3 research outputs found

    Contextual Knowledge and Information Fusion for Maritime Piracy Surveillance

    Get PDF
    Proceedings of: NATO Advanced Study Institute (ASI) on Prediction and Recognition of Piracy Efforts Using Collaborative Human-Centric Information Systems, Salamanca, 19-30 September, 2011Though piracy accounts for only a small fraction of the general losses of the maritime industry it creates a serious threat to the maritime security because of the connections between organized piracy and wider criminal networks and corruption on land. Fighting piracy requires monitoring the waterways, harbors,and criminal networks on the land to increase the ability of the decision makers to predict piracy attracts and manage operations to prevent or contain them. Piracy surveillance involves representing and processing huge amount heterogeneous information often uncertain, unreliable, and irrelevant within a specific context to detect and recognize suspicious activities to alert decision makers on vessel behaviors of interest with minimal false alarm. The paper discusses the role of information fusion, and context representation and utilization in building an piracy surveillance picture.This paper has utilized the results of the research activity supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC and CAM CONTEXTS (S2009/TIC-1485)Publicad

    A Practical Approach to the Development of Ontology-Based Information Fusion Systems

    Get PDF
    Proceedings of: NATO Advanced Study Institute (ASI) on Prediction and Recognition of Piracy Efforts Using Collaborative Human-Centric Information Systems, Salamanca, 19-30 September, 2011Ontology-based representations are gaining momentum among other alternatives to implement the knowledge model of high-level fusion applications. In this paper, we provide an introduction to the theoretical foundations of ontology-based knowledge representation and reasoning, with a particular focus on the issues that appear in maritime security –where heterogeneous regulations, information sources, users, and systems are involved. We also present some current approaches and existing technologies for high-level fusion based on ontological representations. Unfortunately, current tools for the practical implementation of ontology-based systems are not fully standardized, or even prepared to work together in medium-scale systems. Accordingly, we discuss different alternatives to face problems such as spatial and temporal knowledge representation or uncertainty management. To illustrate the conclusions drawn from this research, an ontology-based semantic tracking system is briefly presented. Results and latent capabilities of this framework are shown at the end of the paper, where we also envision future opportunities for this kind of applications.This research activity is supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS 2008-07029-C02-02.Publicad
    corecore