

r

w

r

S1
U

S0
L

AS :

t0U , t
′0
U , s

0
L

t0U , t
′0
U , s

1
U

t0U , t
′1
L , s

0
L t1L , t

′0
U , s

0
L

t0L , t
′1
L , s

0
L t1L , t

′0
L , s

0
L

t0L , t
′0
U , s

1
U t0U , t

′0
L , s

1
U

ΠA :

wt
wt′ wt′

rt

wt′ wt

rt′

wt

rt′rt

Figure 5.8: Verified SpinLock

a few proof hints in terms of intermediate state annotations that we left out
here for clarity of presentation. In the presented proof outlines, for clarity,
we only annotated the intermediate states of the proof with the predicates
that transform resources between the synchroniser and the participating
threads.

5.4. CONTRACTS OF ATOMICINTEGER 97

public class ProducerConsumer{
2 /∗@

group inv(frac p) = Perm(data,p);
4 pred trans(role r,int c,int n)=

(r==P && c==E && n==F) || (r==C && c==F && n==E);
6 frac share(role r,int s){

return (r==P && s==E) ? 1: ((r==C && s==F) ? 1:0);
8 } @∗/

/∗@
10 requires Perm(data,1);

ensures Perm(data,1) ∗∗ handle(P,E,1) ∗∗ handle(C,E,1); @∗/
12 ProducerConsumer(){

/∗! { Perm(data,1) } !∗/
14 sync = new AtomicInteger(E);

/∗! { Perm(data,1) ∗∗ handle(P,E,1) ∗∗ handle(C,E,1) } !∗/
16 }

/∗@
18 requires handle(P,E,1) ∗∗ Perm(data,1);

ensures handle(P,E,1) ∗∗ Perm(data,1); @∗/
20 void produce(){

/∗! {handle(P,E,1) ∗∗ inv(share(P,E))} !∗/
22 write(); // updates shared buffer

/∗! {handle(P,E,1) ∗∗ inv(share(P,E))} !∗/
24 sync.set(F);

/∗! {handle(P,F,1) ∗∗ inv(share(P,F))} !∗/
26 while(sync.get()==F);

/∗! {handle(P,E,1) ∗∗ inv(share(P,E))} !∗/
28 /∗! {handle(P,E,1) ∗∗ Perm(data,1)} !∗/

}
30

/∗@ requires Perm(data,1); ensures Perm(data,1); @∗/
32 void write(){...}

34 /∗@ requires true; ensures true; @∗/
void consume(){ /∗ very similar to produce() ∗/ }

36 }

Listing 34: Veirication of ProducerConsumer

98
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

/∗@ given group (frac −> group) resinv; @∗/
2 public class SpinLock{

/∗@
4 group inv = resinv;

pred trans(role r,int c,int n) =
6 (c==U && n==L) || (c==L && n==U);

frac share(role r,int s){
8 return (r == S && s == U) ? 1 : 0; }; @∗/

10 /∗@
requires resinv(1);

12 ensures handle(T,U,1); @∗/
SpinLock(){

14 /∗! {inv(share(S,U))} !∗/
sync = new AtomicInteger(U);

16 /∗! {handle(T,U,1)} !∗/
}

18

/∗@ given frac f;
20 requires handle(T,U,f);

ensures handle(T,L,f) ∗∗ resinv(1); @∗/
22 void lock(){

while(!sync.compareAndSet(U,L));
24 /∗! {handle(T,L,f) ∗∗ inv(share(S,U))} !∗/

}
26

/∗@ given frac f;
28 requires handle(T,L,f) ∗∗ resinv(1);

ensures handle(T,U,f); @∗/
30 void unlock(){

/∗! {handle(T,L,f) ∗∗ inv(share(S,U))} !∗/
32 sync.set(U);

/∗! {handle(T,U,f) ∗∗ inv(share(S,L))} !∗/
34 }

}
36

Listing 35: Verification of SpinLock.

5.5. CONCLUSION AND RELATED WORK 99

5.5 Conclusion and Related Work

This chapter proposes an approach to specify and reason about atomics as
synchronisation constructs. Our approach separates the verification of

1. the correctness of the communication protocol, and

2. the code obeying the protocol, which carries out a rely-guarantee style
proof in Separation Logic.

Moreover, the chapter discusses different patterns to synchronise a set of
threads to access a shared resource using atomic read, write and compare-
and-set. Based on these patterns, we provide a simple, thread-modular and
practical specification of the class AtomicInteger from the atomic package
of Java, using permission-based Separation Logic. The specification is easy
and intuitive to be used, it only has to be instantiated by: the threads’
roles; the shared resources that are protected by the synchroniser; a rela-
tion defining allowed state changes; a function that describes for each state
change which share of the shared resource is transferred from the thread to
the synchroniser, or vice versa; and the handle, as a witness for the provided
information.

Using CSL, as a well-established logic, we derived the specification from
the standard proof rule for atomic statements. To ensure overall soundness
of the approach, it has to be ensured that the sharing function does not
implicitly allow the creation of resources. We also briefly discussed how this
can be verified.

Related Work Different program logics based on Separation Logic for
concurrent programs can be found in the literature. Vafeiadis and Parkin-
son combined Rely-Guarantee reasoning and Separation Logic in RGSep to
reason about fine-grained concurrent programs [86]. Assertions in RGSep
distinguish between local and shared state, and actions are used to describe
the interferences on the shared state between parallel processes. Later,
Young et al. embedded permission-annotated actions in their assertion lan-
guage and extended abstract predicates [71] to Concurrent Abstract Predic-
ates (CAP) [33]. Abstract predicates in CAP encapsulate both resources and
interferences, which allows one to reason about the client program without
having to deal with all the underlying interferences and resources. The rule

100
CHAPTER 5. VERIFICATION OF SYNCHRONISERS: EXCLUSIVE

ACCESS

for atomics in CAP uses a so called repartitioning operator, to extract the
resources that the atomic operation requires or ensures.

In CAP it is not possible to reason about synchroniser objects that pro-
tect external shared resources. Inspired by Jacobs and Piessens [48], and
Dodds et al. [35], CAP was extended by Svendsen and Birkedal resulting in
Higher-Order CAP (HOCAP) [82] and later Impredicative CAP (iCAP) [81]
to specify client usage protocols, suitable for synchronisers. iCAP is an
important step towards reasoning about synchronisation mechanisms that
protect client defined external states.

Ley-Wild and Nanevski [59] proposed Subjective CSL where the thread’s
self view and an other view (as a collective effect of the environment) are
used to reason about coarse-grained concurrency. Finally, Hobor et al. [45]
proposed a rule in CSL to reason about programs using barriers as their
main synchronisation construct. But they didn’t verify the implementation
of the barrier.

All techniques mentioned above develop new program logics to reason
about concurrent programs. Instead, here, we treat synchronisers at the
specification level and we reuse existing verification technology to derive our
practical and easy to use specifications from O’Hearn’s classical CSL.

CHAPTER 6
Verification of Synchronisers:

Shared Reading

101

103

In Chapter 5,using permission-based Separation Logic [23] we proposed
an approach to specify atomic operations involved in exclusive access syn-
chronisation. Then, using our specification for atomic operations we showed
how to verify exclusive access synchronisation constructs, like Lock. The
work we present here extends our approach for verification of exclusive
resource protection [2] to cover shared-readings. The original approach
from Chapter 5 defines a global synchroniser which has two main compon-
ents: (1) the value of the atomic variable which is called an atomic state,
and (2) the views of the participating threads which is the latest values that
each thread remembers from the atomic state. The client program using the
synchronisation class specifies a synchronisation protocol associated with
the roles of the threads and the resource invariant for the global synchron-
iser. The protocol defines the expected behaviour of the synchroniser and
the resource invariant associates the state of the global synchroniser to the
shared memory.

In our study we found out that instead of the full permission, one can
associate the state of the synchroniser to fractions of the shared memory.
The result has an impact on the competitive-based synchronisations using
compare-and-set which is the only synchronisation pattern in shared-reading
synchronisers. In this chapter, the results of applying this idea is formalised
as the specification of the atomic operations which is translated into the
contract of AtomicInteger. Our new contract can be used to verify both ex-
clusive access and shared-reading synchronisation classes. The applicability
of the approach are demonstrated through verification of commonly used
synchronisers: Semaphore, CountDownLatch and Lock. All the examples are
mechanically verified using our VerCors tool-set [19].

The work we present here:

• is built based on our previous results on specifying (without verifica-
tion) synchronisation primitives in Java presented in Chapter 4, and

• extends our approach for verification of exclusive resource protection
using atomic operations (see Chapter 5) to cover shared-readings.

This chapter is structured as follows: Section 6.1 provides sample imple-
mentations of shared-reading synchronisers. Using permission-based Separa-
tion Logic, Section 6.2 provides the specifications for the three main atomic
operations. Then, Section 6.3 specifies the contract for AtomicInteger as

104
CHAPTER 6. VERIFICATION OF SYNCHRONISERS: SHARED

READING

the main element for the implementation of Java synchronisation classes.
Later, Section 6.4 provides the verification of the synchronisers using the
proposed specification of the AtomicInteger. Finally, Section 6.5 concludes
the chapter along with the related work.

6.1 Synchronisation Classes

In this section, we provide simplified implementation of two different shared-
reading synchronisation classes in Java: Semaphore and CountDownLatch. In
our implementations, we removed fairness conditions of the original code,
i.e. we didn’t implement algorithms to fairly pick the next candidate for the
shared resource competition.

A semaphore (see Listing 36) is a synchroniser where all the participat-
ing threads equally compete with each other to acquire or release protected
portions of the shared resource. In a concurrent program synchronised with
a semaphore, any thread trying to acquire a portion, has to win the com-
petition by atomically decrementing the number of available portions (see
line 12 of Listing 36). Similarly, as it is implemented in line 22 a releasing
thread (again in a competition) must atomically increment the number of
available portions.

Now assume an application with two distinct sets of active and passive
threads, where active threads initially own a portion of the shared resource
and passive threads wait for active threads to release their portions. As
the implementation in in Listing 37 shows CountDownLatch performs as a
synchronisation mechanism by which the passive threads are blocked until
all active threads release their portion of the shared resource and transfer
the ownership to the passive threads to proceed.

A CountDownLatch encapsulates a counter to denote the number of active
threads working on the shared resource. Each active thread, once finished,
calls countDown() on the latch, which decreases the counter (see line 11), to
signal that it has delivered its portion. The passive threads wait for all the
active threads by calling the blocking await() method on the latch. Inside
this method, the passive threads are continuously reading the state of the
latch until it reaches zero (line 21). In fact, the latch collectively accumulates
the full shared resource and the waiting passive threads can continue their
task only when they see that there is no more active thread possessing a
portion of the shared resource.

6.2. REASONING ABOUT ATOMICS 105

public class Semaphore{
2 private AtomicInteger sync;

4 Semaphore(int n){ sync = new AtomicInteger(n); }

6 public void acquire(){
boolean stop = false; int c = 0;

8 while(!stop) {
c = sync.get();

10 if(c > 0){
int nextc = c−1;

12 stop = sync.compareAndSet(c,nextc);
}

14 }
}

16

public void release(){
18 boolean stop = false;

while(!stop) {
20 int c = sync.get();

int nextc = c+1;
22 stop = sync.compareAndSet(c,nextc);

}
24 }

}

Listing 36: Implementation of a Semaphore.

6.2 Reasoning about Atomics

In this section, we extend the formal specifications of the atomic operations
presented in [2] in such a way that they can be used to verify both exclusive
access and shared reading synchronisation constructs. To explain the es-
sence of our specification, first, we focus on competitive resource acquisition
using the cas operation. We start with a simple example that illustrates the
behavior of atomic variables to see how the ownership of the resources is ex-
changed when an atomic variable is used as a shared reading synchronisation

106
CHAPTER 6. VERIFICATION OF SYNCHRONISERS: SHARED

READING

public class CountDownLatch{
2 private AtomicInteger sync;

4 CountDownLatch(int count){
sync=new AtomicInteger(count); }

6

void countDown(){
8 boolean stop = false;

int c = 0 , nextc = 0;
10 while(!stop){

c = sync.get();
12 if (c > 0){

nextc = c−1;
14 stop = sync.compareAndSet(c, nextc);

}
16 }

}
18

void await(){
20 int c = sync.get();

while(c!=0) { c = sync.get(); }
22 }

}

Listing 37: Implementation of a CountDownLatch.

mechanism.
Here we follow the formalisation from Chapter 5. In our new setting,

we extend the interval of the permissions to include 0 and we define e 07→
− ≡ emp. As an example, using a semaphore s ∈ ALoc to protect a location
r ∈ NLoc, the value of the atomic location s (defined as atomic state)
indicates the number of available fractions in the semaphore. The resource
invariant for s associates the value of s with the maximum number of threads
that concurrently can read r and is defined as:

Is = ∃ v ∈ {0, · · · ,M}. s 17→ v * r
v
M7→ −

In an implementation of the semaphore, any thread that wishes to ac-

6.2. REASONING ABOUT ATOMICS 107

quire a portion of the shared resource must atomically decrement the value
of s by 1. This transfers 1

M of r from s to the calling thread. This fraction is
stored back to s by releasing the semaphore, which increments the current
value of s atomically by 1. In fact, this behavior is justified by the atomic
rule. In the implementations of acquire and release, the executing thread
with an expected value x enters into the atomic body of the cas operation.
Then, it obtains Is inside the body, thus, has full access of s. Besides, if the
current state equals x, it obtains x

M fraction of r. So, the thread updates
s with n = x − 1 for acquire or n = x + 1 for release, and re-establishes Is
with r

n
M7→ − before leaving the body. To do so, the thread either acquires a

(xM −
n
M) fraction of r or releases a (nM −

x
M) fraction of r. This provides

the intuition to derive the specifications of the cas operation.
If we express the shared resources to be protected by the atomic location

s using res(s), then we can define the resource invariant as:

Is = ∃ v ∈ {0, · · · ,M}. s 17→ v *S(s, π) where S(s, π) = ~
r∈res(s)

r
π7→ −

Using Is, the atomic location s can be the owner of the resources for
which the participating threads through the cas operation have to compete
to obtain or release their permissions. Based on this general definition of
resource invariant, we can make our first attempt to specify the behavior
of cas. For a shared-reading synchroniser s, if p maps the state of the
synchroniser to the fractions with a maximum number of threads M , then
we can axiomatise cas as follows:

π = p(s, x,M) π′ = p(s, n,M)

Is `
{S(s, π′ −̇π)}
casτ (s, x, n)
{(ret =⇒ S(s, π −̇π′)) *(¬ret =⇒ S(s, π′ −̇π))}

[CAtm]

where −̇ denotes the cut-off subtraction over the fractions π ∈ [0, 1] with
the following definition:

a −̇ b =

{
a− b iff a ≥ b,
0 otherwise

Surprisingly, the behaviors of both atomic read and write are more subtle
than the cas operation. In some cases, the atomic read operation only
updates the knowledge of the executing thread without transferring any

108
CHAPTER 6. VERIFICATION OF SYNCHRONISERS: SHARED

READING

resource: see lines 9 and 20 in Listing 36, line 11 in Listing 37; whereas the
waiting threads in CountDownLatch (see line 21 from Listing 37) obtain their
fractions when they realize that the latch reached zero. On the other hand,
unconditionally updating of the atomic write demands a rely-guarantee [50]
style of reasoning as the writing thread must adhere to a protocol which
guarantees the safety of the write to the environment. This is thoroughly
discussed and formalised in Chapter 5. Here we extend the formal definition
of the resource invariant from Chapter 5 to associate the state of the atomic
variable with the fractions of the resources.

The first component is the global resource invariant that associates the
resources to the global atomic state:

Is = ∃v, →wt ∈ Val · s 17→ v *(~
t∈Thr

st
1
27→ wt) *S(s, π) *PThr

s

where:

• having fsbl for determining the feasibility of the values taken by the
atomic location and all the thread views PThr

s is defined as follows:

PThr
s =

∨
v,

→
wt∈Val·fsbl(v,

→
wt)

([s] = v ∧
→

[st] =
→
wt)

• the fraction of the resources is associated with the atomic state via
π = p(s, v,M), and

• finally, S(s, π) = ~
r∈res(s)

r
π7→ −

The second component associates the fractions of the resources to the
thread views which can be exchanged through a collaborative synchronisa-
tion:

T (st, π) = ~
r∈res(st)

r
π7→ − where π = p(st, wt,M)

By giving a definition for T (st, π) one can express when a thread with
a particular knowledge may obtain the resource. The set absorbs the re-
sources either through Is to the atomic location or through T (st, π) to the
reader thread. This is formally specified in the contracts for the basic atomic
operations which are presented in Figure 6.1. The next section presents how
the specification from Figure 6.1 translates into a contract for AtomicInteger,
using our VerCors [87] specification language.

6.3. CONTRACT OF ATOMICINTEGER 109

π = p(s, n,M) π′ = p(sτ , d,M)

∀ v,→vt ∈ Val. vτ = d ∧ fsbl(v,
→
vt{vτ=d}) =⇒ fsbl(n,

→
vt{vτ=n})

Is ` {sτ
1
27→ d * S(s, π) *T(sτ , π

′)} setτ (s, n) {sτ
1
27→ n}

[WAtm]

π = p(sτ ,M) π′ = p(sτ ,M)

Is ` {sτ
1
27→ d *T(sτ , π)} getτ (s) {sτ

1
27→ ret *T(sτ , π

′)}
[RAtm]

π = p(s, x,M) π′ = p(s, n,M)

∀ v,→vt ∈ Val. vτ = x ∧ fsbl(v,
→
vt{vτ=x}) =⇒ fsbl(n,

→
vt{vτ=n})

Is ` {sτ
1
27→ x * S(s, π′ −̇π)}

casτ (s, x, n)

{(ret =⇒ sτ
1
27→ n * S(s, π −̇π′))∨

(¬ret =⇒ sτ
1
27→ x * S(s, π′ −̇π)}

[CAtm]

Figure 6.1: Thread-modular specifications of atomic operations

6.3 Contract of AtomicInteger

The new contract of AtomicInteger is presented in Listing 38. The new
specification is very similar to what we have already explained in Chapter 5.
Therefore we only explain the contract for the operation compareAndSet
where the permissions are exchanged using the cut-off subtraction.

The thread trying to atomically update the value of an atomic integer
by compareAndSet(int x,int n), similar to other methods, has to have the
permission for the transition from x to n and the right handle to call this
operation. Following our formal specification (see Figure 6.1), our extension
of the contract is that the compareAndSet(int x, int v) method absorbs the
difference between the resources that the synchroniser will hold in case of a
successful update, i.e. the resources associated with n, and the resources that
the synchroniser object currently holds, i.e. the resources associated with
x. If the operation succeeds, the operation ensures the difference between

110
CHAPTER 6. VERIFICATION OF SYNCHRONISERS: SHARED

READING

/∗@given Set<role> rs;
2 given group (frac−>group) inv;

given (role,int−>frac) share;
4 given (role,int,int−> boolean) trans; @∗/

class AtomicInteger {
6 private volatile int value;

/∗@group handle(role r,int d,frac p); @∗/
8

/∗@requires inv(share(S,v));
10 ensures (\forall∗ r in rs: handle(r,v,1)); @∗/

AtomicInteger(int v);
12

/∗@given role r, int d, frac p;
14 requires handle(r,d,p) ∗∗ inv(share(r,d));

ensures handle(r,\result,p) ∗∗ inv(share(r,\result)); @∗/
16 public int get();

18 /∗@given role r, int d, frac p;
requires handle(r,d,p) ∗∗ trans(r,d,v);

20 requires inv(share(S,v)) ∗∗ inv(share(r,d));
ensures handle(r,v,p);@∗/

22 public void set(int v);

24 /∗@given role r, int m, frac p;
requires handle(r,x,p) ∗∗ trans(r,x,n)

26 requires inv(share(S,n)−share(S,x));
ensures \result==>

28 (handle(r,n,p) ∗∗ inv(share(S,x) − share(S,n));
ensures !\result==>

30 (handle(r,x,p) ∗∗ inv(share(S,n) − share(S,x)); @∗/
boolean compareAndSet(int x, int n);

32 }

Listing 38: Contracts for AtomicInteger: Exclusive and Shared

6.4. VERIFICATION 111

the resources that the synchroniser owned before the call, i.e. the resources
associated on x, and the resources that holds after the successful update, i.e.
the resources associated with n. If the operation fails, no resources are ex-
changed. Instead all resources specified in the pre-condition are returned. In
the specification of AtomicInteger, the difference between the resources, turns
into the subtraction operation between two fraction types. The subtraction
between two permissions is defined as zero if the result of the operation
becomes negative. Besides, as we explained before, inv(0) is equivalent to
true. Therefore, as expressed in the contract of compareAndSet, the differ-
ence between the resources associated with the two states x and n determines
if the calling thread releases or obtains fractions of the shared resource.

In the next section, we demonstrate how to employ our proposed spe-
cification of AtomicInteger to verify shared-reading synchronisation classes
in Java.

6.4 Verification

In this section we demonstrate how one can verify the specification of a
shared-reading synchroniser w.r.t. its implementation using an object of
AtomicInteger.

We explain the verification of Semaphore which is a shared reading syn-
chronisation class. Full tool-verified version of Semaphore is available online
at [77]. The verification of CountDownLatch is very similar to Semaphore.
The full verification of CountDownLatch is available online at [28]. In order
to show that our new specification still supports exclusive access synchron-
isers, we provided (see [61]) a sample implementation of SpinLock which is
verified with our extended specification. All these examples can be verified
using online version of our VerCors verification tool accessible at [87].

Semaphore: verification

The Semaphore class implements a synchroniser where a group of threads
with identical roles simultaneously have read access to a shared resource.
Here we explain the verification of the Semaphore class, which is specified
and verified in Listing 39, Listing 40 and Listing 41.

The Semaphore class is parametrized with the resource invariant defined
by its client program. The instantiated semaphore uses two predicates as

112
CHAPTER 6. VERIFICATION OF SYNCHRONISERS: SHARED

READING

tokens to detect if a thread holds a fraction of the shared resource: initialized
and held.

An instance of a semaphore protects a shared resource with a specified
maximum number of permits which is defined as a ghost variable within the
class (line 3 of Listing 39). To instantiate an object of AtomicInteger, the
Semaphore class has to define the required protocol. The resource acquire-
ment using a semaphore is through a compare-and-set based competition.
All the participating threads access the semaphore with an identical role.
The shared resource to be protected by AtomicInteger is the same as the
main program passes to the semaphore (Listing 39, line 7). The definition
of the share function defines the fraction of the shared resource that must
be held by AtomicInteger in each state (Listing 39, line 8). The definition
given for the valid transitions expresses that in each update the difference
between two states must be one unit (Listing 39, line 10).

Constructor

The client of the semaphore instantiates the object with a number of
available units to acquire. Thus, it has to provide the resources associated
with the initial value of the semaphore. After storing the maximum num-
ber of permits in the ghost field, the body of the constructor can feed the
AtomicInteger class with the resources associated with its initial value (see
line 20 of Listing 39). In return, the constructor of AtomicInteger returns its
handle which can be used to establish the post-condition of the constructor
of the semaphore as defined in line 5. Finally, the semaphore ensures a full
initialized token to the client program which can be dispensed in portions
among the participating threads.
Methods

The verification of the methods acquire() and release() are presented
in Listing 40 and Listing 41, respectively. Having a fraction of the initial-
ized token given by the client program, each thread is authorized to start
its competition to acquire a permit of the shared resource protected by the
semaphore. First, the acquiring thread has to read the current state of
the atomic integer to see how many permits are still available. To achieve
this, the body of the acquire has to unfold the provided initialized token to
capture the required handle of the get method from AtomicInteger (line 5
of Listing 40). According to the provided protocol for the AtomicInteger,

6.4. VERIFICATION 113

/∗@ given group (frac −> resource) rinv; @∗/
2 public class Semaphore{

/∗@ ghost final int num;
4 ghost Set<role> roles = {T};

group initialized(int d,frac p) = sync.handle(T,d,p);
6 resource held(int d,frac p) = initialized(d,p);

group inv(frac p) = rinv(p);
8 frac share(role r, int c){

return (r==S && c>=0 && c<num)?(c/num):0;}
10 boolean trans(role r, int c, int n){

return (r==T && c>0 && n==c−1)||
12 (r==T && c<max && n==c+1); @∗/

private AtomicInteger/∗@ <roles,inv,share,trans> @∗/ sync;
14

/∗@
16 requires rinv(1) ∗∗ n>0;

ensures initialized(n,1) ∗∗ num == n; @∗/
18 Semaphore(int n){

/∗@ set num = n;
20 fold sync.inv(share(n)); @∗/

sync=new AtomicInteger/∗@<roles,inv,share,trans>@∗/(n);
22 /∗@ fold initialized(n,1); @∗/

}
24

/∗@ given int d, frac p;
26 requires initialized(d,p) ∗∗ d<=num ∗∗ d>0;

ensures held(?w,p) ∗∗ inv(1/num) ∗∗ w<num ∗∗ w>=0; @∗/
28 public void acquire(){ ... }

30 /∗@ given int d, frac p;
requires held(d,p) ∗∗ inv(1/num) ∗∗ d<num ∗∗ d>=0;

32 ensures initialized(?w,p) ∗∗ w<=num ∗∗ w>0; @∗/
public void release(){ ... }

34 }

Listing 39: Verification of Semaphore: constructor.

114
CHAPTER 6. VERIFICATION OF SYNCHRONISERS: SHARED

READING

/∗@ given int d, frac p;
2 requires initialized(d, p) ∗∗ d<=num ∗∗ d>0;

ensures held(?w,p) ∗∗ rinv(1/num) ∗∗ w<num ∗∗ w>=0; @∗/
4 public void acquire(){

/∗@ unfold initialized(d,p); @∗/
6 boolean stop = false; int c = 0;

while(!stop) {
8 /∗@ fold sync.inv(sync.share(T,d)); @∗/

c = sem.get();
10 if(c > 0){

int nextc = c−1;
12 /∗@ fold sync.trans(T,c,nextc);

fold sync.inv(sync.share(S,nextc)−sync.share(S,c)); @∗/
14 stop = sem.compareAndSet(c,nextc);

}
16 }

/∗@ fold held(nextc,p); @∗/
18 }

Listing 40: Verification of Semaphore::acquire().

the thread does not have any resource associated with its view. Therefore,
having the right handle suffices to read the current state of the sync ob-
ject (see line 9 of Listing 40). To acquire a unit of the available permits
the thread must decrement the current state by one. So it folds all the re-
quired abstract predicates as the specification of compareAndSet demands.
Based on the given definition for the protocol, the acquiring thread does
not need to provide any resource at this step. In case of successful up-
date, the compareAndSet(c,nextc) returns one unit of the shared resource,
i.e. inv(1/num) (see 14 of Listing 40). The successful thread can leave the
body of acquire after folding the held predicate using the available handle
from AtomicInteger. In the post-condition of the acquire method, ?w denotes
the existence of a view for the calling thread after the call. Finally, if the
thread fails to decrement the current state, it has to continue with reading
the current state and trying to atomically decrement the state.

Releasing a fraction of the shared resource is symmetric to the acquire
method. It should be easy to follow the reasoning steps presented in List-

6.5. CONCLUSION AND RELATED WORK 115

/∗@ given inr d,frac p;
2 requires held(d,p) ∗∗ rinv(1/num) ∗∗ d<num ∗∗ d>=0;

ensures initialized(?w,p) ∗∗ w<=num ∗∗ w>0 ; @∗/
4 public void release(){

/∗@ unfold held(d,p); unfold initialized(d,p); @∗/
6 boolean stop = false;

while(!stop) {
8 int c = sync.get();

int nextc = c+1;
10 /∗@ fold sync.trans(T,c,nextc); @∗/

/∗@ fold sync.inv(sync.share(S,nextc)−sync.share(S,c)); @∗/
12 stop = sync.compareAndSet(c,nextc);

}
14 /∗@ fold initialized(nextc,p); @∗/

}

Listing 41: Verification of Semaphore::release().

ing 41. We only note here that the thread calling the releasemethod provides
the fraction of the shared resource it owns. Then, in an attempt to increment
the current state of the atomic integer, if it succeeds gives up the permit
by folding the inv abstract predicate required by compareAndSet(c,nextc) at
line 12 of Listing 41.

6.5 Conclusion and Related Work

Many different extensions of CSL are proposed in the literature. RGSep [86]
and Deny-Guarantee Reasoning [34] are the first logics that were used to
reason about shared state by encoding the interferences on the shared state.
Later, CAP [33] was introduced. In CAP, resources are encoded together
with the environment interference in an atomic rule to reason about syn-
chronisation with finer granularity. The dream of having an universal logic
for concurrent programs resulted in developing various extensions of CAP,
namely HOCAP [82], iCAP [81] and, finally, Iris [55]. Iris is a parametrized
SL based logic to reason about fine-grained concurrency supporting resource
algebras, invariants and higher-order predicates. The user has to instantiate
the logic with the elements of the target programming language. Currently,
Iris-based verification is performed in Coq. Finally, Caper [32] is a verific-

116
CHAPTER 6. VERIFICATION OF SYNCHRONISERS: SHARED

READING

ation tool where the core logic is based on CAP with additional features
taken mainly from iCAP and Iris.

All the above mentioned works focus on the development of a generic,
universal and powerful program logics. Instead, we treat reasoning about
atomic operations at the specification level using an already existing lo-
gic, i.e. permission-based Separation Logic. We modified our approach in
such a way that the new specification of AtomicInteger can be used to verify
both exclusive and shared-reading synchronisers. This is done by defining
a function that associates the atomic state to the fractions of the shared
resources. The definitions of protocols and resource invariant are updated
accordingly. Then, by proposing the cut-off subtraction operation in per-
missions we updated the specifications of atomic operations. We presented
a set of examples to demonstrate how our new specifications can be used to
verified realistic implementations of synchronisers.

Compared to IRIS, our approach supports a more intuitive assertion
language. In IRIS, invariants and and resource algebras that specify the
behavioural protocols are a part of the underlying logic, while we reuse an
existing specification language (JML) as much as possible. This allows one
to employ currently existing permission-based Separation Logic verifiers like
Silicon [66] and Verifast [49]. VerCors is the tool that encodes our specified
programs to intermediate languages like Viper [66] and Chalice [58] to be
verified by permission-based SL back-ends.

CHAPTER 7
Multi-layer Verification based

on Concurrent Separation
Logic

117

119

This chapter discusses how several concurrent program verification tech-
niques can be combined in a layered approach, where each layer is especially
suited to verify one aspect of concurrent programs, thus making verification
of concurrent programs practical. The approach is supported with Ver-
Cors which combines different logic-based verification techniques. Each
layer captures a different category of properties. In the lowest layer, we care
only about data race freedom; in the middle layer we verify resource invari-
ants that relate thread-local variables to globally shared variables, while in
the top layer we verify arbitrary functional correctness properties. Strictly
speaking, this separation in layers is not necessary, but it helps to keep the
specification and verification tractable and to make mechanical verification
feasible.

At the bottom layer, we use a combination of Implicit Dynamic Frames
(IDF) [78] and CSL-style resource invariants, to reason about data race free-
dom of programs. We illustrate this on the verification of a lock-free queue
implementation. On top of this, layer 2 enables reasoning about resource
invariants that express a relationship between thread-local and shared vari-
ables. This is illustrated by the verification of a reentrant lock implement-
ation, where thread-locality is used to specify for a thread which locks it
holds, while there is a global notion of ownership, expressing for a lock by
which thread it is held. Finally, the top layer adds a notion of histories to
reason about functional properties. We illustrate how this is used to prove
that the lock-free queue preserves the order of elements, without having to
reverify the aspects related to data race freedom.

This chapter describes for each layer of the verification stack how the
verification is handled in our VerCors tool set. The key idea behind the
VerCors tool set is that it works as a transforming compiler, reducing
complex verification problems into a verification problem for basic Separa-
tion Logic. As a back end, we use the Silicon verifier [54], thus all annotated
programs are encoded into annotated Silver programs, which is the interme-
diate language used by Silicon, and has dedicated support to reason about
access permissions. For each layer in the verification stack, we describe how
the encoding into Silicon is defined. Because of our layered approach to veri-
fication, the transformation is easily manageable, and can be guaranteed to
be correct.

We illustrate the usability of our layered approach by presenting a non-
trivial verification example for each layer. At the lowest layer, we verify data

120
CHAPTER 7. MULTI-LAYER VERIFICATION BASED ON

CONCURRENT SEPARATION LOGIC

race freedom of a lock-free queue implementation, derived from the stand-
ard Java API lock-free queue. At the middle layer, we show how a relation
between thread-local and shared variables is used to verify an implement-
ation of reentrant locks, again derived from the Java API implementation,
ensuring that two threads never can simultaneously hold the lock. At the
top layer, we use histories to prove that the lock-free queue implementation
preserves the order of elements stored in the queue.

It should be noted that this approach differs from recent proposals for
a large range of powerful and expressive logics to reason about concurrent
software, such as CAP [33], iCAP [81] and CaReSL [84], in that we do not
aim at a highly expressive logic, but instead focus on an easily manageable
approach to the verification of concurrent software, by breaking down the
verification problem into smaller, more manageable problems. Moreover,
the focus of our work is on efficient tool support, reusing currently available
technologies, while the focus of these logics is expressiveness, and the ability
to capture all concurrent programming patterns.

To summarize, in this chapter we will present:

• a layer-based approach to the verification of concurrent software that
identifies different kinds of verification problems, which all need their
own level of annotations;

• for each verification layer, a discussion how the verification problem is
encoded into a simpler verification problem in basic Separation Logic;
and

• verification of examples at each layer of the verification stack.

The chapter has been published in [3] and is structured as follows: Sec-
tion 7.1 discusses how the combination of IDF and CSL-style resource invari-
ants allows to verify data race freedom. Section 7.2 then discusses how the
relation between global properties and thread-local state can be maintained
as part of the resource invariant, while Section 7.3 discusses the verifica-
tion of functional properties. Finally, Section 7.4 discusses conclusions and
related work.

7.1. LAYER 1: PERMISSIONS AND RESOURCE INVARIANTS 121

7.1 Layer 1: Permissions and Resource Invariants

IDF [78] is another program logic that extends Hoare Logic with the abil-
ity to reason about access to the heap by means of access permissions to
heap locations, similar to permission-based Separation Logic. However, IDF
and permission-based Separation Logic differ in how value-specifications are
handled: in IDF, one uses side-effect-free expressions in the underlying pro-
gramming language, while using permission-based Separation Logic, one first
relates the program variables to logical variables and then states properties
about these logical variables.

To encode the behavior of language constructs that are not part of IDF,
we will use two of its proof commands. The exhale command first asserts
that a formula is true and then drops the resources specified by the formula.
The inhale command assumes the given formula and adds the resources spe-
cified by the formula.

At the bottom layer of the VerCors verification stack, a combination
of IDF and CSL is used to reason about data race freedom. In this layer
resource invariants capture access to the shared state. There are two ways
to access shared state: by using locks (and other synchronizers), and by
using atomics. Here we focus on atomic operations, and their encoding into
Silicon, however reasoning about shared state protected by a lock is done in
a similar way.

We illustrate our approach by discussing the verification of a lock-free
queue, derived from ConcurrentLinkedQueue in the Java API. This example
was also specified and verified by Jacobs et al. in richer logics [47, 79], but
our version is a third shorter in length.

Reasoning about Atomic Blocks

In the VerCors tool, internally an atomic operation on object o with
body S is modeled as atomic(o){S}. The resources associated to object o are
specified by defining an appropriate resource invariant csl_invariant, which
has to be established when the object is initialized, thus making it an im-
plicit postcondition of all constructors of the class that defines the resource
invariant.

To reason about atomic operations, CSL uses the rule [Atomic] [85]:

{o.csl_invariant() *P} S {o.csl_invariant() *Q}
[Atomic]

{P} atomic(o){S} {Q}

122
CHAPTER 7. MULTI-LAYER VERIFICATION BASED ON

CONCURRENT SEPARATION LOGIC

where csl_invariant is the resource invariant that specifies the shared state.

Encoding of Atomic Blocks

In Java, we do not directly write atomic statements. Instead, the atomic
package provides several classes, whose methods perform the atomic opera-
tions get, set, and compareAndSet for all Java types. Thus, the encoding of
atomic methods from Java into Silicon is done in two steps: first the atomic
method call is transformed into a VerCors atomic instruction, and in the
next step, the use of the proof rule [Atomic] is encoded into Silicon.

Java’s atomic operations are encoded as VerCors atomic instructions,
using several additional ghost variables to store the results of argument
evaluation. For example, if var is an AtomicInteger then an atomic compare-
and-set call, i.e. res=var.compareAndSet(expect,replace), is internally trans-
formed into:

int obj=var; int x=expect; int v=replace;
2 atomic(this){

if (obj.val==x) { obj.val=v; res=true; }
4 else { res=false; }

}

Note that var, expect and replace are evaluated outside of the atomic block.
The call to compareAndSet might be annotated with with{ G1 } then{ G2 }
as ghost statements, to maintain the resource invariant, or to provide proof
hints to prove correctness of the atomic body. In that case, these ghost
instructions are evaluated inside the atomic block, after lines 2 and 4, re-
spectively.

Finally, the encoding of the [Atomic] proof rule in Silicon is simple; each
occurrence of the statement atomic(o){S} is replaced by the sequence:

inhale o.csl_invariant();
S;
exhale o.csl_invariant();

This transformation, first, uses the instruction inhale to add the resources
and knowledge of the resource invariant. Then, using the added resources
the body of the atomic block S is verified, and finally, exhale checks that the
resource invariant holds and then removes it.

7.1. LAYER 1: PERMISSIONS AND RESOURCE INVARIANTS 123

resource csl_invariant() = Value(begin) ∗∗
2 RPerm(head) ∗∗ ([read]reachable(begin,head.val)) ∗∗

RPerm(tail) ∗∗ ([read]reachable(begin,tail.val)) ∗∗
4 Perm(last,1) ∗∗ ([read]reachable(begin,last)) ∗∗

chain(head.val,last) ∗∗ RPointsTo(last.next,null);

Listing 42: CSL resource invariant of the lock-free queue.

Verification of a Non-blocking Queue

We demonstrate the usability of our approach by verifying data race freedom
of the essential methods of ConcurrentLinkedQueue from the util.concurrent
package of Java, which implements a lock-free algorithm for queue as pro-
posed by Michael and Scott [63]. First, we briefly explain the data structure,
and then we describe how the class is specified and verified.

Implementation

The queue consists of (1) two atomic references: head and tail, and (2)
a chain of nodes, where each node contains a value field and an atomic
reference field to the next node. The head points to a sentinel node, i.e.
its value does not contribute to the queue. The last node of the queue can
be identified by its null-valued next field. A queue is empty when both the
head and the tail point to the sentinel node with a null-valued next field.

Specification

The main part of the specification is the resource invariant, which character-
izes a valid queue structure. The specification additionally uses two ghost
fields with type Node: (1) begin, which represents the original head of the
queue, i.e. the head of the queue when the data structure is initialized, and
(2) last, which points to the last node of the queue.

The resource invariant uses several auxiliary predicates. First, RPerm
and RPointsTo, which combine permission to read an AtomicNode with Perm
and PointsTo on the embedded field, respectively. Next, the reachable(n,m)
predicate captures that there is a path from n to m, and chain(n,m) specifies
full ownership of the data element in the nodes of the queue located between
n and m. The resource invariant (see Listing 42) states that begin can be
read and is immutable. The fields head.val, tail.val, and last are writable and

124
CHAPTER 7. MULTI-LAYER VERIFICATION BASED ON

CONCURRENT SEPARATION LOGIC

reachable from begin. The elements between head and last are fully owned
and the last.next is writable and null.

Verification

The essential part in the verification of the lock-free queue is proving that
all atomic operations preserve the resource invariant. In addition to our
encoding, this uses the following lemmas (which all have inductive proofs):

(i) The reachable predicate is transitive.

(ii) Given a node from which both the last node and some other nodes are
reachable, either the other node is the last node, or the next node of
the other node is also reachable.

(iii) Appending one node to a permission chain yields a permission chain.

Listing 43 shows a fully specified implementation of the method try_deq,
which attempts to dequeue a node of the queue. First, it copies the current
head of the queue to n1. Next, it copies the next of n1 to n2, which is allowed
because due to lemma (ii) we have either write or read. If n2 is not null then
the queue was not empty and compareAndSet is used to change the head to
the next node. Upon success the element is returned as an Integer. In all
other cases null is returned to signal failure. A full tool-verified specification
of the queue is available at [27] which can be verified using the online version
of the VerCors [87].

7.2 Layer 2: Relating Thread-Local and Global
Variables

To understand why in layer 2 we add the notion of thread-local state, it is im-
portant to realize that the queue specification above does not allow threads
to express any property about the elements in the queue, even though the
specification of the queue describes the queue’s behavior in terms of all ele-
ments the queue has held and still holds. This list, however, is only available
for reasoning during atomic operations, because the access permissions on
the list are maintained in the invariant. Hence, it is not possible for threads
to reason about the elements of the queue outside of atomic regions, and
worse, because a thread does not have any permission on these variables

7.2. LAYER 2: RELATING THREAD-LOCAL AND GLOBAL
VARIABLES 125

/∗@ requires Value(head) ∗∗ Value(tail);
2 ensures Value(head) ∗∗ Value(tail)

∗∗ (\result != null ==> Perm(\result.val,1)); @∗/
4 Integer try_deq(){

Node n1,n2; boolean tmp; Integer res=null;
6 n1=head.get();

n2=n1.next.get() /∗@ with {
8 lemma_readable_or_last(this.begin,n1);

} @∗/;
10 if (n2!=null) {

tmp=head.compareAndSet(n1,n2)/∗@ with {
12 if (head.val==n1) {

unfold chain(head.val,last);
14 }

} @∗/;
16 if(tmp){

res=new Integer(n2.val);
18 }

}
20 return res;

}

Listing 43: Dequeue attempt.

outside of atomic regions, it is forced to forget all knowledge about them:
after all, any other thread might modify them.

The simplest way to avoid this loss of information is to add thread-local
state and to keep this thread-local state synchronised with the global state.
The concept of thread-local state is old; it is already used in the classical
example of Owicki-Gries [70] where two threads independently atomically
increment a variable by one. To prove that the end result increases the
initial value by two, two thread-local ghost variables are used that account
for the behavior of each thread. These ghost variables are then used to state
a resource invariant that precisely captures the value of the shared variable.

In our approach, this combination of thread-local and global state is
established as follows. Full permission on the shared variable is kept in the
invariant, thus it may be modified during atomic operations. For thread-

126
CHAPTER 7. MULTI-LAYER VERIFICATION BASED ON

CONCURRENT SEPARATION LOGIC

local state, half the permission is held by the invariant, thus it may be read
to specify the relation with the shared state. In addition, each thread holds
the other half permission on its own thread-local state, which means that it
can read its thread-local state at any time during execution, and moreover,
it has the ability to change its own thread-local state when it holds the
resource invariant, i.e., during atomic operations.

Encoding

The concept of a thread-local variable is present in many programming lan-
guages. Typically, thread-locality is not a primitive of the language, but it is
added by means of a library. For the moment, we use a manual encoding of
thread-locality on top of layer 1. Our encoding assumes that an application
has access to a fixed number of unique objects (or integers) identifying each
of the threads, which allows to encode thread-local variables as an array,
where each array element corresponds to the thread-local variable for the
corresponding array index.

Additionally, a special treatment is required for reasoning about the
current thread id. We have a specification construct \current_thread, which
yields the id of the current thread. Thus, as its semantics depends on the
thread in which it is evaluated, \current_thread cannot be used in invariants.
In fact, it may not be used in any predicate, unless the specification modifier
thread_local is used for the predicate. Moreover, any predicate that invokes
a thread_local predicate has to be marked thread_local itself.

We encode \current_thread by adding it as an argument to all methods,
constructors, and thread_local predicates and all their invocations. This
allows us to detect illegal use of \current_thread, i.e., in a non-thread_local
predicate, because every illegal use would result in a local variable that
was not declared. Moreover, we check that csl_invariant is not declared
thread_local.

Specification and Verification of a Reentrant Lock.

To illustrate the kind of verifications that can be done at layer 2, we discuss
the specification and verification of the implementation of a reentrant lock.
The specification is adapted from [10, 5], while the implementation is a
simplified version of OpenJDK6 java.concurrent.locks.ReentrantLock.

7.2. LAYER 2: RELATING THREAD-LOCAL AND GLOBAL
VARIABLES 127

interface Lock {
2 /∗@ resource lock_invariant();

given bag<Lock> S;
4 requires lockset(S);

ensures lockset(S+seq<int>{this});
6 ensures !(this \memberof S) ==> lock_invariant(); @∗/

void lock();
8 }

Listing 44: Interface Lock.

The major challenge in specification and verification is the reentrant
lock behavior. In separation logic, the specification of the behavior of non-
reentrant locks is simple: when obtaining the lock, the resource invariant
attached to the lock, i.e. access to the shared data protected by the lock, is
also obtained and upon unlocking the invariant must be released. Assuming
that double locking leads to an unchecked error or a deadlock, this behavior
can be specified with straight-forward contracts. However, for reentrant
locks more care is required: the resource invariant is only obtained upon
locking for the first time and it must be yielded when unlocking for the last
time only. This means that when obtaining the lock, the invariant can only
be obtained if there is a proof that the lock is obtained for the first time.

Implementation

We follow the ReentrantLock implementation in OpenJDK6 by having two
fields: an atomic integer count and an integer owner. The latter variable is
set to the thread id of the current owner of the lock, or −1 otherwise. If a
thread already is the owner then a (re)lock is done by atomically increasing
count. Otherwise, the lock must be obtained by changing count from 0 to
1 using compare-and-set. To release the lock, the count is decreased, where
the owner must be cleared before the final decrease to 0.

Specification

The specification of a reentrant lock (see Listing 44) uses the predicate
lockset(S), where S is a multi-set of locks. The predicate lockset(S) holds for
a thread if the multiplicity of any lock in the lock set is the number of times

128
CHAPTER 7. MULTI-LAYER VERIFICATION BASED ON

CONCURRENT SEPARATION LOGIC

/∗@
2 resource csl_invariant()=

Value(T) ∗∗ T > 0 ∗∗ Value(held) ∗∗ Value(subject) ∗∗
4 APerm(count,1/2) ∗∗ APerm(owner,1/2) ∗∗

(count.val==0 ==> subject.inv() ∗∗
6 APerm(count,1/2) ∗∗ APerm(owner,1/2)) ∗∗

Perm(holder,1) ∗∗ −1<=holder<T ∗∗
8 (holder==−1) == (count.val==0) ∗∗

(\forall∗ int i; 0 <= i < T ;
10 Perm(held[i],1/2) ∗∗ (i!=holder ==> held[i]==0)

∗∗ held[i] >= 0 ∗∗ (held[i]==0 ==> owner.val!=i)
12);

resource lockset_part()=
14 Perm(held[\current_thread],1/2) ∗∗

(held[\current_thread] > 0 ==>
16 APointsTo(count,1/2,held[\current_thread]) ∗∗

APointsTo(owner,1/2,\current_thread)); @∗/

Listing 45: The definition of the lock invariant in the Lock class.

the thread holds that lock. Hence, obtaining a lock adds the lock to the lock
set, while releasing a lock means removing it from the lock set. Moreover,
when a lock does not occur in the lock set before locking, the resource
invariant is obtained, and when it is no longer present after unlocking, it
has to be yielded. In our previous work [10], the lockset(S) was added to the
specification language as a primitive. In this chapter, we define it in terms
of the current thread and an invariant.
Invariant

To define the invariant for a lock (see Listing 45), we use several ghost
variables. Without loss of generality, we assume a fixed number of threads
(T), which is also a ghost variable. We use a ghost array held with T entries
that functions as the thread-local count for each thread. And we use a ghost
variable holder that tracks the owner of the lock. Note that we cannot use
the implementation field owner because it cannot change at the same time
as the implementation field count changes. Ghost fields can change at the
same time and thus preserve an invariant.

Permission for the various fields of a lock are divided between the invari-

7.3. LAYER 3: FUNCTIONAL PROPERTIES USING HISTORIES 129

/∗@
2 thread_local resource lockset(bag<int> S)=

Value(T) ∗∗ 0 <= \current_thread < T ∗∗
4 Value(L) ∗∗ L > 0 ∗∗ Value(locks) ∗∗

(\forall∗ int l ; 0 <= l < L ;
6 Value(locks[l]) ∗∗ Value(locks[l].subject) ∗∗

Value(locks[l].T) ∗∗ locks[l].T==T ∗∗
8 Value(locks[l].held) ∗∗ locks[l].lockset_part() ∗∗

locks[l].held[\current_thread]==(l \memberof S)
10); @∗/

Listing 46: The definition of the lockset predicate in the Thread class.

ant and the lockset_part predicate that will be used in the lockset definition.
The invariant holds permission 1

2 on each element of the held array and the
count and owner atomic fields. The other 1

2 for held elements is held in the
corresponding lockset, while the other 1

2 for the atomic fields is kept in the
lockset for the owning thread and in the invariant if the lock is free.

The lockset predicate is defined in Listing 46. The most important lines
are the last two: for every lock, the lockset holds the permissions defined
in lockset_part and the held count for the current thread is precisely the
multiplicity of the lock id in the lockset.

The full listing of the lockset specified implementation of our reentrant
lock can be found online [87].

7.3 Layer 3: Functional Properties using Histories

Invariants, with or without thread-locals, are adequate for specifying and
verifying data race freedom and basic functional properties. The verifica-
tion of more complex functional properties, however, can get very tedious
because all interactions between threads have to be specified in great detail.
Therefore, this section discusses a different approach, adding the notion of
histories [22] on top of layer 2, and uses this to prove that the order of
elements is preserved in the lock-free queue.

130
CHAPTER 7. MULTI-LAYER VERIFICATION BASED ON

CONCURRENT SEPARATION LOGIC

Reasoning with Histories

The key idea of history-based reasoning is that functional verification is not
performed on the program directly, but on an abstract model of the program.
This idea combines data abstraction [44] with process algebra [16].

An abstract model is defined in terms of variables and actions on those
variables. Each action abstracts away from a concrete operation that can be
carried out on the program data: an action contract specifies which concrete
operations the action corresponds to. For example, Listing 48 specifies an
abstract model for queues: q specifies a queue state, while get is an abstract
action on the queue. Actions can be combined into processes using standard
operators, known from process algebra, such as choice, sequential compos-
ition, and parallel composition. To capture action repetition, the behavior
of processes also can be described using a recursive definition, which must
be paired with a contract. See for example the definition of process get_all
in Listing 48 (lines 12-15).

In the method specifications, we record the local history of the actions
performed in a thread. For example, the method specification of method get
in Listing 49 expresses that this method performs an abstract get action. In
the method bodies, annotations are added to mark blocks that implement
actions. For example, in the method try_deq in Listing 43 we add the
following statement:

/∗@
action hist, p , P, hist.get(n2.val);
hist.q=tail(hist.q); @∗/

after the unfold at line 13, stating that we extend the history hist, for which
we own a fraction p and which is P, with an action get. This is done by
removing the head element from hist.q.

Typically, whenever a thread is created, it starts with an empty local
history. When threads terminate and are joined, the local history of the ter-
minated thread is merged with the history of the joining thread. Eventually,
this results in one global history of abstract actions over which the desired
functional property can be verified. To guide the verification, some addi-
tional annotations for the treatment of histories may be provided as proof
hints: initialize a new, empty history over a set of program fields, destroy a
history etc., see [22] for a full overview.

The verification of these annotations consists of two main tasks. First,
the code must be verified to ensure that it implements a linearizable sequence

7.3. LAYER 3: FUNCTIONAL PROPERTIES USING HISTORIES 131

/∗@
2 requires Perm(q,1) ∗∗ PointsTo(q_mode,1,0);

ensures Perm(q,1) ∗∗ PointsTo(q_mode,1,1) ∗∗
4 Perm(q_init,1/2) ∗∗ q == \old(q) ∗∗ q_init == \old(q) ∗∗

hist_passive(1,p_empty()); @∗/
6 void create_hist();

Listing 47: The method that encodes creating a history

of actions, as specified in the history annotations. Second, the history spe-
cification has to be verified to ensure that every possible trace satisfies the
behavior specified in the form of the process contracts.

This has two advantages for the verification of functional properties.
First, we can abstract from implementation details (e.g. the linked list in
the queue becomes a sequence in the history). Second, because we have
already verified data race freedom, we can verify the properties in a non-
deterministic sequential setting, which makes it less complicated.

Encoding

In theory, histories are defined over arbitrary sets of locations. The input
language for the tool however does not use locations as first class citizens,
so it defines histories over the fields of a History class. Actions and processes
are also defined using an appropriate ADT in the same class. The predicate
Hist that describes (part of) the recorded history has three arguments: a
reference to a history object (instead of a set of locations), a fraction and a
process expression that denotes the history accounted for. The initial state
of a history is specified using the predicate HistInit, whose arguments are a
reference to a history and a formula. For example, starting with an empty
queue is specified as HistInit(hist,q==\seq<int>{}).

To complete the first verification task i.e., to ensure linearizability, modi-
fications of the fields of the history object have to be grouped in action
blocks, which must keep full permission on every field written during the ac-
tion for the duration of the entire action. This is managed by having three
forms of permissions on the fields: normal (Perm), passive (HPerm) and
active (APerm). Passive permissions can only be used to read from history
fields. To write a field you need full active permission. Permission changes,
as described in [22], are encoded by replacing every history annotation by

132
CHAPTER 7. MULTI-LAYER VERIFICATION BASED ON

CONCURRENT SEPARATION LOGIC

a method call whose contract matches the behavior of the proof rules for
the annotation. For example, Listing 47 shows the method that encodes the
creation of a history. Note how the initial state is in an extra ghost field
(q_init) in order to be able to reason about it. The hist_passive predicate
encodes Hist(this,1,empty). Note how the empty expression is replaced by
an expression in the ADT.

The verification of action blocks records the initial state of the variables
to be modified in ghost fields (for checking the actions post-condition), ex-
changes full passive for full active permission, and assumes any pre-condition
of the action. In addition, the encoding of the primitive Hist predicate is
inhaled. At the end of the action block, it asserts the post-condition of the
action and changes the permissions back. In addition, the encoding of the
Hist predicate with an extra action appended is exhaled.

The second part of the verification is to show that every execution trace
of a history satisfies its contract. To do this, we generate a method for every
defined process, whose body is constructed as follows: sequential composi-
tion on processes becomes sequential composition of statements, choice on
processes becomes a non-deterministic choice, and every mention of an ac-
tion or a defined process becomes a method invocation. For example, the
method generated for put_all is

ensures q==\old(q)+es;
2 void put_all(seq<int> es){

if (|es|==0){
4 } else {

put(head(es));
6 put_all(tail(es));

}
8 }
Note that we call put_all in the body. This is safe because this call is
guarded by a call to the action method put, which means that by induction
on the length of a trace we can assume that this call satisfies its contract.
If a process expression contains unguarded calls, the laws of process algebra
are used to compute an equivalent guarded form.

Verification of a Queue History

To illustrate reasoning about complex functional properties using histories,
we prove a functional property for the lock-free queue discussed in layer 1:

7.3. LAYER 3: FUNCTIONAL PROPERTIES USING HISTORIES 133

seq<int> q;
2

modifies q;
4 ensures \old(q)==seq<int>{e}+q;

process get(int e);
6

modifies q;
8 ensures \old(q)==es+q;

process get_all(seq<int> es)= |es| == 0?empty:
10 (get(head(es))∗get_all(tail(es)));

12 ensures get_all(es)∗get(e)==get_all(es+seq<int>{e});
void get_lemma(seq<int> es,int e){

14 if (|es|>0){ get_lemma(tail(es),e); }
}

16

modifies q;
18 ensures \old(q)+input==output+q;

process feed(seq<int> input,seq<int> output)=
20 put_all(input)||get_all(output);

Listing 48: Fragment of History Specification for Queues.

if one thread is given an array with elements that it puts into an empty
queue, and a second thread is given an array of the same length that it
fills by getting elements from the queue then, once both threads terminate,
the contents of both arrays are identical. Essentially, this captures that the
order of elements is preserved in the queue.

First, Listing 48 shows part of the history specification. The data man-
aged by the history is a single field q that contains a sequence of integers, i.e.,
an abstraction of the queue contents. Next, the contract of the get action
shows that it removes the first element of q. Then, we define process get_all,
which appends a whole sequence of integers to the queue. The history spe-
cification is extended with a lemma that shows a useful property about the
get_all process, namely that the sequential composition of a get_all and a
get is again a get_all. Finally, we define the feed process on whose contract
the whole verification hinges; it states the behavior of putting and getting

134
CHAPTER 7. MULTI-LAYER VERIFICATION BASED ON

CONCURRENT SEPARATION LOGIC

/∗@
2 History hist;

boolean hist_active;
4 given frac p; given process P;

requires Value(hist) ∗∗ Hist(hist,p,P) ∗∗
6 p!=none ∗∗ PointsTo(hist_active,p/2,true);

ensures Value(hist) ∗∗ Hist(hist,p,P∗hist.get(\result)) ∗∗
8 p!=none ∗∗ PointsTo(hist_active,p/2,true); @∗/

public int get();

Listing 49: History specification of the get method.

two sequences in parallel: the old contents plus the new elements have to
be the same as the retrieved elements plus the current state.

Listing 50 shows the run method of the receiver, annotated with a loop
invariant that describes its behavior (the method contract itself is not shown
as it is essentially an instance of the loop invariant). The body of the loop
uses the get method specified in Listing 49 to fill the array. Note how the
ghost field vals is used to maintain the list of elements written into the array.
Also note that the loop invariant only refers to the output array and the vals
field: the specification does not depend on the behavior of other threads that
may operate on the queue. The comparison of the orders of the input and
the output occurs when the two threads are joined by the thread that forked
them. This thread knows that: (i) at first q was empty, (ii) the program in
parallel put all input array elements into the queue and got all output array
elements from the queue. (iii) these arrays have the same length. What (ii)
says is that the program performed the process feed (Listing 48, line 18)
for the contents of the two arrays. From the contract of that process, it can
be inferred that those contents are the same and the current q is empty too.
Thus, modular verification is achieved.

Finally, we revisit the lock free queue try_deq method in Listing 43. To
add history support we do the following:

• We add a ghost field History hist; to keep the history state.

• We add a ghost variable boolean hist_active=true; that denotes if the
history is active.

7.3. LAYER 3: FUNCTIONAL PROPERTIES USING HISTORIES 135

public void run(){
2 int N=output.length;

int i=0;
4 /∗@

vals=seq<int>{};
6 loop_invariant Value(queue) ∗∗ Value(queue.hist)

∗∗ Value(output) ∗∗ Perm(vals,1) ∗∗ 0 <= i <= N
8 ∗∗ i==|vals| ∗∗ N==output.length

∗∗ PointsTo(queue.hist_active,1/4,true)
10 ∗∗ (\forall∗ int k; 0 <= k < N ; Perm(output[k],1))

∗∗ (\forall int k; 0 <= k < i ; output[k]==vals[k])
12 ∗∗ Hist(queue.hist,1/2,queue.hist.get_all(vals)); @∗/

while(i<N){
14 output[i]=queue.get()

/∗@ with { p=1/2 ; P = queue.hist.get_all(vals); } @∗/;
16 /∗@ vals=vals+seq<int>{output[i]}; @∗/

i=i+1;
18 }

}

Listing 50: Specified run method of the receiver

• We modify the definition of chain to have a third argument that con-
tains the contents of the chain, and we propagate this change to all
uses of chain, including the lemmas.

• We change chain(head.ref,last) in the invariant to

Perm(hist_active,1/2) ∗∗ Value(hist) ∗∗
(hist_active ==> HPerm(hist.q,1)∗∗chain(head.ref,last,hist.q))

i.e., we can access list_active and hist, and while the history is active
we hold protected permission for hist.q, whose value is precisely the
contents of the queue.

• We insert an action block after the unfold at line 13 to keep the queue
contents and hist.q equal, as discussed above:

action hist, p , P, hist.get(n2.val); hist.q=tail(hist.q);

136
CHAPTER 7. MULTI-LAYER VERIFICATION BASED ON

CONCURRENT SEPARATION LOGIC

7.4 Conclusion and Related Work

In this chapter, we have shown how a layered combination of CSL-based
verification approaches for concurrent programs can be used to make mech-
anical verification feasible and practical. Each layer focuses on a particular
class of properties, and reuses the results of the lower layers. The layered
approach enables a compositional encoding into a simple verification lan-
guage, Silicon, with appropriate tool support. Because the encoding focuses
on a simple aspect of the verification, it is easier to become convinced of
the correctness of the encoding. We also illustrate how verification can take
advantage of the layered approach. In particular, at layer 3, we verify a func-
tional property of a lock-free queue, for which we have already shown data
race freedom at the lower layer 1. Moreover, in layer 2, we verify correctness
of a standard reentrant lock implementation with respect to its contracts
mainly specifying its reentrancy properties [5].

As already mentioned above, various program logics have recently been
proposed to reason about concurrent programs, e.g., CAP [33], iCAP [81],
CaReSL [84] , TaDA [29] and IRIS [55]. These are all highly expressive
logics, which are able to reason about similar properties as discussed in this
paper, but as far as we are aware, there is no tool support for them, while our
focus is to make verification of concurrent programs practical. The difference
between CAP and our approach is that we use a predicate as the resource
invariant, rather than an arbitrary boxed formula. As a result, we can
only use explicitly declared variables to specify a relation between the local
state and the invariant. This is less elegant, but also prevents the problem of
stability of boxed formulas that is caused by implicitly crossing the boundary
between the shared and the local state. Essentially, iCAP enriches CAP with
impredicative protocols and CaReSL introduces thread-locals to modularly
reason about fine-grained data-structures. However, so far there is no tool
support for these program logics. Moreover, these logics share the property
that functional verification happens in parallel with the verification of the
data race freedom. In contract, using histories the functional verification
happens separately. The logic TaDA has one feature that our logic does
not (yet) have: it allows proving that a method behaves as if it atomically
performs an action, while we can only axiomatize this.

Closely related to our work, Jacobs and Piessens propose a technique
to verify functional properties of lock-free data-structures involving atomic
operations in VeriFast [47], which has recently been extended with support

7.4. CONCLUSION AND RELATED WORK 137

for Rely-Guarantee reasoning [79]. They also study the Michael-Scott queue
as an example and their work is implemented in VeriFast. As far as data race
freedom is concerned, their work and ours are identical in concept, but quite
different in the organization of the specification language. For example, we
write glue code in with and then blocks for every atomic method invocation.
They declare several ways in which an atomic method can operate up front.
For the functional properties, their method does not achieve the complete
separation between local and global reasoning that is enabled by histories.
Also, their notion of action is less general than ours, as theirs is limited to a
single atomic operation, while ours can combine multiple atomic operations
into a single action.

Compared to the logics mentioned above, we use a simple form of in-
variant. Due to this simplicity, our invariants are easy to verify by encoding
them in existing tool supported languages. Using thread local variables in
a systematic way, our notion is powerful enough to prove data race free-
dom. Rather than designing extra features for functional verification into
the invariant mechanism, we use a separate mechanism which offers a better
separation of concerns.

The claim made about IRIS [55] that invariants and monoids are all that
one needs to reason about concurrent software is in spirit identical to the
claim we make in this paper. Invariants in our approach are similar to IRIS’s
invariants, but, while our process algebra is a monoid, the mechanism for
executing actions has no equivalent in IRIS. Each action block consists of a
number of atomic steps that are independent of any other step that it may
be interleaved with.

Our logic also satisfies the requirements put forth by Da Rocha Pinto
et al. [30]: Our thread-local state is auxiliary state, histories provide inter-
ference abstraction, we have resource ownership through separation logic,
and we get atomicity through the use of atomic methods and blocks.

Our approach is also in line with the works of Jones et al. [53, 52], which
proposes a limit to the expressive power of specification formalisms in order
to keep specifications analyzable and warn of not using auxiliary variables
beyond the point where they are appropriate.

We have used thread-local specification patterns in our earlier work on
atomic operations [2], OpenCL kernel programs [7], and Parallel Loops [18].
The encodings used to implement the latter two are similar in style to the
ones introduced in this paper: they translate the proof requirements into a
method that must be checked and modify code by inserting exhale and inhale

138
CHAPTER 7. MULTI-LAYER VERIFICATION BASED ON

CONCURRENT SEPARATION LOGIC

instructions.
Rely-Guarantee reasoning [50] is a reasoning style that is intuitive and

often elegant. We believe it is possible to encode this style into layer 2
at the price of a large amount of (automatically) added annotations. It
is much easier to employ rely-guarantee reasoning at layer 3: we can put
the properties on which an action relies as its pre-condition and put the
properties it guarantees as its post-condition.

Several directions can be considered as future work. It might be possible
to add other layers to the stack (or have a branching structure of verification
techniques) to enable verification of other classes of properties. We also see
that verification at the moment requires a large amount of annotations,
and we plan to investigate if some of these can be generated automatically.
Finally, we need to do large verification case studies, to show how well the
mechanical verification scales. Especially, in layer 2, we are interested in
case studies with richer concurrency protocols.

CHAPTER 8
Specification and Verification

of Atomic Operations in
GPGPU Programs

139

141

General purpose GPU (GPGPU) programming enables programmers to
use the power of massively parallel accelerator devices to solve computa-
tionally intensive problems with a significant speed up. However, massive
parallelism also makes programming more error prone: data races might be
difficult to detect, and moreover ensuring functional correctness becomes
a challenge. To address this issue, different verification techniques for GP-
GPU programs have been developed [21, 17], based on Separation Logic and
abstraction, respectively. However, these techniques do not support reason-
ing about functional properties of kernels using atomic operations. This
chapter discusses how the Separation Logic approach to reason about GP-
GPU programs is extended to reason about programs that use atomics for
synchronisation.

GPU programming is based on the notion of kernels. A kernel consists
of a large number (typically hundreds) of parallel threads that all execute
the same instructions. The GPU execution model is an extension of the
Single Instruction Multiple Data (SIMD) model1, in which each thread ex-
ecutes the same instruction but on different data. For efficiency reasons,
threads are grouped into work groups. Each work group has its own local
memory, shared among all threads in the work group. Further, the kernel
has a global memory, which is shared among all threads on the GPU device.
Threads within a work group usually synchronise by barriers. Atomic oper-
ations provide asynchronous updates on shared memory locations (either in
global or local memory) and are the only mechanism to support inter-group
synchronisation in GPU programs. Moreover, atomic operations are also
sometimes used for synchronisation within a work group, because they en-
able more flexible parallel behaviors than using barriers alone. For example,
the Parallel add example in Section 8.2 and the Histogram example in the
Parboil benchmark [80] benefit from the flexible parallel behavior of atomic
operations.

In an earlier work, Blom et al. [21] used permission-based Separation
Logic to reason about data race freedom and functional correctness of GP-
GPU kernels that use barriers as the only synchronisation construct. This
chapter extends this logic to reason about kernels that also use atomic oper-
ations. The main idea of our work in this chapter is to adapt the notion of

1To be precise, the GPU execution model is Single Instruction Multiple Thread
(SIMT), which extends SIMD with more flexibility in the control flow.

142
CHAPTER 8. SPECIFICATION AND VERIFICATION OF ATOMIC

OPERATIONS IN GPGPU PROGRAMS

resource invariants in Concurrent Separation Logic (CSL) to reason about
the behavior of atomic operations w.r.t. the GPU memory hierarchy.

Resource invariants capture the properties of shared memory locations.
These properties only may be violated by a thread that is in the critical
section, and thus has exclusive access to the shared memory locations. Be-
fore leaving the critical section, the thread has to ensure that the resource
invariants are re-established. Because of the GPU memory hierarchy, shared
memory locations can be both in local memory (shared between threads in
a single work group) and in global memory (shared between all threads).
Therefore, in our approach we use group resource invariants that capture
the properties for local shared memory locations, and kernel resource invari-
ants to capture the properties for global shared memory locations. For each
kernel, there always is a single kernel resource invariant, while for each work
group there is a group resource invariant. However, by parametrizing the
group resource invariant with the group identifier gid, this can be specified
with a single formula.

Note that we use the term shared memory locations instead of atomic
variables, because the atomicity of a variable may change between different
barrier intervals. Therefore, resource invariants should be re-established
when a thread executes either an atomic operation or a barrier.

The remainder of this chapter is organized as follows. After some back-
ground information, Section 8.2 explains how the behavior of GPGPU ker-
nels with atomic operations is specified. Then, Section 8.3 formalizes our
approach, while we conclude with related work in Section 8.4.

8.1 Background

This section first gives a short background of the approach proposed by
Blom et al. [21] to use CSL in reasoning about GPGPU programs with
barriers. Later, we extend the logic to cover GPGPU programs employing
both barriers and atomic operations.

Reasoning about GPGPU Programs

In the approached proposed in [21], kernels, work groups, threads, and bar-
riers are specified and verified modularly w.r.t. their specifications.

We illustrate the approach using the example in Listing 51, which con-
tains a kernel program annotated with a thread specification, plus a barrier

8.1. BACKGROUND 143

/∗@ requires Perm(a[gtid],1) ∗∗ Perm(b[gtid],1);
2 ensures Perm(b[gtid],1) ∗∗ b[gtid] = (gtid+1) % gsize; @∗/

kernel void rotate(global int a, global int b){
4 a[gtid]=gtid;

barrier(global){
6 /∗@ requires a[gtid]=gtid;

ensures Perm(a[(gtid+1) % gsize],1/2) ∗∗ Perm(b[gtid],1);
8 ensures a[(gtid+1) % gsize]=(gtid+1) % gsize; @∗/

}
10 b[gtid]=a[(gtid+1) % gsize];

}

Listing 51: An example of a kernel with specifications

specification for each barrier The specifications use the keywords gtid to de-
note the global thread identifier, and gsize to denote the number of threads
in each work group, respectively. A thread specification specifies the permis-
sions a thread should hold before (keyword requires) and after (keywords
ensures) execution, together with the thread’s functional behavior. In the
example, write permission to position gtid of both array a and b is required
and it is ensured that position gtid of array b can be written and contains
(gtid+1)% gsize. To illustrate the use of a barrier, the kernel is implemented
in a non-standard way: first gtid is assigned to a[gtid] and then access to
the array is rotated by synchronisation on a barrier, after which the thread
reads a[(gtid+1) % gsize]. This rotation is specified with a barrier specifica-
tion, which specifies (1) how permissions are redistributed over the threads
in the work group, and (2) the functional pre- and post-conditions that must
hold before and after execution of the barrier.

There are two ways to specify the redistribution of permissions at a
barrier in a work group. First, one can choose to redistribute all permissions
available to the work group, assuming that each thread loses all permissions
at a barrier. Second, one can force the user to explicitly specify which
permissions are lost. The original paper, i.e. [21] and the example use the
first approach, which is efficient for proving data race freedom. In the rest
of this chapter, we use the second approach, which is more convenient for
functional properties, as it ensures all functional properties are properly
framed [21].

144
CHAPTER 8. SPECIFICATION AND VERIFICATION OF ATOMIC

OPERATIONS IN GPGPU PROGRAMS

Given a thread specification which is parametrized by gtid, the group
specification and kernel specification are defined as the universal separating
conjunction of the thread specification over all threads in the same work
group and over all threads in the GPU, respectively. Thus, group and ker-
nel specifications are automatically derived from the thread specifications,
and do not have to be explicitly given. Group specifications capture the
resources in global memory that can be used by the threads in a particu-
lar work group, including its pre- and post-condition. Notice that locations
defined in local memory are only valid inside the work group and thus the
work group always holds write permissions for these locations. In the kernel
specification, resources that are required from the host program along with
the necessary pre-conditions and provided post-conditions are specified. An
invocation of a kernel by a host program is correct if the host program
transfers the necessary resources and fulfills the kernel pre-conditions.

8.2 Specification

This section discusses two examples that illustrate our approach to the
specification of kernels with atomic operations. The first example uses a
single atomic add; the second example illustrates how we reason about ker-
nels which use both barriers and atomic operations for synchronisation, and
where the atomicity of a variable may change in different barrier intervals.

Specification of a Kernel with Parallel Addition

Listing 52 contains an annotated parallel add kernel, where ltid indicates the
local thread identifier. For simplicity, in this first example we assume that
we have a single work group2, later we extend our technique also to multiple
work groups. We first explain the permission specifications, followed by an
explanation of the functional properties (the highlighted annotations).

In Listing 52, each thread atomically adds its contribution, which is
stored in values[ltid], to the shared variable x. The requires and ensures
clauses express a single thread’s pre- and post-conditions. The pre-condition
specifies that each thread needs to have read permission on its corresponding
index of values. Additionally, we specify a group resource invariant for the

2The number of work groups is determined in the host code before launching the
kernel.

8.2. SPECIFICATION 145

/∗@ given int cont[gsize] ;

2 group invariant Perm(x,1)∗∗ Perm(cont[*],1/2) ∗∗ x==(\sum cont[*]) ;

requires Perm(values[ltid],1/2)∗∗ Perm(cont[ltid],1/2) ∗∗

4 cont[ltid]==0 ;

ensures Perm(values[ltid],1/2)∗∗ Perm(cont[ltid],1/2) ∗∗

6 cont[ltid]==values[ltid] ; @∗/
kernel void gpadd(local int x, local int values){

8 atomic_add(x,values[ltid]) /∗@ then { cont[ltid]=values[ltid]; } @∗/; }

Listing 52: Specification of parallel add in a work group.

local shared memory variable x, which expresses that the thread executing
the atomic add operation has exclusive write access to x. With this specific-
ation, it is straightforward to prove that the program is free of data races, as
it is guaranteed that there is only one thread executing the atomic operation
and exclusively accessing the shared variable.

To reason about functional properties, the specification expresses the
accumulative contributions of the threads on the shared variable. To track
these contributions, we use an array cont[], added as a ghost parameter
(line 1) to the kernel. The idea is that the contribution of each thread
(cont[ltid]) is 0 before it executes and values[ltid] after it finishes, while

the invariant
gsize-1∑
i=0

cont[i] = x is maintained in order to prove that the

kernel computes the sum of the values. To make this work, the thread’s
pre-condition (line 4) states that each tread obtains a read permission on
cont[ltid], in order to be able to use cont in the specifications. Each thread
has to track its contribution towards the total in x in its own location in
the cont array. This is done during the atomic operation by injecting an
assignment statement as ghost code (specified as a then clause, see line 8).
The thread executing atomic_add, first adds values[ltid] to x, and then ex-
ecutes the injected ghost code, i.e. cont[ltid]=values[ltid]. To achieve this,
the group resource invariant is extended with a half permission on all ele-
ments of cont, written Perm(cont[∗],1/2) 3. Thus, when thread ltid at the

3This is syntactic sugar for universal quantification of the permissions over all the

146
CHAPTER 8. SPECIFICATION AND VERIFICATION OF ATOMIC

OPERATIONS IN GPGPU PROGRAMS

beginning of the atomic body obtains the resource invariants, it has twice
a read permission Perm(cont[ltid],1/2), which can be combined into a single
write permission Perm(cont[ltid],1).

Parallel Addition with Multiple Work Groups

As a next example, we discuss the specification of a kernel with multiple
work groups, which employs both barriers and atomic operations for syn-
chronisation. This is a common pattern to avoid making global memory
access a bottleneck: first all threads in a work group compute an interme-
diate result in local memory, then the intermediate result is combined with
the global result in global memory. It is used, for example, in the parallel
implementation of BFS in the Parboil benchmark [80]. The kernel in List-
ing 53 is an extension of the previous example, using multiple work groups
and a barrier, where ksize denotes the number of work groups. The kernel
is implemented by the following steps: (1) each thread atomically adds its
element of the global array values to its local accumulator, i.e. a locally
shared variable x; (2) all threads within a work group are synchronised by a
barrier (line 16); (3) after all threads have passed the barrier, one thread per
work group (here ltid= 0) adds the work group’s final value of x to a globally
shared variable r (line 23). Eventually, r contains the collective contributions
of all the threads in the kernel. Similar to the single work group example,
to track the contributions at each step, the kernel program uses ghost ar-
rays cont and sums, with all elements initialized with zero. We use cont to
specify the current value of the local variable x. Similarly, array sums is used
to sum up the total accumulated contributions of the work groups. Updat-
ing the local cont is explained in the previous example. In a similar way,
using the ghost code at line 23, in each work group, the thread with ltid= 0
stores its contribution (the final value of x) to the global sums[gid], i.e. the
index corresponding to the executing work group from the sums array.

In Listing 53, there are two invariants that are maintained:

1.
gsize−1∑
i=0

cont[i] = x for each work group; and

2.
ksize-1∑
i=0

sums[i] = r for the kernel.

indices of cont[].

8.2. SPECIFICATION 147

/∗@ given global int sums[ksize]={0} ;

2 given local int cont[gsize]={0}, region=0 ;

kernel invariant

4 Perm(r,1)∗∗ Perm(sums[*],1/2) ∗∗ r==(\sum sums[*]) ;

group invariant Perm(region,1/(gsize+1))∗∗Perm(x,region==0?1:1/2)

6 ∗∗ Perm(cont[*],1/2) ∗∗ x==(\sum cont[*]) ;

requires Perm(region,1/(gsize+1))∗∗Perm(values[gtid],1/2);

8 requires Perm(cont[ltid],1/2) ∗∗ cont[ltid]==0 ;

requires ltid==0 ==> Perm(sums[gid],1/2)**sums[gid]==0 ;

10 ensures Perm(region,1/(gsize+1))∗∗Perm(values[gtid],1/2);

ensures Perm(cont[ltid],1/4) ∗∗ cont[ltid]==values[gtid] ;

12 ensures ltid==0 ==> Perm(cont[*],1/4)**Perm(sums[gid],1/2) ;

ensures ltid==0 ==> sums[gid]==(\sum cont[*]) ; @∗/
14 kernel void KParallelAdd(local int x, global int values, global int r){

atomic_add(x,values[gtid]) /∗@ then { cont[ltid]=values[gtid]; } @∗/;
16 barrier(local)/∗@

requires Perm(region,1/(gsize+1))∗∗region==0}∗∗
18 Perm(cont[ltid],1/4) ;

ensures Perm(region,1/(gsize+1))∗∗region==1;

20 ensures ltid==0 ==> Perm(cont[*],1/4)**x==(\sum cont[*]) ;

{ region=1; } @∗/;
22 if(ltid==0)

atomic_add(r,x)/∗@ then { sums[gid]=x; } @∗/; }

Listing 53: Specification of global parallel add.

After termination of work group gid, we use the group invariant to conclude
that:

sums[gid] =

gsize×gid+gsize−1∑
i=gsize×gid

values[i] .

148
CHAPTER 8. SPECIFICATION AND VERIFICATION OF ATOMIC

OPERATIONS IN GPGPU PROGRAMS

Hence after termination of all work groups we can prove that:

r =

ksize-1∑
i=0

sums[i] =

ksize-1∑
j=0

(j+1)×gsize−1∑
i=j×gsize

values[i]

Again, we first explain the permission specifications. The permission spe-
cifications for values are similar to the specifications in Listing 52. The
barrier divides the program into regions, and within a region the distribu-
tion of permissions over the threads and the resource invariants does not
change. Only when all threads reach the barrier, permissions may be re-
distributed. This means in particular that a variable that is treated as a
shared memory variable in one region, may become unshared in a next re-
gion (or vice versa). Thus, resource invariants often depend on the current
barrier region. To keep track of the current barrier region, we use a ghost
variable region initialised at 0 (line 2). Each thread at all times has read
access to this region variable, and whenever all the threads go through the
barrier, the region is updated (see line 21). The group resource invariant
specifies that within region 0 (before the barrier instruction), variable x is
a shared variable in local memory, while in region 1 (after the barrier), x is
not shared any more. So, after the barrier x can be read concurrently by
all the threads within a work group. The kernel resource invariant specifies
that r is a shared variable in global memory, but that only threads with a
local thread identifier 0 are able to correctly update r, because only threads
with ltid= 0 can construct a write permission of sums[gid] (see lines 4 and 9)
to store the contributions.

The barrier specification expresses that threads keep read access on
region, and that the value of region is updated to 1. Moreover, the spe-
cification asserts that upon entering the barrier each thread gives up 1/4
permission to access its contribution element, i.e. cont[ltid]. The barrier re-
distributes these permissions to the thread with ltid= 0, which ensures that
the thread with ltid= 0 has sufficient permissions to frame (\sum cont[∗])
in the barrier post-condition. Notice that when all threads have reached the
barrier, all read accesses on region together (including the group resource
invariant) can be combined into a write permission on region, thus enabling
the update of this ghost variable within the barrier.

Next, we discuss the functional property specifications. As we stated be-
fore, two resource invariants specify the values of the shared variables: (1)
the local shared variable x must always express the accumulation of the con-

8.3. FORMALIZATION 149

tributions of the threads executing the first atomic operation (line 6), and (2)
the global shared variable r must always express the accumulation of x’s final
value in each work, group which is stored in sums[gid] (line 4). To prove these
invariants, each thread must ensure that it correctly stores its contribution
as specified in line 11. Moreover, the barrier must ensure that the thread
with ltid= 0 knows the final value of x as specified by x==(\sum cont[∗]) in
the barrier’s post-condition. Finally, the thread with ltid= 0 must guaran-
tee that the final value of x is stored in sums[gid] (line 13). Therefore, the
verifier can prove that the value of r is the collective contributions of all the
threads in the kernel.

8.3 Formalization

The previous section illustrated how we specify permissions and functional
properties of kernel programs in the presence of atomic operations and barri-
ers on several examples. This section defines the approach formally. Rather
than presenting this work on the full language, we will present it for a core
kernel programming language. In our verification technique barrier diver-
gence is not taken into consideration, i.e. if threads in a work group arrive
at a barrier they all arrive at the same one. This is a realistic assumption:
according to the OpenCL semantics, the behavior of programs with barrier
divergence is unspecified [67]. Moreover, in our earlier work [21], we pro-
posed syntactical restrictions to determine whether a kernel programs is free
of barrier divergence.

We first introduce syntax and semantics of our core kernel language, and
also formally define the formula language to write the specifications. Then
we present the Hoare logic rules used to reason about kernels with atomics,
and we prove soundness of the proof rules. Finally, we also briefly discuss
tool implementation.

Syntax and Semantics

Programming Language Figure 8.1 presents the syntax for our kernel
programming language, which adapts the Kernel Programming Language
(KPL) of [17] by extending it with atomic operations and changing the bar-
rier statement. For simplicity, in this language, global and local memory
are assumed to be single shared arrays. There are two local memory access
operations: read from location e1 in local memory (v := rdloc(e1)), and

150
CHAPTER 8. SPECIFICATION AND VERIFICATION OF ATOMIC

OPERATIONS IN GPGPU PROGRAMS

write e2 to location e1 in local memory (wrloc(e1, e2)). Similarly, read and
write operations in global memory are represented by v := rdglob(e) and
wrglob(e1, e2), respectively. W.r.t. to the original KPL language, barriers
are different. As in KPL, a barrier is labelled with a flag F , which denotes
which memories it synchronises. That is, it always acts both as synchronisa-
tion between the threads in a work group and as a memory fence. Depending
on the flag, it is either for local or for global memory. Additionally, a barrier
is labelled with an identifier bid , which is used to distinguish different barrier
instances, and it is extended with a block of statements to be executed while
all threads are in the barrier. Further, we add an atomic block statement
to the language, which a label to denote whether it accesses global or local
shared memory. The (annotated) OpenCL atomic operations can be easily
embedded into this atomic block statement.

The state of a kernel program consists of the state of the global memory,
the states of the local memories and the state of all the threads. On these
states, three steps are possible:

1. A thread performs a non-atomic statement, see [21] for details of the
operational semantics;

2. A thread atomically performs all statements in an atomic(F){S} block.
Its operational semantics is standard and can be defined easily, similar
to [85].

3. All threads running in the work group go through the barrier bid :
barrier(F){S}. This can only happen if all threads in a group are
waiting to execute S. The effect on the state is that all statements in S
are performed, and all threads in the group consider bid as performed.
The operational semantics of a barrier without a body is defined in [21].
However, its extension with a body is trivial as the body is executed
atomically.

Note that because barriers are labelled in KPL, any program that ex-
hibits barrier divergence will block forever and therefore does not terminate.

Formula Language The specifications of KPL programs can be written
using the following formula language:

8.3. FORMALIZATION 151

Reserved global identifiers (constant within a thread):
gtid Thread identifier with respect to the kernel
gid Group identifier with respect to the kernel
ltid Local thread identifier with respect to the work group
tc The total number of threads in the kernel
gs The number of threads per work group
ks The number of groups in the kernel

Kernel language:
b ::= boolean expression over global constants and private variables
e ::= integer expression over global constants and private variables
S ::= v := e | v := rdloc(e) | v := rdglob(e) | wrloc(e1, e2)

| wrglob(e1, e2) | nop | S1;S2 | if b thenS1 elseS2 | while b doS
| atomic(F){S} | bid : barrier(F){S}

F ::= local | global

Figure 8.1: Syntax for Kernel Programming Language

E ::= expressions (in first-order logic) over global constants,
private variables, rdloc(E), rdglob(E).

R ::= true | E | LPerm(E, p) | GPerm(E, p) | R1 ? R2 | E ⇒ R

| F
v:E(v)

R(v)

where we use LPerm(E, p) and GPerm(E, p) as explicitly different permis-
sion statements to specify accesses to local and global memories, respect-
ively. In addition to the separating conjunction of two resource formulas, we
also have guarded resource formulas, and a universal separating conjunction
quantifier, which quantifies over the set of values v for which E(v) is true.
Formalization of the specification language and validity of the formulas are
elaborated in [21].

The behavior of kernels, work groups, threads, and barriers are defined
as (Kpre ,Kpost ,Krinv), (Gpre , Gpost , Grinv), (Tpre , Tpost), and (Bpre , Bpost),
respectively. Note that the user only has to annotate a kernel resource in-
variant Krinv , a group resource invariant Grinv parametrized by group id, a
thread’s pre- and post-condition Tpre and Tpost and barrier’s pre- and post-
condition Bbid

pre and Bbid
post . We can derive the work groups’ pre- and post-

conditions, i.e. Gpre and Gpost , as the separating conjunction of the pre-

152
CHAPTER 8. SPECIFICATION AND VERIFICATION OF ATOMIC

OPERATIONS IN GPGPU PROGRAMS

[Assign]
Krinv , Grinv (gid) ` {R[v := e]} v := e {R}

[LRead]

Krinv , Grinv (gid) `
{LPerm(e, π) ? R[v := L[e]]}
v := rdloc(e)
{LPerm(e, π) ? R}

[LWrite]

Krinv , Grinv (gid) `
{LPerm(e1, 1) ? R[L[e1] := e2]}
wrloc(e1, e2)
{LPerm(e1, 1) ? R}

S refers to local memory only.
Krinv ` {P (t) ? Grinv (gid)} S {Grinv (gid) ? Q(t)}

[LAtomic]
Krinv , Grinv (gid) ` {P (t)} atomic(local){S} {Q(t)}

S refers to global memory only.
Grinv (gid) ` {P (t) ? Krinv} S {Krinv ? Q(t)}

[GAtomic]
Krinv , Grinv (gid) ` {P (t)} atomic(global){S} {Q(t)}

Figure 8.2: Important Hoare logic rules: Read, Write and Atomic

and post-conditions of all threads belonging to the work group and the work
group’s resource invariant. Similarly, the kernel’s pre- and post-condition,
i.e. Kpre and Kpost , can be derived automatically as the separating con-
junction of the pre- and post-conditions of all work groups belonging to the
kernel and the kernel’s resource invariant.

Verification

Since we derive the contracts for work groups and kernels automatically, we
can verify a kernel program by verifying all the threads belonging to a kernel.
To verify a thread T , with body Tbody , the following Hoare triple should be
verified, using the verification rules defined in Figure 8.2 and Figure 8.3:

Krinv , Grinv (gid) ` {Tpre} Tbody {Tpost}

8.3. FORMALIZATION 153

S, R, and E refer to local memory only.

Krinv `

{ F
t∈[0..gs)

R(t) ? Grinv (gid)}

S

{Grinv (gid) ? F
t∈[0..gs)

E(t)}
[LBarrier]

Krinv , Grinv (gid) `

{P (t) ? R(t)}
barrier(local)
req R(t); ens E(t); {S}
{P (t) ? E(t)}

S, R, and E refer to global memory only.

Grinv (gid) `

{ F
t∈[0..gs)

R(t) ? Krinv}

S

{Krinv ? F
t∈[0..gs)

E(t)}
[GBarrier]

Krinv , Grinv (gid) `

{P (t) ? R(t)}
barrier(global)
req R(t); ens E(t); {S}
{P (t) ? E(t)}

Figure 8.3: Important Hoare logic rules: Barriers

In addition to the standard rules for sequential compositional, condi-
tionals, loops, and weakening, Figure 8.2 and Figure 8.3 shows the most
important Hoare logic rules to reason about kernel threads. Rule [Assign]
describes the updates to the thread’s private memory. Rules [LRead] and
[LWrite] specifies read and write of local memory4. The rules for global

4 L[e] denotes the value stored at location e in the local memory array, and substitu-
tion is as usually defined for arrays, cf. [12]:

L[e][L[e1] := e2] = (e = e1)?e2 : L[e]

154
CHAPTER 8. SPECIFICATION AND VERIFICATION OF ATOMIC

OPERATIONS IN GPGPU PROGRAMS

memory are defined similarly, but for space reasons are not presented here.
The rules [LAtomic] for local and [GAtomic] for global atomic opera-
tions are simple instances of the CSL rule using the group resource invariant
and kernel resource invariant, respectively.

The rule [LBarrier] reflects the functionality of the barrier with a
flag indicating that it synchronises local memory. It acts similar to the
CSL rule for the group resource invariant but at the same time it collects
resources and knowledge from all threads and redistributes these resources
and knowledge. To do so it requires that the block S can be executed given
the resources provided by the invariant (Grinv) and all threads in the work
group (R(t)). Moreover, it ensures that all resources are given back (E(t))
and the invariant is re-established (Grinv). The rule also says that the effect
of passing through a barrier on a thread is to give up resources R(t) and get
E(t) in return. Note that there is a side condition that S, R and E can refer
to local memory only, as this would otherwise potentially create a data race:
a local barrier functions as a memory fence for local memory, thus it can
exchange information about local memory without any difficulties, but no
order on global memory is guaranteed. The [GBarrier] rule is symmetric in
the use of local vs. global memory and invariants. Note that the local/global
flag affects memory only. Both uses of the barrier synchronise the threads
within a single work group.

Soundness

Finally, we prove soundness of our verification technique.

Theorem 8.3.1. Given a barrier divergence free kernel, for which the thread
level Hoare triples are provably correct. Then every possible execution of the
kernel starting in a state that satisfies the kernel pre-condition is data race
free and ends in a state that satisfies the kernel post-condition.

Proof. We are given a finite trace of executions. In this trace every thread
tgid,ltid makes a finite number of steps Ngid,ltid, where atomic blocks and
barriers count as one step. Because a Hoare logic proof of the thread exists,
we can find formulas P 0

gid,ltid, · · · , P
Ngid,ltid
gid,ltid that are valid before, between

and after these steps, where P 0
gid,ltid is the pre-condition of the thread and

P
Ngid,ltid
gid,ltid is its post-condition.

8.3. FORMALIZATION 155

All states σ0, · · · , σN in the finite global trace ofN steps can be described
by a function f that maps each global trace position to the positions in the
local threads. We do not know in which order the steps of the threads are
executed, but we know they all start in position 0, so f(0, gid, ltid) = 0. We
also know they end in their last state, so: f(N, gid, tid) = Ngid,ltid.

We claim that before and after every step in the trace the state satisfies
a specific Separation Logic formula.

∀i = 0, · · · , N : σi |= Krinv ? F
gid∈[0..ks)

(
Grinv (gid) ? F

ltid∈[0..gs)
P
f(i,gid,ltid)
gid,ltid

)
This claim is proven by induction on i. For i = 0 this is precisely the given
pre-condition. Assuming that the claim is correct for 0 ≤ i < N , then there
are three cases. If the step is a plain step or an atomic step, by correctness
of the standard CSL Hoare triple used to prove that step, the validity for
i+ 1 follows.

The interesting case is the barrier step, in which all threads of a group
are involved. The Hoare triple for each thread is valid so each thread starts
knowing P (t) ? R(t) and ends knowing P (t) ? E(t). Because of the correct-
ness of the standard CSL Hoare triple for the barrier statement S, the change
to the state is from F

t∈[0..gs)
R(t) ? Grinv (gid) to F

t∈[0..gs)
E(t) ? Grinv (gid),

which is precisely the change in the formulas, so i+ 1 is established.
The last statement is precisely the kernel post-condition which proves

that the end state satisfies the kernel post-condition.
A data race happens if: there is an access to a location l in step i1 by

thread t1, followed by an access to the same location in step i2 by thread t2,
there is no memory fence in between these accesses, and one of these accesses
is a write. Suppose that t1 used fraction p1 for the access and thread t2 used
fraction p2. Because one of the accesses is a write, p1 + p2 > 1. Because
there is no memory fence, that is no barrier or atomic in between, at time
i1 thread t2 must have already owned fraction p2. Thus at time i1, fraction
p1 + p2 permission for location l existed, which leads to a contradiction.

Tool Support

We have implemented tool support for the verification of kernels in the
VerCors tool set [19]. The VerCors tool set compiles programs that
are specified in a complex specification language, such as kernels, into much

156
CHAPTER 8. SPECIFICATION AND VERIFICATION OF ATOMIC

OPERATIONS IN GPGPU PROGRAMS

simpler specified programs and then verifies the latter to prove that the
former are correct. The main compilation target used for kernel programs
is Silver, the intermediate language of the Viper framework [54]. Silver is a
specification language designed along the lines of Implicit Dynamic Frames
[78]. We can then verify these Silver programs with the Silicon tool that is
part of the framework.

For the verification of kernels with atomics, two transformation passes
have been added to the VerCors tool set. The first pass transforms a
kernel into an intermediate form that uses the same barrier and atomic
constructs as used in the kernel programming language used in this section.
The second pass replaces those atomic and barrier constructs with code that
mimics the conclusion of the corresponding proof rules (see Figure 8.2 and
Figure 8.3) and adds code that encodes that the premises of the rule is valid.
The replacement ensures that when using a barrier or atomic proof rule the
program is correct. The added code verifies that the rule is used correctly.

8.4 Conclusion and Related Work

This chapter presented an approach to specify and verify GPGPU programs
in the presence of atomic operations and barriers. The main characteristics
of the approach are that it can be used to prove both data race freedom
and functional correctness. To specify the shared memory accesses, the
notion of resource invariant from CSL is lifted to the GPU memory model,
distinguishing between kernel and group resource invariants. An appropriate
Hoare logic is proposed and proven sound to reason about GPGPU programs
using atomic operations and barriers. The approach is illustrated on some
examples, and supported by an implementation in the VerCors tool set.
The current version of the tool set supports full verification of the examples
in this chapter, but only when implemented in PVL5, available at [13]. It is
ongoing work to update the VerCors tool set to verify these examples in
OpenCL .

There is very little related work in this area, as reasoning techniques for
GPU kernels are still relatively fresh. Bardsley et al. propose additional
support in GPUVerify for reasoning about GPU kernels where warps and
atomic operations are used for synchronisation [14]. In GPUVerify the user

5Prototypal Verification Language (PVL) is a simple language designed for verification
purposes in VerCors [74].

8.4. CONCLUSION AND RELATED WORK 157

does not need to add specifications manually, because the tool internally
speculates and refines kernel specifications [17]. However, GPUVerify is not
able to reason about the functional properties of kernels, it can only prove
absence of data races.

Concerning verification of GPU kernels, we should also mention the work
of Li and Gopalakrishnan [60]. They verify CUDA programs by symbolically
encoding thread interleavings. They were the first to observe that to ensure
data race freedom it was sufficient to verify the interleavings of two arbitrary
threads. For each shared variable they use an array to keep track of read
and write accesses, and where in the code they occur. By analysing this
array, they detect possible data races. However, they do not consider atomic
operations.

In the verification of (general) concurrent programs synchronised with
barriers, Hobor et al. [45] propose a sound extension of CSL for Pthreads-
style barriers. The simplicity of the OpenCL barriers makes our specification
simpler. Additionally, we support barriers in the presence of atomic opera-
tions.

At the moment, the user of VerCors still has to write quite a substan-
tial amount of annotations to make verification work. As a future work, it
will be investigated how to make use of inference techniques for program
annotations to reduce this annotation burden. For example, it would be
interesting to investigate if GPUVerify could be used to infer some of the
annotations that we need.

CHAPTER 9
Conclusions

159

161

In shared memory concurrency, unpredictable interference of threads
that access shared memory makes it hard to implement a thread-safe pro-
gram. The notorious difficulty of implementing correct shared memory con-
current programs makes it necessary to develop techniques that reason about
thread-safety. However, reasoning about a concurrent program is challen-
ging, because a verification technique has to consider all possible interleav-
ings between threads. To make verification tractable, we study modular
verification techniques. For such techniques, the major challenge is how
global properties can be established from thread local properties. In this
thesis, we study how we can efficiently describe and reason about a thread’s
local contribution, when a thread is used in a concurrent environment, and
other threads can update shared variables accessed by the thread.

For a long period, lack of a robust logic in reasoning about shared vari-
ables has been one of the impediments to develop effective and practical ax-
iomatic verification methods for concurrent programs. Reynolds introduced
Separation Logic to reason about safety properties of imperative programs
that use shared mutable data structures. Later, O’Hearn demonstrated that
the core concepts of Separation Logic are also suitable to reason about con-
current shared memory programs. This triggered a new trend in the verifica-
tion of concurrent programs leading to a whole collection of CSL extensions.
In this trend, permission-based Separation Logic showed its potential power
to be a more practical approach for the verification of programs written in
a Java-like language.

This thesis demonstrates how permission-based Separation Logic can be
used to specify and verify synchronisers, which are the core elements of
any concurrent program. The intention of this thesis was not to propose
techniques for the fully-automated verification of synchronisation mechan-
isms. Neither was it to develop yet another new logic for concurrent data
structures verification. Instead, the permission-based Separation Logic from
Hurlin and Haack [46, 41] is lifted into the specification language to specify
and verify expected behaviour of the main synchronisers available in the
java.util.concurrent library. This allowed us to develop the VerCors tool-set
that can reason about correctness of concurrent Java programs synchronised
with various synchronisers. This synchronisers can be either coarse-grained
synchronisation classes like ReentrantLock, Semaphore, CoundDownLatch or
RecyclicBarrier, or fine-grained synchronisation primitives like AtomicInteger
and AtomicReference.

162 CHAPTER 9. CONCLUSIONS

Results

This thesis identifies two main elements to reason about: 1. the threads, and
2. the synchronization constructs of a concurrent program. These elements
are studied through the thesis with the following contributions:

• Our goal in Chapter 3 was to prove the correctness of a concurrent
Java program with multiple join points. We explored the basics of
threads synchronisations, like thread start and join. We proved the
correctness of a general concurrent pipeline processing pattern with
multiple join points implemented in Java.

• Our goal in Chapter 4 was to achieve an unified technique to ex-
press the behaviours of various synchronisation constructs. We have
achieved this goal through the specification of various synchronisation
constructs like Lock, Semaphore, CountDownLatch, CyclicBarrier. In
more detail, we looked at various aspects of locks. We proposed a
specification for the Lock interface which covers implementing classes
like reentrant and read-write locks. We used similar structures to
specify the contract of the Semaphore class. Behaviorally, a binary
semaphore functions like a (single-entrant) lock. As can be seen by
the specifications (see Section 4.1 and Section 4.2), if one implements
a single-entrant lock the specification of the lock will be equivalent to
the specification of a binary semaphore.

• Our goal in Chapter 5 and Chapter 6 was to prove the correctness of
the specifications that we proposed in Chapter 4. In order to verify
our proposed specifications, we tackled atomic operations, mainly from
AtomicInteger, in two phases. In the first phase, presented in Chapter 5,
we proposed a technique to specify atomic operations to reason about
exclusive access synchronisation constructs, and then in the second
phase (Chapter 6) we improved the specification to be used in the veri-
fication of both exclusive access and shared-reading synchronisation
constructs. We proposed a contract for the AtomicInteger class such
that one can prove correctness of both exclusive and shared-reading
synchronisers. Having our final specification of the AtomicInteger opened
an opportunity to improve the original specification of the synchron-
isation classes from Chapter 4.

163

• Our goals in Chapter 7 were to exploit our results from Chapter 4,
Chapter 5 and Chapter 4 to reason about: 1. safety properties of
concurrent pointer-based data structures, 2. reentrant locks (specified
in Chapter 4), and 3. functional properties of concurrent data struc-
tures. We achieved our goals by proposing a layered verification tech-
nique where: 1. The first layer verifies the safety properties of con-
current data structures that use AtomicReference. We used VerCors
to verify an implementation of ConcurrentLinkedQueue. 2. The second
layer reasons about thread’s local and global properties. We used
VerCors to verify an implementation of ReentrantLock w.r.t. its
specification from Chapter 4. 3. The third layer links our results to
histories [22] to verify functional correctness of concurrent data struc-
tures. The verification is applied on verifying the correct behaviour of
ConcurrentLinkedQueue.

• Our goal in Chapter 8 was to apply our approach in reasoning about
atomic operations from Chapter 5 and Chapter 6 to verify the correct
behaviour of atomic operations GPGPU programs. We linked our
approach with [21] and demonstrated how one can reason about correct
permission distributions and functional properties in the presence of
both barriers and atomic operations as synchronisation constructs in
GPGPU programs.

Future Directions

We have verified the implementation of locks (spin-lock and reentrant lock)
using our specification for AtomicInteger. An interesting point to explore
is verification of an implementation of a coupled read-write lock, where
possibly two cooperating instances of an AtomicInteger are to be used for
synchronisation.

Reasoning about several atomic synchronisers when they exchange their
resources can lead to specify and verify Exchanger1 from java.util.concurrent.
To tackle this problem, techniques in which one can model interactions
between atomic variables via message passing synchronisation [15] or chan-
nel based-based synchronisation [55] are helpful.

1An Exchanger is a synchronisation construct where two threads can exchange their
resources with each other.

164 CHAPTER 9. CONCLUSIONS

A proposal for the complete specification of the CyclicBarrier to include
the second constructor with the internal barrier task (see Section 4.4) can
also be done as a follow up of our study. Then, verifying the implementation
of CyclicBarrier w.r.t. its new improved specification can be a goal to achieve.
In this direction experiences in verification of barriers using Iris [36] can be
applied in our work.

In reasoning about synchronisation constructs, protocols play an essen-
tial role. Any synchronisation construct needs to be instantiated with a
protocol that specifies the correct behaviour of the algorithm. Current
advances in Separation Logic-based specification and verification of proto-
cols [36, 73, 22, 69] shows the potential of an unified method that verifies
a custom synchronisation construct w.r.t. its specified protocol. Therefore,
we believe an important step for the practical verification of complex and
custom synchronisation algorithms is the unification of current logics and
techniques.

Generally speaking, this unification seems necessary within the CSL-
based verification community. Recently, Iris claims to have this unification
in terms of a general purpose logic for concurrent programs verification.
Currently, programs can be verified using Iris within an interactive theorem
provers, like Coq. To support a semi-automatic verification tool, recently
Caper [32] has been developed which is based on the predecessor of Iris, i.e.
iCAP [81]. More verified case studies can demonstrate its practicality for
the concurrent programming community.

All in all, recent progresses in concurrent program verification was sur-
prising even for its pioneers when they proposed a logic for reasoning about
pointer manipulating sequential programs. The Separation Logic-based se-
quential verification version already found its role in developing reliable in-
dustrial software [26]. Current results from the CSL-based verification of
non-trivial concurrent Java and C programs feeds the hope that with an
effort in unifying current techniques and enriching them with more auto-
matic annotation generation methods we can make the dream of industrial
error-free concurrent programs come true.

List of Publications

1. A. Amighi, P. de Carvalho Gomes, D. Gurov, and M. Huisman.
Sound Control-Flow Graph Extraction for Java Programs with Ex-
ceptions. In Software Engineering and Formal Methods - 10th Inter-
national Conference, SEFM 2012, Thessaloniki, Greece, October 1-5,
2012. Proceedings, pages 33–47, 2012.

2. A. Amighi, S. Blom, M. Huisman, and M. Zaharieva-Stojanovski.
The VerCors Project: Setting Up Basecamp. In Programming Lan-
guages meets Program Verification (PLPV 2012), pages 71–82. ACM
Press, 2012.

3. A. Amighi, S. Blom, S. Darabi, M. Huisman, W. Mostowski, and
M. Zaharieva-Stojanovski. Verification of Concurrent Systems with
VerCors. In Formal Methods for Executable Software Models - 14th
International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2014, Bertinoro, Italy,
June 16-20, 2014, Advanced Lectures, pages 172–216, 2014.

4. A. Amighi, C. Haack, M. Huisman, and C. Hurlin. Permission-based
Separation Logic for multithreaded Java programs. Logical Methods
in Computer Science, 11(1), 2015.

5. A. Amighi, S. Blom, M. Huisman, W. Mostowski, and M. Zaharieva-
Stojanovski. Formal Specifications for Java’s Synchronisation Classes.
In 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2014, Torino, Italy, February 12-
14, 2014, pages 725–733, 2014.

6. A. Amighi, S. Blom, and M. Huisman. Resource Protection Using
Atomics - Patterns and Verification. In Programming Languages and

165

166 LIST OF PUBLICATIONS

Systems - 12th Asian Symposium, APLAS 2014, Singapore, November
17-19, 2014, Proceedings, pages 255–274, 2014.

7. A. Amighi, S. Darabi, S. Blom, and M. Huisman. Specification and
Verification of Atomic Operations in GPGPU Programs. In SEFM
2015, pages 69–83, 2015.

8. A. Amighi, S. Blom, and M. Huisman. VerCors: A Layered Approach
to Practical Verification of Concurrent Software. In 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2016, Heraklion, Crete, Greece, February 17-19, 2016,
pages 495–503. IEEE Computer Society, 2016.

9. A. Amighi, P. de Carvalho Gomes, D. Gurov, and M. Huisman.
Provably correct control flow graphs from Java bytecode programs
with exceptions. STTT, 18(6):653–684, 2016.

BIBLIOGRAPHY 167

Bibliography

[1] A. Amighi, S. Blom, S. Darabi, M. Huisman, W. Mostowski, and
M. Zaharieva-Stojanovski. Verification of Concurrent Systems with
VerCors. In Formal Methods for Executable Software Models - 14th
International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM 2014, Bertinoro, Italy,
June 16-20, 2014, Advanced Lectures, pages 172–216, 2014.

[2] A. Amighi, S. Blom, and M. Huisman. Resource Protection Using
Atomics - Patterns and Verification. In Programming Languages and
Systems - 12th Asian Symposium, APLAS 2014, Singapore, November
17-19, 2014, Proceedings, pages 255–274, 2014.

[3] A. Amighi, S. Blom, and M. Huisman. VerCors: A Layered Approach
to Practical Verification of Concurrent Software. In 24th Euromicro
International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2016, Heraklion, Crete, Greece, February 17-19, 2016,
pages 495–503. IEEE Computer Society, 2016.

[4] A. Amighi, S. Blom, M. Huisman, W. Mostowski, and M. Zaharieva-
Stojanovski. Formal Specifications for Java’s Synchronisation Classes.
In 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2014, Torino, Italy, February 12-
14, 2014, pages 725–733, 2014.

[5] A. Amighi, S. Blom, M. Huisman, W. Mostowski, and M. Zaharieva-
Stojanovski. Formal Specifications for Java’s Synchronisation Classes.
In A. L. Lafuente and E. Tuosto, editors, 22nd Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Pro-
cessing, pages 725–733. IEEE Computer Society, 2014.

[6] A. Amighi, S. Blom, M. Huisman, and M. Zaharieva-Stojanovski. The
VerCors Project: Setting Up Basecamp. In Programming Languages
meets Program Verification (PLPV 2012), pages 71–82. ACM Press,
2012.

[7] A. Amighi, S. Darabi, S. Blom, and M. Huisman. Specification and
Verification of Atomic Operations in GPGPU Programs. In SEFM
2015, pages 69–83, 2015.

168 BIBLIOGRAPHY

[8] A. Amighi, P. de Carvalho Gomes, D. Gurov, and M. Huisman. Sound
Control-Flow Graph Extraction for Java Programs with Exceptions. In
Software Engineering and Formal Methods - 10th International Confer-
ence, SEFM 2012, Thessaloniki, Greece, October 1-5, 2012. Proceed-
ings, pages 33–47, 2012.

[9] A. Amighi, P. de Carvalho Gomes, D. Gurov, and M. Huisman. Prov-
ably correct control flow graphs from Java bytecode programs with
exceptions. STTT, 18(6):653–684, 2016.

[10] A. Amighi, C. Haack, M. Huisman, and C. Hurlin. Permission-based
Separation Logic for multithreaded Java programs. Logical Methods in
Computer Science, 11(1), 2015.

[11] A. Amighi, M. Huisman, and S. Blom. Verification of Shared-Reading
Synchronisers. SAC, 2018. Submitted.

[12] K. R. Apt. Ten years of Hoare’s logic: A survey − Part I. ACM Trans.
Program. Lang. Syst., 3(4):431–483, Oct. 1981.

[13] Atomic Sum in GPU: http://ctit-vm2.ewi.utwente.nl/site/
example?id=38.

[14] E. Bardsley and A. Donaldson. Warps and atomics: Beyond barrier
synchronization in the verification of GPU kernels. In NASA Formal
Methods, volume 8430 of LNCS, pages 230–245. Springer, 2014.

[15] C. J. Bell, A. W. Appel, and D. Walker. Concurrent Separation Logic
for Pipelined Parallelization. In R. Cousot and M. Martel, editors,
Static Analysis - 17th International Symposium, SAS 2010, Perpignan,
France, September 14-16, 2010. Proceedings, volume 6337 of Lecture
Notes in Computer Science, pages 151–166. Springer, 2010.

[16] J. A. Bergstra, A. Ponse, and S. A. Smolka, editors. Handbook of Process
Algebra . Elsevier Science, Amsterdam, 2001.

[17] A. Betts, N. Chong, A. Donaldson, S. Qadeer, and P. Thomson. GPUV-
erify: a verifier for GPU kernels. In OOPSLA’12, pages 113–132. ACM,
2012.

[18] S. Blom, S. Darabi, and M. Huisman. Verification of Loop Parallelisa-
tions. In FASE, pages 202–217, 2015.

http://ctit-vm2.ewi.utwente.nl/site/example?id=38
http://ctit-vm2.ewi.utwente.nl/site/example?id=38

BIBLIOGRAPHY 169

[19] S. Blom and M. Huisman. The VerCors Tool for Verification of Con-
current Programs. In FM 2014: Formal Methods - 19th International
Symposium, Singapore, May 12-16, 2014. Proceedings, pages 127–131,
2014.

[20] S. Blom, M. Huisman, and J. Kiniry. How Do Developers Use APIs?
A Case Study in Concurrency, 2013. Submitted to ICECCS.

[21] S. Blom, M. Huisman, and M. Mihelčić. Specification and verification
of GPGPU programs . Science of Computer Programming, 95(3):376 –
388, 2014.

[22] S. Blom, M. Huisman, and M. Zaharieva-Stojanovski. History-Based
Verification of Functional Behaviour of Concurrent Programs. In
R. Calinescu and B. Rumpe, editors, Software Engineering and Formal
Methods - 13th International Conference, SEFM 2015, York, UK,
September 7-11, 2015. Proceedings, volume 9276 of Lecture Notes in
Computer Science, pages 84–98. Springer, 2015.

[23] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission
accounting in separation logic. In J. Palsberg and M. Abadi, editors,
POPL, pages 259–270. ACM, 2005.

[24] J. Boyland. Checking interference with fractional permissions. In
R. Cousot, editor, Static Analysis Symposium, volume 2694 of LNCS,
pages 55–72. Springer, 2003.

[25] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino,
and E. Poll. An overview of JML tools and applications. STTT,
7(3):212–232, 2005.

[26] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. W. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez.
Moving fast with software verification. In NASA Formal Methods -
7th International Symposium, NFM 2015, Pasadena, CA, USA, April
27-29, 2015, Proceedings, pages 3–11, 2015.

[27] Verified ConcurrentLinkedQueue: https://github.com/
utwente-fmt/vercors/blob/master/examples/layers/LFQ.java.

https://github.com/utwente-fmt/vercors/blob/master/examples/layers/LFQ.java
https://github.com/utwente-fmt/vercors/blob/master/examples/layers/LFQ.java

170 BIBLIOGRAPHY

[28] Verified CountDownLatch: https://github.com/utwente-fmt/
vercors/blob/master/examples/synchronizers/CountDownLatch.
java.

[29] da Rocha Pinto, Pedro, Dinsdale-Young, Thomas, and P. Gardner.
TaDA: A logic for time and data abstraction. In R. Jones, editor,
ECOOP 2014 - Object-Oriented Programming, volume 8586 of LNCS,
pages 207–231. Springer, 2014.

[30] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. Steps in Mod-
ular Specifications for Concurrent Modules (Invited Tutorial Paper).
Electr. Notes Theor. Comput. Sci., 319:3–18, 2015.

[31] Data race vs. race condition: https://blog.regehr.org/archives/
490.

[32] T. Dinsdale-Young, P. da Rocha Pinto, K. J. Andersen, and L. Birke-
dal. Caper - Automatic Verification for Fine-Grained Concurrency. In
Programming Languages and Systems - 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, pages 420–447, 2017.

[33] T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Va-
feiadis. Concurrent abstract predicates. In ECOOP, pages 504–528,
2010.

[34] M. Dodds, X. Feng, M. J. Parkinson, and V. Vafeiadis. Deny-guarantee
reasoning. In Programming Languages and Systems, 18th European
Symposium on Programming, ESOP 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2009, York, UK, March 22-29, 2009. Proceedings, pages 363–377, 2009.

[35] M. Dodds, S. Jagannathan, and M. J. Parkinson. Modular reason-
ing for deterministic parallelism. In Proceedings of the 38th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’11, pages 259–270, New York, NY, USA, 2011. ACM.

[36] M. Dodds, S. Jagannathan, M. J. Parkinson, K. Svendsen, and L. Birke-
dal. Verifying custom synchronization constructs using higher-order

https://github.com/utwente-fmt/vercors/blob/master/examples/synchronizers/CountDownLatch.java
https://github.com/utwente-fmt/vercors/blob/master/examples/synchronizers/CountDownLatch.java
https://github.com/utwente-fmt/vercors/blob/master/examples/synchronizers/CountDownLatch.java
https://blog.regehr.org/archives/490
https://blog.regehr.org/archives/490

BIBLIOGRAPHY 171

separation logic. ACM Trans. Program. Lang. Syst., 38(2):4:1–4:72,
2016.

[37] N. Francez and A. Pnueli. A proof method for cyclic programs. Acta
Inf., 9:133–157, 1978.

[38] A. Gotsman, J. Berdine, and B. Cook. Interprocedural Shape Analysis
with Separated Heap Abstractions. In K. Yi, editor, Static Analysis,
13th International Symposium, SAS 2006, Seoul, Korea, August 29-31,
2006, Proceedings, volume 4134 of Lecture Notes in Computer Science,
pages 240–260. Springer, 2006.

[39] A. Gotsman, J. Berdine, and B. Cook. Precision and the Conjunction
Rule in Concurrent Separation Logic. Electr. Notes Theor. Comput.
Sci., 276:171–190, 2011.

[40] A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local
reasoning for storable locks and threads. In Proceedings of the 5th Asian
conference on Programming languages and systems, APLAS’07, pages
19–37. Springer-Verlag, 2007.

[41] C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s
reentrant locks. In G. Ramalingam, editor, Asian Programming Lan-
guages and Systems Symposium, volume 5356 of LNCS, pages 171–187.
Springer, 2008.

[42] C. Haack and C. Hurlin. Separation logic contracts for a Java-like
language with fork/join. In J. Meseguer and G. Rosu, editors, Algebraic
Methodology and Software Technology, volume 5140 of LNCS, pages
199–215. Springer, 2008.

[43] C. Hoare. An axiomatic basis for computer programming. Communic-
ations of the ACM, 12(10):576–580, 1969.

[44] C. Hoare. Proof of correctness of data representations. Acta Informat-
ica, 1(4):271–281, 1972.

[45] A. Hobor and C. Gherghina. Barriers in Concurrent Separation Logic.
In 20th European Symposium of Programming (ESOP 2011), LNCS,
pages 276–296. Springer, 2011.

172 BIBLIOGRAPHY

[46] C. Hurlin. Specification and Verification of Multithreaded Object-
Oriented Programs with Separation Logic. PhD thesis, Université Nice
Sophia Antipolis, 2009.

[47] B. Jacobs and F. Piessens. Modular full functional specification and
verification of lock-free data structures. CW Reports CW551, Depart-
ment of Computer Science, K.U.Leuven, 2009.

[48] B. Jacobs and F. Piessens. Expressive modular fine-grained concur-
rency specification. In Proceedings of the 38th annual ACM SIGPLAN-
SIGACT, POPL ’11, pages 271–282, New York, NY, USA, 2011. ACM.

[49] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and
F. Piessens. Verifast: A powerful, sound, predictable, fast verifier for C
and Java. In NASA Formal Methods - Third International Symposium,
NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceedings, pages
41–55, 2011.

[50] C. B. Jones. Specification and design of (parallel) programs. In IFIP
Congress, pages 321–332, 1983.

[51] C. B. Jones. Tentative steps toward a development method for inter-
fering programs. ACM Transactions on Programming Languages and
Systems, 5(4):596–619, 1983.

[52] C. B. Jones. The role of auxiliary variables in the formal development of
concurrent programs. In A. Roscoe, C. B. Jones, and K. R. Wood, edit-
ors, Reflections on the Work of C.A.R. Hoare, pages 167–187. Springer
London, 2010.

[53] C. B. Jones, I. J. Hayes, and R. J. Colvin. Balancing expressiveness
in formal approaches to concurrency. Formal Aspects of Computing,
27(3):475–497, 2015.

[54] U. Juhasz, I. T. Kassios, P. Müller, M. Novacek, M. Schwerhoff, and
A. J. Summers. Viper: A verification infrastructure for permission-
based reasoning. Technical report, ETH Zurich, 2014.

[55] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon, L. Birke-
dal, and D. Dreyer. Iris: Monoids and Invariants as an Orthogonal
Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual

BIBLIOGRAPHY 173

ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, pages
637–650, 2015.

[56] A. Laarman, J. van de Pol, and M. Weber. Boosting multi-core reach-
ability performance with shared hash tables. In R. Bloem and N. Shary-
gina, editors, FMCAD, pages 247–255. IEEE, 2010.

[57] D. Lea. A Java fork/join framework. In Proceedings of the ACM 2000
conference on Java Grande, JAVA ’00, pages 36–43, New York, NY,
USA, 2000. ACM.

[58] K. Leino, P. Müller, and J. Smans. Verification of concurrent pro-
grams with Chalice. In Lecture notes of FOSAD, volume 5705 of LNCS.
Springer, 2009.

[59] R. Ley-Wild and A. Nanevski. Subjective auxiliary state for coarse-
grained concurrency. In R. Giacobazzi and R. Cousot, editors, POPL,
pages 561–574. ACM, 2013.

[60] G. Li and G. Gopalakrishnan. Scalable SMT-based verification of GPU
kernel functions. In SIGSOFT FSE 2010, pages 187–196. ACM, 2010.

[61] Verified Lock: https://github.com/utwente-fmt/vercors/blob/
master/examples/synchronizers/ReentrantLock.java.

[62] B. Meyer. Applying "design by contract". Computer, 25(10):40–51,
Oct. 1992.

[63] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proceedings of the fif-
teenth annual ACM symposium on Principles of distributed computing,
PODC ’96, pages 267–275, New York, NY, USA, 1996. ACM.

[64] G. Moore. Cramming more components onto integrated circuits. Pro-
ceedings of the IEEE, 86(1):82–85, Jan 1998.

[65] P. Müller. Modular Specification and Verification of Object-Oriented
Programs. PhD thesis, FernUniversität Hagen, 2001.

https://github.com/utwente-fmt/vercors/blob/master/examples/synchronizers/ReentrantLock.java
https://github.com/utwente-fmt/vercors/blob/master/examples/synchronizers/ReentrantLock.java

174 BIBLIOGRAPHY

[66] P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification
infrastructure for permission-based reasoning. In Verification, Model
Checking, and Abstract Interpretation - 17th International Conference,
VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceed-
ings, pages 41–62, 2016.

[67] NVIDIA Corporation. CUDA C programming guide, version 5.5, 2013.

[68] P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical
Computer Science, 375(1–3):271–307, 2007.

[69] W. Oortwijn, S. Blom, and M. Huisman. Future-based Static Ana-
lysis of Message Passing Programs. In D. A. Orchard and N. Yoshida,
editors, Proceedings of the Ninth workshop on Programming Language
Approaches to Concurrency- and Communication-cEntric Software,
PLACES 2016, Eindhoven, The Netherlands, 8th April 2016., volume
211 of EPTCS, pages 65–72, 2016.

[70] S. Owicki and D. Gries. An axiomatic proof technique for parallel
programs. Acta Informatica Journal, 6:319–340, 1975.

[71] M. Parkinson and G. Bierman. Separation logic, abstraction and in-
heritance. In Principles of programming languages (POPL ’08), pages
75–86. ACM Press, 2008.

[72] M. J. Parkinson. Local reasoning for Java. Technical Report UCAM-
CL-TR-654, University of Cambridge, Computer Laboratory, Nov.
2005.

[73] W. Penninckx, B. Jacobs, and F. Piessens. Sound, Modular and Com-
positional Verification of the Input/Output Behavior of Programs. In
J. Vitek, editor, Programming Languages and Systems - 24th European
Symposium on Programming, ESOP 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015,
London, UK, April 11-18, 2015. Proceedings, volume 9032 of Lecture
Notes in Computer Science, pages 158–182. Springer, 2015.

[74] PVL: https://github.com/utwente-fmt/vercors/wiki/
Prototypal-Verification-Language.

https://github.com/utwente-fmt/vercors/wiki/Prototypal-Verification-Language
https://github.com/utwente-fmt/vercors/wiki/Prototypal-Verification-Language

BIBLIOGRAPHY 175

[75] M. Raynal. Concurrent Programming - Algorithms, Principles, and
Foundations. Springer, 2013.

[76] J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Struc-
tures. In Logic in Computer Science, pages 55–74. IEEE Computer
Society, 2002.

[77] Verified Semaphore: https://github.com/utwente-fmt/vercors/
blob/master/examples/synchronizers/Semaphore.java.

[78] J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames. ACM
Trans. Program. Lang. Syst., 34(1):2:1–2:58, 2012.

[79] J. Smans, D. Vanoverberghe, D. Devriese, B. Jacobs, and F. Pies-
sens. Shared boxes: rely-guarantee reasoning in verifast. CW Reports
CW662, Department of Computer Science, KU Leuven, May 2014.

[80] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. Hwu. Parboil: A revised benchmark
suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing, 2012.

[81] K. Svendsen and L. Birkedal. Impredicative Concurrent Abstract Pre-
dicates. In Programming Languages and Systems - 23rd European Sym-
posium on Programming, ESOP 2014, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, pages 149–168, 2014.

[82] K. Svendsen, L. Birkedal, and M. J. Parkinson. Modular reasoning
about separation of concurrent data structures. In ESOP, pages 169–
188, 2013.

[83] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble. Qualitas corpus: A curated collection of Java
code for empirical studies. In 2010 Asia Pacific Software Engineering
Conference (APSEC2010), Dec. 2010.

[84] A. Turon, D. Dreyer, and L. Birkedal. Unifying refinement and hoare-
style reasoning in a logic for higher-order concurrency. In ACM SIG-
PLAN International Conference on Functional Programming, ICFP’13,
Boston, MA, USA - September 25 - 27, 2013, pages 377–390, 2013.

https://github.com/utwente-fmt/vercors/blob/master/examples/synchronizers/Semaphore.java
https://github.com/utwente-fmt/vercors/blob/master/examples/synchronizers/Semaphore.java

176 BIBLIOGRAPHY

[85] V. Vafeiadis. Concurrent separation logic and operational semantics.
Electr. Notes Theor. Comput. Sci., 276:335–351, 2011.

[86] V. Vafeiadis and M. Parkinson. A marriage of rely/guarantee and sep-
aration logic. In CONCUR, pages 256–271, 2007.

[87] Vercors tool set: http://ctit-vm3.ewi.utwente.nl/
vercors-verifier/.

[88] H. Yang. Local Reasoning for Stateful Programs. PhD thesis, University
of Illinois,Urbana-Champaign,Illinois, 2001.

http://ctit-vm3.ewi.utwente.nl/vercors-verifier/
http://ctit-vm3.ewi.utwente.nl/vercors-verifier/

177

Sumenvatting

Digitale services zijn een onmisbaar onderdeel van ons dagelijks leven ge-
worden. Om deze services te kunnen leveren, is het belangrijk om efficiënte
software te kunnen maken. Concurrency is een programmeertechniek die
software-ontwikkelaars kunnen gebruiken om de snelheid van hun software
te verbeteren. In een concurrent programma worden meerdere berekenin-
gen tegelijkertijd uitgevoerd. Deze berekeningen hebben soms tegelijkertijd
toegang nodig tot dezelfde geheugenlocaties, wat tot onverwachte fouten
kan leiden. Programmeurs gebruiken daarom synchronisatietechnieken om
de concurrency aan banden te leggen, en toegang tot dit gedeelde geheugen
te coördineren. Om betrouwbare concurrent software te ontwikkelen is de
correctheid van deze synchronisatietechnieken dus cruciaal.

In dit proefschrift gebruiken we een programmalogica, namelijk permissie-
gebaseerde separatielogica, om op een statische manier te kunnen redeneren
over de correctheid van synchronisatietechnieken. De gebruikte logica is
krachtig genoeg om te redeneren over welke berekening toegang heeft tot
een bepaalde geheugenlocatie. Een correct geïmplementeerde synchronisa-
tietechniek zorgt er voor dat de toegang tot een gedeelde geheugenlocatie
op een juiste manier wordt verdeeld. We gebruiken onze VerCors veri-
ficatietool om de correctheid van verschillende synchronisatietechnieken te
demonstreren.

In Hoofdstuk 1 beschrijven we de context van het werk in dit proefschrift.
Alle benodigde technische achtergrondkennis over permissie-gebaseerde sep-
aratielogica en programmasynchronisatie worden toegelicht in Hoofdstuk 2.
In Hoofdstuk 3 bespreken we hoe het beginnen en samenvoegen van berek-
eningen gezien kan worden als synchronisatie tussen verschillende bereken-
ingen en hoe dit gebruikt kan worden om correctheid van programma’s te
verifiëren.

Om correctheid van de verschillende synchronisatieklassen te laten zien,
moeten we eerst specifiëren wat het verwachte gedrag is van deze klassen.
Dit wordt besproken in Hoofdstuk 4. We beschrijven een uniforme aanpak
om het gedrag van verschillende synchronisatietechnieken te beschrijven.
Met behulp van onze specificaties is het mogelijk om te redeneren over de
correctheid van programma’s die de verschillende synchronisatietechnieken
gebruiken om toegang tot het gedeelde geheugen te coördineren.

De atomic klassen van java.util.concurrent zijn een basisingrediënt voor
elke implementatie van een synchronisatietechniek. In Hoofdstukken 5 en 6

178 SUMENVATTING

beschrijven we een specificatie voor deze klassen, die gebruikt kan worden
om te laten zien dat de implementatie van verschillende synchronisatietech-
nieken voldoet aan de specificaties zoals beschreven in Hoofdstuk 4. Deze
specificatie is geparametriseerd met een protocol en een resource invariant
en de instantiatie hiervan is afhankelijk van de context waarin de synchron-
isatietechniek gebruikt wordt.

In Hoofdstuk 7 beschrijven we hoe verificaties gestapeld kunnen worden,
waarbij op elke laag een specifiek aspect van het te verifiëren programma
gecontroleerd wordt. We laten in het bijzonder zien hoe dit gebruikt wordt
voor het verifiëren van programma’s waarin atomaire operaties de belangrijk-
ste synchronisatietechniek zijn. Als concreet voorbeeld laten we zien hoe we
op het laagste niveau kunnen laten zien dat een niet-blokkerende datastruc-
tuurimplementatie geen data races heeft, zodat we dit kunnen gebruiken om
op een hoger niveau functionele eigenschappen van de datastructuur correct
te bewijzen.

In Hoofdstuk 8 bespreken we een specificatie- en verificatietechniek om
te redeneren over afwezigheid van data races en functionele correctheid van
GPU kernels die atomaire operaties gebruiken als synchronisatiemechan-
isme.

Tenslotte eindigen we het proefschrift in Hoofdstuk 9 met ideeën voor
vervolgonderzoek.

179

Curriculum Vitae

Afshin Amighi received his BSc degree in Software Engineering from Isfa-
han University of Technology, Isfahan, Iran. After receiving his bachelor’s
degree in 2000, he started working at the Information and Communication
Technology Institute (ICTI) located in Isfahan University of Technology,
as a software engineer for eight years. On September 2008, he moved to
Stockholm, Sweden, where he got admitted to study in an international
MSc program with specialization in Software Engineering for Distributed
Systems at KTH. In 2010, he participated in a live streaming P2P project
at Tradix AB, Stockholm.

On March 2011, he joined to the Formal Methods and Tools group at
the EEMCS Department of University of Twente, The Netherlands as a
Ph.D. candidate. His research was funded by an ERC grant under project
VerCors : Verification of Concurrent Data Structures. His research led to
a number of publications and this thesis. Afshin is currently a Computer
Science lecturer in Rotterdam University of Applied Science.

Titles in the IPA Dissertation Series since 2015

G. Alpár. Attribute-Based Identity
Management: Bridging the Crypto-
graphic Design of ABCs with the
Real World. Faculty of Science,
Mathematics and Computer Sci-
ence, RU. 2015-01

A.J. van der Ploeg. Efficient
Abstractions for Visualization and
Interaction. Faculty of Science,
UvA. 2015-02

R.J.M. Theunissen. Supervis-
ory Control in Health Care Systems.
Faculty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architec-
ture for Body Area Sensor Net-
works: Flexibility and Trustworthi-
ness. Faculty of Mathematics and
Computer Science, TU/e. 2015-04

A. Guzzi. Supporting Developers’
Teamwork from within the IDE.
Faculty of Electrical Engineering,
Mathematics, and Computer Sci-
ence, TUD. 2015-05

T. Espinha. Web Service Grow-
ing Pains: Understanding Ser-
vices and Their Clients. Faculty
of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2015-06

S. Dietzel. Resilient In-network
Aggregation for Vehicular Net-
works. Faculty of Electrical Engin-

eering, Mathematics & Computer
Science, UT. 2015-07

E. Costante. Privacy through-
out the Data Cycle. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2015-08

S. Cranen. Getting the point —
Obtaining and understanding fix-
points in model checking. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2015-09

R. Verdult. The (in)security of
proprietary cryptography. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2015-10

J.E.J. de Ruiter. Lessons learned
in the analysis of the EMV and TLS
security protocols. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2015-11

Y. Dajsuren. On the Design
of an Architecture Framework and
Quality Evaluation for Automot-
ive Software Systems. Faculty of
Mathematics and Computer Sci-
ence, TU/e. 2015-12

J. Bransen. On the Incremental
Evaluation of Higher-Order Attrib-
ute Grammars. Faculty of Science,
UU. 2015-13

S. Picek. Applications of Evolu-
tionary Computation to Cryptology.

Faculty of Science, Mathematics
and Computer Science, RU. 2015-14

C. Chen. Automated Fault Localiz-
ation for Service-Oriented Software
Systems. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2015-15

S. te Brinke. Developing Energy-
Aware Software. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2015-16

R.W.J. Kersten. Software
Analysis Methods for Resource-
Sensitive Systems. Faculty of Sci-
ence, Mathematics and Computer
Science, RU. 2015-17

J.C. Rot. Enhanced coinduction.
Faculty of Mathematics and Nat-
ural Sciences, UL. 2015-18

M. Stolikj. Building Blocks for
the Internet of Things. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2015-19

D. Gebler. Robust SOS Specific-
ations of Probabilistic Processes.
Faculty of Sciences, Department of
Computer Science, VUA. 2015-20

M. Zaharieva-Stojanovski.
Closer to Reliable Software: Verify-
ing functional behaviour of concur-
rent programs. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2015-21

R.J. Krebbers. The C standard
formalized in Coq. Faculty of Sci-

ence, Mathematics and Computer
Science, RU. 2015-22

R. van Vliet. DNA Expressions –
A Formal Notation for DNA. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming.
Faculty of Mathematics and Nat-
ural Sciences, UL. 2016-01

S.J.C. Joosten. Verification of
Interconnects. Faculty of Math-
ematics and Computer Science,
TU/e. 2016-02

M.W. Gazda. Fixpoint Lo-
gic, Games, and Relations of
Consequence. Faculty of Math-
ematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Ana-
lysis and Verification of Embedded
Systems for Healthcare. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2016-04

P.M. Heck. Quality of Just-in-
Time Requirements: Just-Enough
and Just-in-Time. Faculty of
Electrical Engineering, Mathem-
atics, and Computer Science,
TUD. 2016-05

Y. Luo. From Conceptual Mod-
els to Safety Assurance – Apply-
ing Model-Based Techniques to Sup-
port Safety Assurance. Faculty of

Mathematics and Computer Sci-
ence, TU/e. 2016-06

B. Ege. Physical Security Ana-
lysis of Embedded Devices. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2016-07

A.I. van Goethem. Algorithms
for Curved Schematization. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2016-08

T. van Dijk. Sylvan: Multi-
core Decision Diagrams. Fac-
ulty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2016-09

I. David. Run-time resource man-
agement for component-based sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2016-10

A.C. van Hulst. Control Syn-
thesis using Modal Logic and Par-
tial Bisimilarity – A Treatise Sup-
ported by Computer Verified Proofs.
Faculty of Mechanical Engineering,
TU/e. 2016-11

A. Zawedde. Modeling the Dy-
namics of Requirements Process
Improvement. Faculty of Math-
ematics and Computer Science,
TU/e. 2016-12

F.M.J. van den Broek. Mobile
Communication Security. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2016-13

J.N. van Rijn. Massively Collab-
orative Machine Learning. Faculty
of Mathematics and Natural Sci-
ences, UL. 2016-14

M.J. Steindorfer. Efficient Im-
mutable Collections. Faculty of Sci-
ence, UvA. 2017-01

W. Ahmad. Green Comput-
ing: Efficient Energy Manage-
ment of Multiprocessor Streaming
Applications via Model Checking.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2017-02

D. Guck. Reliable Systems –
Fault tree analysis via Markov re-
ward automata. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2017-03

H.L. Salunkhe. Modeling
and Buffer Analysis of Real-
time Streaming Radio Applications
Scheduled on Heterogeneous Mul-
tiprocessors. Faculty of Math-
ematics and Computer Science,
TU/e. 2017-04

A. Krasnova. Smart invaders of
private matters: Privacy of commu-
nication on the Internet and in the
Internet of Things (IoT). Faculty
of Science, Mathematics and Com-
puter Science, RU. 2017-05

A.D. Mehrabi. Data Structures
for Analyzing Geometric Data. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2017-06

D. Landman. Reverse Engineer-
ing Source Code: Empirical Studies
of Limitations and Opportunities.
Faculty of Science, UvA. 2017-07

W. Lueks. Security and Privacy
via Cryptography – Having your
cake and eating it too. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2017-08

A.M. Şutîi. Modularity and Re-
use of Domain-Specific Languages:
an exploration with MetaMod. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2017-09

U. Tikhonova. Engineering the
Dynamic Semantics of Domain Spe-
cific Languages. Faculty of Math-
ematics and Computer Science,
TU/e. 2017-10

Q.W. Bouts. Geographic Graph
Construction and Visualization.
Faculty of Mathematics and Com-
puter Science, TU/e. 2017-11

A. Amighi. Specification and
Verification of Synchronisation
Classes in Java: A Practical Ap-
proach. Faculty of Electrical Engin-
eering, Mathematics & Computer
Science, UT. 2018-01

	Abstract
	Contents
	Listings
	Introduction
	Concurrency
	Synchronisation
	Verification
	A Practical Approach
	Thesis

	Technical Background
	Atomic Variables in Java
	Permission-based Separation Logic
	VerCors Specification Language

	Reasoning about Thread Creation and Termination
	Reasoning about Dynamic Threads
	Contract of Class Thread
	Example: Multi-threaded Data Processing
	Conclusion and Related Work

	Synchronisers Specifications
	Locks in Java
	Semaphore Specification
	CountDownLatch Specification
	CyclicBarrier Specification
	Examples
	Conclusion and Related Work

	Verification of Synchronisers: Exclusive Access
	Synchronisation Patterns
	Ownership Exchange via Atomics
	Specifications of Atomics
	Contracts of AtomicInteger
	Conclusion and Related Work

	Verification of Synchronisers: Shared Reading
	Synchronisation Classes
	Reasoning about Atomics
	Contract of AtomicInteger
	Verification
	Conclusion and Related Work

	Multi-layer Verification based on Concurrent Separation Logic
	Layer 1: Permissions and Resource Invariants
	Layer 2: Relating Thread-Local and Global Variables
	Layer 3: Functional Properties using Histories
	Conclusion and Related Work

	Specification and Verification of Atomic Operations in GPGPU Programs
	Background
	Specification
	Formalization
	Conclusion and Related Work

	Conclusions
	List of Publications
	Bibliography

