3,053 research outputs found

    On Automating the Doctrine of Double Effect

    Full text link
    The doctrine of double effect (DDE\mathcal{DDE}) is a long-studied ethical principle that governs when actions that have both positive and negative effects are to be allowed. The goal in this paper is to automate DDE\mathcal{DDE}. We briefly present DDE\mathcal{DDE}, and use a first-order modal logic, the deontic cognitive event calculus, as our framework to formalize the doctrine. We present formalizations of increasingly stronger versions of the principle, including what is known as the doctrine of triple effect. We then use our framework to simulate successfully scenarios that have been used to test for the presence of the principle in human subjects. Our framework can be used in two different modes: One can use it to build DDE\mathcal{DDE}-compliant autonomous systems from scratch, or one can use it to verify that a given AI system is DDE\mathcal{DDE}-compliant, by applying a DDE\mathcal{DDE} layer on an existing system or model. For the latter mode, the underlying AI system can be built using any architecture (planners, deep neural networks, bayesian networks, knowledge-representation systems, or a hybrid); as long as the system exposes a few parameters in its model, such verification is possible. The role of the DDE\mathcal{DDE} layer here is akin to a (dynamic or static) software verifier that examines existing software modules. Finally, we end by presenting initial work on how one can apply our DDE\mathcal{DDE} layer to the STRIPS-style planning model, and to a modified POMDP model.This is preliminary work to illustrate the feasibility of the second mode, and we hope that our initial sketches can be useful for other researchers in incorporating DDE in their own frameworks.Comment: 26th International Joint Conference on Artificial Intelligence 2017; Special Track on AI & Autonom

    Automatic Probabilistic Program Verification through Random Variable Abstraction

    Full text link
    The weakest pre-expectation calculus has been proved to be a mature theory to analyze quantitative properties of probabilistic and nondeterministic programs. We present an automatic method for proving quantitative linear properties on any denumerable state space using iterative backwards fixed point calculation in the general framework of abstract interpretation. In order to accomplish this task we present the technique of random variable abstraction (RVA) and we also postulate a sufficient condition to achieve exact fixed point computation in the abstract domain. The feasibility of our approach is shown with two examples, one obtaining the expected running time of a probabilistic program, and the other the expected gain of a gambling strategy. Our method works on general guarded probabilistic and nondeterministic transition systems instead of plain pGCL programs, allowing us to easily model a wide range of systems including distributed ones and unstructured programs. We present the operational and weakest precondition semantics for this programs and prove its equivalence

    The emergence of French statistics. How mathematics entered the world of statistics in France during the 1920s

    Get PDF
    This paper concerns the emergence of modern mathematical statistics in France after the First World War. Emile Borel's achievements are presented, and especially his creation of two institutions where mathematical statistics was developed: the {\it Statistical Institute of Paris University}, (ISUP) in 1922 and above all the {\it Henri Poincar\'e Institute} (IHP) in 1928. At the IHP, a new journal {\it Annales de l'Institut Henri Poincar\'e} was created in 1931. We discuss the first papers in that journal dealing with mathematical statistics

    A Taxonomy of Causality-Based Biological Properties

    Get PDF
    We formally characterize a set of causality-based properties of metabolic networks. This set of properties aims at making precise several notions on the production of metabolites, which are familiar in the biologists' terminology. From a theoretical point of view, biochemical reactions are abstractly represented as causal implications and the produced metabolites as causal consequences of the implication representing the corresponding reaction. The fact that a reactant is produced is represented by means of the chain of reactions that have made it exist. Such representation abstracts away from quantities, stoichiometric and thermodynamic parameters and constitutes the basis for the characterization of our properties. Moreover, we propose an effective method for verifying our properties based on an abstract model of system dynamics. This consists of a new abstract semantics for the system seen as a concurrent network and expressed using the Chemical Ground Form calculus. We illustrate an application of this framework to a portion of a real metabolic pathway
    • …
    corecore