
Formally justified and modular
Bayesian inference for probabilistic

programs

Adam Michał Ścibior

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Trinity College September 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/226941389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

This dissertation is the result of my own work and includes nothing which is the outcome of
work done in collaboration except as specified in the text.

It is not substantially the same as any that I have submitted, or, is being concurrently
submitted for a degree or diploma or other qualification at the University of Cambridge
or any other University or similar institution. I further state that no substantial part of my
dissertation has already been submitted, or, is being concurrently submitted for any such
degree, diploma or other qualification at the University of Cambridge or any other University
or similar institution.

This dissertation meets the word limit for the Engineering Degree Committee. Specifi-
cally, it does not exceed 65,000 words, including appendices, bibliography, footnotes, tables
and equations, and it does not contain more than 150 figures.

Abstract

Formally justified and modular Bayesian inference for
probabilistic programs

Adam Michał Ścibior

Probabilistic modelling offers a simple and coherent framework to describe the real world in
the face of uncertainty. Furthermore, by applying Bayes’ rule it is possible to use probabilistic
models to make inferences about the state of the world from partial observations. While
traditionally probabilistic models were constructed on paper, more recently the approach
of probabilistic programming enables users to write the models in executable languages
resembling computer programs and to freely mix them with deterministic code.

It has long been recognised that the semantics of programming languages is complicated
and the intuitive understanding that programmers have is often inaccurate, resulting in
difficult to understand bugs and unexpected program behaviours. Programming languages
are therefore studied in a rigorous way using formal languages with mathematically defined
semantics. Traditionally formal semantics of probabilistic programs are defined using exact
inference results, but in practice exact Bayesian inference is not tractable and approximate
methods are used instead, posing a question of how the results of these algorithms relate to
the exact results. Correctness of such approximate methods is usually argued somewhat less
rigorously, without reference to a formal semantics.

In this dissertation we formally develop denotational semantics for probabilistic programs
that correspond to popular sampling algorithms often used in practice. The semantics is
defined for an expressive typed lambda calculus with higher-order functions and inductive
types, extended with probabilistic effects for sampling and conditioning, allowing continuous
distributions and unbounded likelihoods. It makes crucial use of the recently developed
formalism of quasi-Borel spaces to bring all these elements together. We provide semantics
corresponding to several variants of Markov chain Monte Carlo and Sequential Monte Carlo

vi

methods and formally prove a notion of correctness for these algorithms in the context of
probabilistic programming.

We also show that the semantic construction can be directly mapped to an implementation
using established functional programming abstractions called monad transformers. We
develop a compact Haskell library for probabilistic programming closely corresponding to
the semantic construction, giving users a high level of assurance in the correctness of the
implementation. We also demonstrate on a collection of benchmarks that the library offers
performance competitive with existing systems of similar scope.

An important property of our construction, both the semantics and the implementation,
is the high degree of modularity it offers. All the inference algorithms are constructed by
combining small building blocks in a setup where the type system ensures correctness of
compositions. We show that with basic building blocks corresponding to vanilla Metropolis-
Hastings and Sequential Monte Carlo we can implement more advanced algorithms known in
the literature, such as Resample-Move Sequential Monte Carlo, Particle Marginal Metropolis-
Hastings, and Sequential Monte Carlo squared. These implementations are very concise,
reducing the effort required to produce them and the scope for bugs. On top of that, our
modular construction enables in some cases deterministic testing of randomised inference
algorithms, further increasing reliability of the implementation.

Acknowledgements

I would like to thank my supervisors, Zoubin Ghahramani and Bernhard Schölkopf, for
having me as their student, for the research we did together, for letting me freely explore
my ideas, and for all the wisdom they shared with me. My PhD was a truly transformative
experience that I enjoyed immensely.

During my PhD I have had the pleasure of collaborating with many great scientists
from research institutions around the world. I am especially grateful to Ohad Kammar for
guiding me through the process of converting the core ideas underlying this thesis from vague
concepts existing only in my head to a well-articulated contribution to knowledge and for
teaching me everything I know about semantics of programming languages. I am grateful
to all my collaborators who are too many to list here, but I would like to particularly thank
Andrew Gordon for helping me write my first research paper and hosting me at Microsoft
Research for a summer internship, as well as Ilya Tolstikhin and Carl-Johann Simon-Gabriel
with whom I wrote my first NIPS paper.

I was fortunate to do my PhD at two great research intitutes, the University of Cambridge
and MPI Tübingen. At both places I learned a lot and had great discussions with countless
people - I would like to thank all of them and generally everyone who contributed to building
the excellent research environments I had the privilage to be a part of. I am particularly
grateful to everyone involved in the Cambridge-Tübingen programme that made this whole
experience possible.

I have spent in total seven years in Cambridge during my undergraduate and PhD degrees.
I have made many great friends over these years and watched most of them move away to start
the next chapter of their lives. Now that it is time for me to go, I would like to thank everyone
who made my stay in Cambridge enjoyable and with whom we forged great memories. I
can not name all my friends here so I will only name four who particularly deserve it and
were with me as I crossed the finish line: Piotr Wieprzowski, Paweł Budzianowski, Sławomir
Tadeja, Michał Bogdan.

Finally, I would like to thank my parents for raising me in a way that made all of this
possible, and for their continuing support of my life choices even when that means spending
a lot of time away from them.

Table of contents

1 Introduction 1
1.1 Bayesian Modelling . 1
1.2 Probabilistic Programming . 2
1.3 Approximate Inference . 4
1.4 Formal Semantics of Programming Languages 7
1.5 Outline of the Dissertation . 8

2 Preliminaries 11
2.1 Bayesian Inference Algorithms . 11

2.1.1 Exact Inference . 13
2.1.2 Markov Chain Monte Carlo . 14
2.1.3 Importance Sampling . 16

2.2 Types and Denotational Semantics . 19
2.2.1 Lambda Calculus Syntax and Semantics 19
2.2.2 Effectful Computation and Monads 23
2.2.3 Type System Extensions . 27
2.2.4 Haskell . 28

2.3 Probabilistic Programming . 30
2.3.1 Discrete and Continuous Random Variables 30
2.3.2 Conditioning . 30
2.3.3 Domain-Specific Languages . 32
2.3.4 Extensions of General-Purpose Programming Languages 33
2.3.5 Semantics for Probabilistic Programs 33

3 Formal Calculus and Discrete Inference Semantics 35
3.1 Syntax . 36
3.2 Type System . 37
3.3 Primitive Recursion . 39

x Table of contents

3.4 Denotational Semantics . 40
3.5 Monadic Programming . 42
3.6 Discrete Inference . 42

3.6.1 The Mass Function Monad . 43
3.6.2 Inference Representations . 44
3.6.3 Inference Transformations . 47
3.6.4 Inference Transformers . 48
3.6.5 Summary . 48

4 Mathematical Tools for Continuous Semantics 51
4.1 Category Theory . 52
4.2 Synthetic Measure Theory . 53

4.2.1 Axioms and Structure . 53
4.2.2 Notation and Basic Properties . 54
4.2.3 Radon-Nikodym Derivatives . 56
4.2.4 Kernels . 57

4.3 Quasi-Borel Spaces . 57
4.3.1 Rudiments of Classical Measure Theory 58
4.3.2 Quasi-Borel Spaces . 58
4.3.3 A Monad of Measures . 59

5 Continuous Inference Semantics 61
5.1 Inference representations . 61
5.2 Population . 64
5.3 Sequential . 67
5.4 Traced . 68

5.4.1 Abstract Metropolis-Hastings-Green 68
5.4.2 Tracing Representation . 69
5.4.3 Inference with MHG . 70

6 Implementation of Inference Building Blocks 73
6.1 Basic building blocks . 74

6.1.1 Models . 76
6.1.2 Basic Samplers . 77
6.1.3 Population . 78

6.2 Advanced building blocks . 80
6.2.1 Sequential . 80

Table of contents xi

6.2.2 Traced . 81
6.3 Evaluation . 87

6.3.1 Quantitative Evaluation . 88
6.3.2 Qualitative Evaluation . 90

6.4 Testing . 91

7 Compositions of Inference Algorithms 93
7.1 Resample-Move SMC . 93
7.2 Particle Marginal MH . 95
7.3 SMC2 . 97

8 Conclusion 101

Bibliography 105

Chapter 1

Introduction

1.1 Bayesian Modelling

Computational models of natural phenomena are commonly applied throughout science and
engineering. While often these are deterministic, in many cases it is beneficial to introduce
probabilities into the model. It may be because the underlying process being modelled is
indeed random, such as interactions in particle physics, or because it is not feasible to model
the true process in sufficient detail, such as in analysis of car traffic.

The canonical task in probabilistic models is to draw inferences about unobserved
properties of the system given some observations. For example, we might observe that a
lawn is wet and ask whether it rained earlier in the day. This is in fact a classic toy problem
used to explain probabilistic modelling, presented here in Figure 1.1. The model includes a
sprinkler as an alternative mechanism for making the lawn wet. In this version of the model
the sprinkler operates independently of the rain and the probability of the lawn being wet
depends on both of them.

R∼ Bernoulli(0.2)
S∼ Bernoulli(0.1)

W ∼ p(W |S,R)

(a) Equations

p(W = T | S, R)

R = T S = T 0.99
R = T S = F 0.70
R = F S = T 0.90
R = F S = F 0.01

(b) Conditional probability table

Figure 1.1: The sprinkler model. R stands for rain, S for sprinkler, and W for the lawn being
wet.

2 Introduction

The conditional probability of rain given the observation is obtained by the application of
Bayes’ rule. Thus the task of computing the distribution of latent variables in probabilistic
models conditionally on the observations is called Bayesian inference. Traditionally the
distribution p(R) considered before the observation is made, in this case Bernoulli(0.2),
is called the prior. The posterior p(R|W) is the distribution that takes the observation into
account and it is the primary quantity of interest in probabilistic models. It is computed by
combining the prior and the likelihood p(W |R) as

p(R|W) =
p(R,W)

p(W)
=

p(W |R)p(R)
p(W)

=
∑S p(W |S,R)p(S)p(R)

∑S,R p(W |S,R)p(S)p(R)
.

The numerator in this expression, taken as a function of R, is an unnormalised posterior
distribution which tells use the relative probabilities of R= T and R=F given the observation.
The denominator is the normalising constant known as the marginal likelihood or the model
evidence. It tells us how likely the observation is under the model and it is of independent
interest from the posterior for the task of model criticism.

In this simple case we can compute both expressions exactly

p(R = T |W = T) =
0.99 ·0.1 ·0.2+0.70 ·0.9 ·0.2

0.99 ·0.1 ·0.2+0.70 ·0.9 ·0.2+0.90 ·0.1 ·0.8+0.01 ·0.90 ·0.80

=
0.1458
0.225

= 0.648.

Probabilistic models are commonly used in statistics and machine learning. In statistics
computing probabilities is of principal importance, while in machine learning probabilistic
methods offer certain advantages for prediction such as preventing overfitting and providing
uncertainty estimates. In the context of this dissertation the most important advantage of
probabilistic models and Bayesian methods is that they offer a simple and coherent framework
which can be used as a basis to build general-purpose tools for modelling and inference.

For an in-depth introduction to Bayesian methods there are many excellent textbooks
[7, 53, 6].

1.2 Probabilistic Programming

Traditionally probabilistic models are written down on paper using informal mathematical
notation, the relevant equations for performing inference are derived by hand, and then a
program for computing the posterior is produced in an ad-hoc fashion. Since this process

1.2 Probabilistic Programming 3

is tedious and error prone, it is natural to try to devise a formal language for specifying
probabilistic models from which a program that performs inference in that model can be
synthesised automatically. This results in a domain-specific language (DSL) for writing
models and has been done successfully for a long time. BUGS [30] was arguably the first
popular system of this kind.

However, the users of DSLs for Bayesian modelling often find that they need to interface
their models with traditional programs, for example in order to reuse existing simulator
code or to integrate their model as a part of a larger application. Moreover, as the DSL
incorporates more features that make writing models easier it often starts closely resembling
a programming language. It is therefore reasonable to create a modelling language by
extending an existing programming language with basic probabilistic operations. We call
this approach probabilistic programming, although many authors take this term to be broader
in scope.

Probabilistic programs are thus normal computer programs with two extra operations:
one for sampling random variables and one for conditioning [33]. Here for conditioning
we use a function score, which assigns a non-negative weight to the execution path of the
program in which it was run. In practice we usually use score to provide explicitly the values
of the likelihood, but it is also possible to use it to encode arbitrary constraints by giving
the score of 1 when the condition is satisfied and 0 otherwise. We write all the probabilistic
programs using Haskell syntax, but their meaning should not be too difficult to understand
even for readers unfamiliar with Haskell. For example, the sprinkler model introduced above
can be written as a probabilistic program in the following way.

rain ← bernoulli 0.2
sprinkler ← bernoulli 0.1
let prob_lawn_wet = case (rain , sprinkler) of

(True , True) → 0.99
(True , False) → 0.70
(False , True) → 0.90
(False , False) → 0.01

score prob_lawn_wet --observe lawn wet
return rain

While probabilistic programming is a convenient tool for specifying standard probabilistic
models, its real power shows when we need to incorporate existing code as a part of our
model. For example, suppose we are in the realm of computer graphics and we want to
generate a scene that satisfies certain conditions, but we already have access to a good
generator that can produce various scenes that may or may not satisfy the condition. Using

4 Introduction

probabilistic programming, we can resuse this generator directly in a program that looks
roughly as follows [76].

scene ← genereate_scene ()
observe (condition(scene))
return scene

This is all very simple to define, but the problem remains how to compute the conditional
distribution efficiently. It is sometimes postulated that a sufficiently smart compiler for a
probabilistic programming language could synthesise a program that performs inference in
the given model efficiently. While this can be achieved for some classes of models, in general
the task is very difficult and arguably the speed of inference is the main barrier to widespread
adoption of probabilistic programming systems.

1.3 Approximate Inference

Computing the posterior distribution for a probabilistic program requires integrating over all
the possible execution paths of the program, which means computing a very complicated,
multidimensional integral of arbitrary non-linear functions. It is very rare that such an integral
would have a simple algebraic solution unless the model is specifically set up to make that
happen, which places severe restrictions on the model structure.

Generally the inference problem is intractable, specifically it is #P-hard in the discrete
case [77] and undecidable in the continuous case [2]. We therefore need to resort to approx-
imation and even then specific inference algorithms only produce good results for certain
classes of models. The need for efficient inference is the main design constraint for proba-
bilistic programming languages and many such languages enforce restrictions on expressible
programs to help with inference.

In this dissertation we focus on sampling-based algorithms for approximate inference.
The idea is very simple. Instead of computing an integral over all the possible execution
paths of the program, we will run it multiple times using different sources of randomness
and average the results. This way we can estimate any statistics of the program outputs.

The only problem is how to sample from the conditional distribution defined by the
probabilistic program. Sampling exactly from the posterior distribution is usually intractable
so we need to resort to another approximation. Sampling-based approximate inference
is an old and well-established research area. In this work we focus on two most popular
approaches, namely importance sampling and Markov chain Monte Carlo (MCMC).

Sometimes probabilistic programming is presented as a tool that separates model spec-
ification from inference. A practitioner writes a probabilistic model that represents their

1.3 Approximate Inference 5

prior knowledge and provides the observations, and a compiler automatically generates
code that performs inference in this model and answers queries. While this is the intended
experience for most users of probabilistic programming languages (PPLs), someone still
needs to write this compiler. Moreover, the hardness of the inference problem precludes
the possibility of building a very smart compiler that can handle all possible probabilistic
programs efficiently, so building such compilers is a never-ending process. The very fact
that new inference algorithms are constantly being proposed, including in the probabilistic
programming literature, demonstrates this need from a practical point of view.

Recognising development of backends for PPLs as a crucial task for the success of
probabilistic programming, in this dissertation we develop methods for improving implemen-
tations of such backends. Specifically, we devise abstractions for modular implementation of
inference algorithms, where simple building blocks can be combined to obtain sophisticated
samplers. For example, the Sequential Monte Carlo (SMC) algorithm can be informally
described as spawning N particles and then sequentially propagating them forward and
resampling. In the library we develop in this dissertation SMC can be implemented literally
by composition of those basic operations using the following code.

smc k n = finish .
compose k (advance . hoistS resample) .
hoistS (spawn n >>)

An algorithm called Resample-Move SMC is a modification of SMC that additionally
includes Metropolis-Hastings (MH) transitions after each resampling. To implement it we
simply add the MH steps into the code shown above.

rmsmc k n t = marginal . finish .
compose k (advance . hoistS (

compose t mhStep . hoistT resample)) .
(hoistS . hoistT) (spawn n >>)

Note that this modification is obtained by inserting an existing building block mhStep into
smc which leaves very little room for implementation bugs. In Chapter 7 we show even more
elaborate algorithms constructed from these building blocks by simple composition.

We achieve the compositional implementation by breaking down the compiler for our PPL
into a sequence of transformations between intermediate representations, as shown in Figure
1.2. Since compilers for normal programming languages are typically broken into phases
in the same fashion, we can regard our approach as an application of a popular compiler
implementation technique to PPLs. However, the way in which we construct intermediate
representations and transformations between them is much less standard.

6 Introduction

Model SamplerIR1 IR2 IRn· · ·
t1 t2 tn−1

Figure 1.2: Conceptualisation of Bayesian inference. The model is written by the user in a
probabilistic programming language and inference produces a sampler, which is a program
implementing the selected inference algorithm for the specified model. Inference in most
existing systems consists of a single conceptual step, while we can further decompose it
into multiple passes through intermediate representations much like traditional compilers
do. Crucially, all the intermediate transformations are exact and approximation is only made
when executing the final sampler.

Sam
Pop
Tr
Seq−

Sam
spawn n
hoistT
hoistS −

−

Sam
resample
hoistT −

Sam
Pop

mhStep→
hoistS −

Sam
Pop
Tr

advance→

Sam
Pop
Tr
Seq−

Sam
Pop
Tr

finish→

Sam
Pop
Tr −

Sam
Pop

marginal→
Sam
Pop

Figure 1.3: A graphical depiction of a sequence of transformations comprising the Resample-
Move Sequential Monte Carlo algorithm implementation. Each inference transformation
corresponds to a particular layer in the inference stack. To align with that layer it needs to be
padded by a suitable inference stack on the top and a suitable hoist on the bottom.

Each intermediate representation is itself composed of several layers that we call inference
transformers, forming an inference stack. Individual inference transformations are associated
with particular transformers in the stack. The hoist functions in the code are used to lift a
transformation through a transformer. Figure 1.3 shows the particular representations and
transformations used in the implementation of Resample-Move Sequential Monte Carlo.

In our setup all the inference transformations are exact in a sense that they do not introduce
any approximation and the true posterior can still be recovered from any of the intermediate
representations. All the approximation is contained in the final sampler. An alternative view
would be that we only have one basic inference algorithm, importance sampling, and all the
other building blocks form semantics-preserving program transformations, as advocated by
Zinkov and Shan [94].

Our modular construction is implemented as a Haskell library for probabilistic program-
ming called MonadBayes. It is freely available online1.

1https://github.com/adscib/monad-bayes

https://github.com/adscib/monad-bayes

1.4 Formal Semantics of Programming Languages 7

1.4 Formal Semantics of Programming Languages

Programming languages are difficult to understand and their various features often combine
in unexpected ways, which is a source of bugs in programs and difficulties in implementing
compilers. To develop their better understanding programming languages are studied as
formal languages using mathematical tools. The insights thus gained inform the design of
languages and implementation of compilers.

Typically real programming languages are too complicated to formalise, so instead
people study idealised calculi which encode the features in question without any of the
clutter necessary to make a language practical. A calculus is a formal language for which a
precise semantics is provided. There are two main benefits of such a construction. First, it
communicates precisely the intended behaviour of programming constructs, unlike natural
language descriptions which are often ambiguous in edge cases. Second, it allows certain
properties of programs, such as correctness, to be proven rigorously, if only in an idealised
setting. With those two objectives in mind we develop formal semantics corresponding to
our compositional implementation for a suitably chosen formal calculus.

Unlike most authors developing formal semantics of probabilistic programming lan-
guages, we are interested in semantics corresponding to approximate inference algorithms
that we actually execute, rather than idealised semantics corresponding to results of exact
inference. This is necessary if we want to prove correctness of such algorithms in the context
of probabilistic programming. While to a large extent it is possible to transfer proofs of
these algorithms from the statistics literature, there are certain pitfalls to watch out for. For
example, an influential paper of Wingate et al. [91] describes a generic technique for imple-
menting a single-site Metropolis-Hastings algorithm for probabilistic programs. The paper
was published with a serious error in the acceptance ratio formula, which was subsequently
fixed, due to a behaviour exhibited by probabilistic programs but not by graphical models
where this algorithm is usually applied. This example shows there is value in more rigorous
analysis of inference algorithms applied to probabilistic programs.

In our semantic construction we prove correctness of a variant of the single-site MH,
which has been done by other authors in other settings [9, 40]. Additionally we provide the
first, to the best of our knowledge, rigorous proof of correctness of Sequential Monte Carlo
applied to probabilistic programs. Our semantic construction is modular in precisely the
same way as the implementation, so we automatically get proofs of correctness for all the
compositions of these algorithms.

8 Introduction

1.5 Outline of the Dissertation

Chapter 2 reviews background information for this work, in particular probabilistic program-
ming, approximate Bayesian inference, functional programming, formal calculi and their
semantics.

The next three chapters develop formal semantics corresponding to Monte Carlo inference
algorithms. Chapter 3 introduces the formal calculus we use and constructs denotational
semantics for it in a simplified case where only discrete distributions are allowed. The
semantics correspond to naive enumeration and variable elimination algorithms and are used
primarily for pedagogical reasons to demonstrate our approach to construction of inference
algorithms in a simple setting. The calculus is a typed lambda calculus with function types
and inductive types. It allows a form of primitive recursion but not full recursion so it only
admits programs that always terminate. We use the same calculus in subsequent chapters,
extending it with a primitive for sampling from continuous distributions.

Chapter 4 introduces the quasi-Borel spaces (QBS), which provide a basis for the se-
mantics construction in the case involving continuous distributions. It shows that the QBS
category has the properties needed to construct denotational semantics for our calculus and
constructs a suitable probability monad. It further develops a synthetic measure theory for
QBS which simplifies proofs of many theorems in the subsequent chapter. This chapter is not
original work of the author of this dissertation but rather a review of work by other authors.

Chapter 5 extends our calculus with continuous distributions and constructs denotational
semantics in QBS corresponding to popular Monte Carlo algorithms, in particular Sequential
Monte Carlo (SMC) and Metropolis-Hastings (MH). The algorithms are constructed from
simple building blocks using compositions that guarantee their correctness. This chapter
constitutes the main theoretical development in this dissertation and its results are used as a
basis for implementation in subsequent chapters.

Chapter 6 describes a Haskell library MonadBayes for probabilistic programming based
on the semantic constructions presented in preceding chapters. Probabilistic programs in
MonadBayes are ordinary Haskell programs using abstract probabilistic effects for sampling
and scoring and a monadic interface. Inference algorithms are implemented using monad
transformers and transformations between them, which constitute basic building blocks
for compositional inference. We benchmark performance of MonadBayes against existing
systems Anglican and WebPPL and find it competitive. We also show how a compositional
approach enables deterministic testing of Monte Carlo algorithm implementations.

Chapter 7 demonstrates compositional implementations of several advanced Monte
Carlo algorithms, namely Resample-Move SMC, Particle Marginal MH, and SMC2. These

1.5 Outline of the Dissertation 9

are obtained entirely by compositions of the building blocks defined in previous chapters,
reflecting their informal descriptions.

Chapter 8 concludes and discusses directions for future work.
The work presented in this dissertation was published in two separate papers [80, 79] and

is a result of collaboration with the remaining authors of these papers.
The original contributions to knowledge presented in this dissertation are the following:

• a novel theoretical framework for reasoning about correctness of Bayesian inference
algorithms for probabilistic programs,

• a demonstration of the framework’s power by means of providing multiple construc-
tions of existing inference algorithms in it,

• a design of a Haskell library for probabilistic programming closely following the
theoretical framework, thus obtaining unprecedented degree of modularity and a high
degree of confidence in correctness,

• a novel method for testing implementations of randomized inference algorithms.

Chapter 2

Preliminaries

This chapter is an overview of basic concepts we use in this work. We discuss the relevant
approximate inference algorithms in their general measure-theoretic formulation, selected
concepts from denotational semantics including monads, and important design choices for
the implementation of probabilistic programming languages.

2.1 Bayesian Inference Algorithms

As mentioned in Section 1.3, Bayesian inference is difficult and many different algorithms are
used to perform it. In this section we briefly discuss the main classes of popular algorithms
that we subsequently implement in this dissertation. A good general textbook on Bayesian
inference is [60].

This section provides a classical treatment of the inference algorithms we use for proba-
bilistic programs. Readers familiar with formal semantics of programming languages who
find the derivations in this section difficult to follow can gloss over the equations since all
the algorithms will be explained again in subsequent chapters in the context of probabilistic
programs. Readers already familiar with these algorithms are nonetheless encouraged to
read this section, since it provides a non-standard presentation that is easier to relate to the
constructions in the subsequent chapters.

In Section 1.1 we have introduced Bayes’ rule as the main equation of interest. However,
the sprinkler model introduced there contains only discrete variables, which significantly
simplifies the problem statement. We start this section by stating the problem of Bayesian
inference in a way sufficiently general for probabilistic programming and then discuss
inference algorithms used in this dissertation. Here we write X for the latent variable over
which we want to do inference and Y for the observed variable. It is understood that X and

12 Preliminaries

Y can have arbitrary structure themselves, in particular comprising multiple discrete and
continuous variables.

If X and Y are discrete we can state Bayes’ rule in terms of probability mass functions
that assign probabilities to individual values of the two variables

p(x|y) = p(y|x)p(x)
p(y)

=
p(y|x)p(x)∫
x p(y|x)p(x)

. (2.1)

If X and Y are continuous Bayes’ rule can be written exactly like above, but now p is
a density rather than a mass function. These two cases can be unified by recognising that
a probability mass function is in fact a density of the probability distribution with respect
to the counting measure. Thus equation 2.1 states Bayes’ rule using densities, with base
measure determined from context. In the discrete case it is the counting measure, while in
the continuous case it is the Lebesgue measure.

For more complicated models where X and Y involve mixtures of continuous and discrete
distributions, possibly of varying dimensions, the posterior may not have a density with
respect to any standard measure and constructing a measure for which all the densities in
equation 2.1 exist is unnecessarily difficult. It is therefore easier to state Bayes’ rule using
measures directly rather than their densities. In subsequent chapters, when giving semantics
to arbitrary probabilistic programs, we will use this statement of Bayes’ rule as a starting
point.

We can write the unnormalised posterior as a measure

µ(A) =
∫

A
w(x)p(dx),

where p is the prior and w(x) is the likelihood. The likelihood is usually written as p(y|x),
but here we use w(x) instead, both to emphasise that the likelihood is a function of x and to
account for probabilistic programs where the likelihood does not correspond to any density.
In this dissertation we only deal with situations where the likelihood is available, not covering
the likelihood-free cases. The normalised posterior is obtained by rescaling µ by a constant
such that the measure of the whole space is 1. We often refer to the normalised posterior as
the posterior distribution and to the unnormalised posterior as the posterior measure.

In our formulation we regard computing µ as Bayesian inference. Specifically, we are
interested in integrals of measurable functions over this measure. This is slightly more general
than the usual meaning of Bayesian inference, where the task is to compute expectation
under the normalised posterior, since it also includes computing model evidence. Note that
if we can integrate arbitrary functions over µ we can also compute expectations under the

2.1 Bayesian Inference Algorithms 13

normalised posterior, since the normalisation constant is just an integral of a constant function
1 over µ .

2.1.1 Exact Inference

If we only have a finite number of random variables and each of them can only take a finite
number of values then the inference problem can be solved by enumeration of all possible
states of all variables, just like we did for the sprinkler model in Section 1.1. Unfortunately
this is very expensive and can only be done for tiny problems. Realistically full enumeration
is not a viable option for probabilistic programs, but nevertheless we find it useful for testing,
as discussed in Section 6.4.

Sometimes it is possible to take advantage of the dependency structure between random
variables to reduce the number of operations needed to do full enumeration. The variable
elimination algorithm [93] provides a principled way of doing this. Even with that improve-
ment doing inference by enumeration is prohibitively expensive, but we demonstrate a variant
of variable elimination as a pedagogical device in Chapter 3.

If the variables can take values from an infinite set, whether discrete or continuous, exact
inference is only possible if the relevant infinite sum or integral can be computed symbolically.
In particular this is the case with exponential family distributions and conjugate priors [73]
and many classical probabilistic models exploit these relationships for efficient inference.
This approach is not sufficiently general to apply to probabilistic programs, but it is useful
to perform symbolic exact inference where possible before falling back on approximate
methods. In this dissertation we do not work with any symbolic computation or conjugate
priors so we do not discuss these concepts any further.

There also exist algorithms that provide exact values for certain properties of the posterior,
which can be regarded as exact inference even if they do not provide the full joint distribution.
Examples include belief propagation [69], which provides exact posterior marginals. Since
the applicability of those methods is also limited we do not consider them in this dissertation.

Another possibility is to draw samples from the posterior distribution and use them to
form a Monte Carlo estimator to approximate the required expectations

EX∼p
[

f (X)
]
≈ 1

N

N

∑
i=1

f (Xi), where Xi ∼i.i.d. p.

If the samples are drawn exactly from the posterior distribution, rather than from a
different but similar distribution, we can still call this approach exact inference. A popular
algorithm for drawing samples exactly from the posterior is called rejection sampling.
However, in most cases it is not even feasible to draw samples exactly from the posterior so

14 Preliminaries

we need to resort to drawing samples from different distributions. In this dissertation we look
at various sampling-based algorithms which approximate sampling from the true posterior.
The algorithms we consider fall into the so-called exact-approximate inference algorithm
family, because they guarantee exact answers in a certain limit.

2.1.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are possibly the most popular family of
algorithms for approximate Bayesian inference [63]. Here we only provide a brief review of
the relevant aspects of MCMC, referring interested readers to [11] for a more detailed survey.

The idea of MCMC, first proposed by Metropolis et al. [57] is to construct a Markov
chain that converges to the posterior distribution, which in this context is also called the
target distribution. A Markov chain is a sequence of random variables X1,X2, . . . such that
each of them depends only on the previous variable and not on any variables that came before
it. Technically we can write this condition as p(Xi+1|X1, . . . ,Xi) = p(Xi+1|Xi). Here we are
only interested in stationary chains where the transition kernel K is the same at every time
step, so the chain can be described as Xi+1 ∼ K(Xi, ·).

Typically the transition kernel is set up to preserve the target distribution, that is if Xi is a
sample from the target then so is Xi+1. In that case, and under certain technical conditions we
will not get into here, the chain converges to the target distribution and satisfies a version of
the Central Limit Theorem with variance decreasing as O(n−

1
2) asymptotically. Note that the

normalisation constant of the measure obtained in the limit is the same as the normalisation
constant for the measure from which X1 was taken. Thus MCMC does not provide a direct
way to estimate this constant but rather allows us to sample from the normalised posterior.

The Markov chain is fully determined by the initial distribution of X1 and the transition
kernel K. We now discuss some common ways to construct the transition kernel in a way
that guarantees preservation of the target distribution. As argued by Geyer [28], this is the
only property of the Markov chain used in MCMC that is feasible to guarantee generally
and it is sufficient to satisfy our notion of correctness used in this dissertation. In practice
a successful application of MCMC requires that the Markov chain converges sufficiently
quickly, but this is usually determined empirically on a case-by-case basis.

A widely popular scheme for constructing transition kernels that preserve the target distri-
bution is based on taking an arbitrary proposal kernel and combining it with an accept/reject
step. The method was proposed by Metropolis et al. [57], then generalised by Hastings
[37], and subsequently by Green [35]. Thus, following Geyer [28], we refer to it as the
Metropolis-Hastings-Green (MHG) algorithm, even though this name is not very popular
in the literature. Occasionally, particularly when referring to the work of others, we use the

2.1 Bayesian Inference Algorithms 15

more established name Metropolis-Hastings (MH), but it should always be understood to
mean its general version due to Green.

We now show a construction of a kernel K that preserves the target measure p based on
an arbitrary Markov kernel Q using MHG. Q is a Markov kernel if Q(x, ·) is a probability
distribution for any x. A sufficient condition for a kernel K to preserve a measure p is for it
to be reversible with respect to p, that is∫ ∫

f (x)g(y)p(dx)K(x,dy) =
∫ ∫

g(x) f (y)p(dx)K(x,dy)

for all measurable functions f and g. To construct such a kernel, we define measures m and n
as

m(A) =
∫ ∫

1A(x,y)p(dx)Q(x,dy)

n(A) =
∫ ∫

1A(y,x)p(dx)Q(x,dy).

The acceptance ratio is defined as the Radon-Nikodym derivative of these measures
r = dn

dm . If the relevant densities exist, it reduces to a more commonly used Metropolis-
Hastings ratio r = p(y)q(y,x)

p(x)q(x,y) . However, for the Trace MH algorithm [91] that we implement
in this work this is not the case so we need the more general version.

In the MHG algorithm the kernel K(x, ·) is obtained by composing the kernel Q(x, ·)
with a step that accepts the new value y with probability min(1,r(x,y)) and otherwise keeps
the old value x. This can be shown to result in a kernel reversible with respect to p, so K
preserves p and we obtain a correct MCMC algorithm.

The question remains how to choose Q. We do not address this issue in this work, but
rather provide a construction that can use any Q. Below we discuss some popular choices for
Q.

If X consists of several random variables, we can take Q to update one of these variables
using its conditional distribution p given the current values for the other variables. This
algorithm is known as Gibbs sampling [26] and it is a special case of MHG where the
acceptance ratio is always 1. This algorithm was used in an early probabilistic programming
system BUGS [30] and later incorporated into many popular alternatives such as Infer.NET
[58] and PyMC [68]. The main limitation of this approach is that the conditional distributions
required can only be derived analytically in a limited number of cases, so Gibbs sampling is
not applicable to general probabilistic programs and we do not use it in this dissertation.

16 Preliminaries

For continuous variables a popular choice is to take Q that simulates Hamiltonian dy-
namics, leading to Hamiltonian (Hybrid) Monte Carlo (HMC) [20]. This algorithm, and
in particular its black-box variant No-U-Turn Sampler (NUTS) [39] was popularised by
the probabilistic programming language Stan [12]. Application of HMC in a probabilistic
programming system requires the use of automatic differentiation, so we do not explore it in
this dissertation for reasons discussed in Chapter 8. We refer interested readers to [65] for a
thorough review of HMC.

2.1.3 Importance Sampling

A popular generic alternative to MCMC for sampling from an intractable posterior is im-
portance sampling. The idea is that instead of sampling from the target distribution p we
sample from a different tractable distribution q and assign weights to the obtained samples in
such a way that the weighted average targets p. We consider a more general case where we
try to approximate integrals over a possibly unnormalised measure µ using samples from
a probability measure q. If µ is absolutely continuous with respect to q, we can sample
X ∼ q and set the weight to equal the Radon-Nikodym derivative W = dµ

dq (X), which in a

less general setting can be written as a ratio of densities p(X)
q(X) .

It can be shown that for any measurable function f , f (X)W is an unbiased estimator for
the integral of f over µ . This follows directly from the definition of the Radon-Nikodym
derivative

EX∼q
[

f (X)W
]
=
∫

f (x)
dµ

dq
(x)q(dx) =

∫
f (x)µ(dx).

The importance sampling estimator is unbiased, but it can have large variance. It is possi-
ble to take the weighted average of multiple samples, that is

∫
f (x)µ(dx)≈ 1

N ∑
N
i=1 f (Xi)Wi,

which reduces the variance proportionally to 1
N . However, this can be computationally expen-

sive so it is often necessary to make q a better proposal. In the absence of further information
about f the best choice is to make q equal to µ up to a multiplicative constant. This is not
possible in practice, since it would involve exact sampling from the posterior, but can be
used as a goal for optimisation. In this dissertation we are not concerned with designing
good proposal distributions so we will not elaborate on that further. In our constructions the
proposal distribution will be simply the prior.

The problem with importance sampling is that often a small number of samples have very
high weights, effectively making the other samples unimportant and reducing the effective
sample size. This is particularly pronounced in sequential models, where multiplying

2.1 Bayesian Inference Algorithms 17

likelihoods from many observations makes the weight differences even more extreme, since
good trajectories tend to accumulate higher likelihoods at each time step.

This problem can be partially remedied by dynamically pruning samples with low weights
early on in the sequential process. The particle filter algorithm [34, 17] performs this pruning
in a carefully balanced way to ensure the resulting estimator remains unbiased. Specifically,
let x1:T be a sequence of latent states and y1:T be a sequence of corresponding observations.
We assume the state-space graphical model structure, that is p(xt+1|x1:t) = p(xt+1|xt) and
p(yt+1|x1:t+1,y1:t) = p(yt+1|xt+1) for all t. We are interested in the filtering distribution, that
is p(xT |y1:T). We can sequentially approximate the filtering distribution up to time t, that is
p(xt |y1:t). In a measure-theoretic notation we write µ t for the corresponding unnormalised
posterior measure.

In the particle filter at time step t we approximate µ t as a collection of samples {(X t
i ,W

t
i)}N

i=1

called particles in this context. This can be regarded as a discrete measure µ̂ t(A) =

∑
N
i=1 1A(X t

i)W
t
i . To obtain an approximation for time t + 1 we would like to integrate the

following unnormalised transition kernel

T (xt ,dxt+1) = p(dxt+1,yt+1|xt)

against µ̂ t . Thus ideally we would set µ̂ t+1(A) to equal∫ ∫
1A(xt+1)T (xt ,dxt+1)µ̂ t(dxt), (2.2)

but the integral in question is intractable and instead we will approximate it by importance
sampling using p(xt+1|xt) as a proposal distribution.

The naive approach would be to observe that the integral over µ̂ t is just a sum, resulting
in a sum of integrals over T (X t

i , ·) and approximating each of these integrals by a single
importance sample. This would correspond to choosing X t+1

i ∼ p(X t+1|X t
i) and W t+1

i =

W t
i

d p(X t+1,yt+1|X t
i)

d p(X t+1|X t
i)

(X t+1
i). Proceeding sequentially in this fashion is equivalent to using normal

importance sampling on the unnormalized density p(x1:T ,y1:T), taken as a function of x1:T ,
using p(x1:T) as a proposal distribution. This algorithm is sometimes called sequential
importance sampling.

We can improve this algorithm by going back to equation 2.2 and instead of writing the
outer integral as a sum doing importance sampling for both integrals simultaneously using
the normalised version of

∫ ∫
1A(xt+1)p(dxt+1|xt)µ̂ t(dx1:t) as a proposal density. For an

equivalent computational budget we can now use N importance samples to approximate this
integral. Operationally this corresponds to introducing a set of auxiliary “ancestor” variables

18 Preliminaries

At
i and using the following updates:

At
i ∼Categorical({W t

i })
X t+1

i ∼ p(X t+1|X t
At

i
)

W t+1
i =

∑iW t
i

N

d p(X t+1,yt+1|X t
At

i
)

d p(X t+1|X t
At

i
)

(X t+1
i).

With this modification particles at intermediate stages survive with probability propor-
tional to their weight, removing samples with low weights early on and ameliorating the
problem of low effective sample size. The estimator given by

∫
f (x)µ̂T (dx) is unbiased and

typically has lower variance than the standard importance sampling estimator.

An alternative view of the particle filtering algorithm is as a sequential importance
resampling. Specifically, we take the sequential importance sampling algorithm and include
a resampling step after each time step. A resampling step replaces a collection of particles
{(X t

i ,W
t
i)} with another collection {(X̃ t

i ,W̃
t
i)} using the following recipe:

At
i ∼Categorical({W t

i })
X̃ t

i = X t
At

i

W̃ t
i =

1
N ∑

i
W t

i .

This is completely equivalent to the formulation of particle filtering presented above, but
it separates resampling and sequential importance sampling into two operations. We use this
separation in our implementations subsequently in this dissertation. However, we find that it
is the former construction that more clearly explains the utility of resampling. The reason
resampling is useful is that it lets us allocate the computational budget more evenly in the
subsequent transition. In the absence of such a transition resampling only serves to introduce
noise. This is particularly important in the application of particle filters to probabilistic
programs - if the program does not interleave conditioning with sampling a particle filter
would perform worse than simple importance sampling. Finally, we presented above the
simplest resampling scheme known as multinomial resampling, but other choices with better
empirical performance are also possible [18].

The idea to apply particle filters to inference in probabilistic program was introduced by
Wood et al. [92]. Following that work we refer to particle filters as Sequential Monte Carlo

2.2 Types and Denotational Semantics 19

(SMC), which is a commonly used alternative name introduced by Liu and Chen [52]. For a
more in-depth review of SMC we refer the reader to the survey by Doucet and Johansen [19].

SMC is sometimes combined with MCMC, either by incorporating MCMC transitions
after resampling to increase diversity of the sample or by running SMC as a part of the
MCMC transition kernel. We show in this dissertation that such compositions are naturally
expressed in the framework we introduce. Specific examples are given in Chapter 7.

2.2 Types and Denotational Semantics

In this section we review the basic properties of the lambda calculus, a formal language
commonly used as a model programming language. We discuss its syntax and denotational
semantics to the extent it is relevant for the work presented in this dissertation. We exclude
topics such as operational semantics and type inference since we do not make use of them
in this work. This section is written in a tutorial style, targeted at readers with no previous
experience in formal languages and semantics. At the end we also briefly discuss the Haskell
language that we subsequently use for implementation.

2.2.1 Lambda Calculus Syntax and Semantics

Lambda calculus was originally introduced by Church [16] as a formal model of computation.
Once it was established that typically programming languages can be reduced to a small
calculus and a collection of derived forms [50] it became a popular vehicle for theoretical
analysis of programming languages.

At the very core the lambda calculus is based on function definition and application.
While that is sufficient to make the language Turing-complete, it is common to introduce
additional primitives typically included in real programming languages. Below we present
the syntax of a simple lambda calculus with product types, natural numbers, and addition.

20 Preliminaries

t,s,r ::= terms
x variable

| λx.t function abstraction
| t s function application
| () unit
| (t,s) tuple creation
| match t

with(x,y)→ s
tuple inspection

| n natural numbers
| t + s addition

The lambda calculus provides a convenient notation for defining functions. For example,
a function f defined by f (x) = x+1 in normal notation would be written as f = λx.x+1.
The lambda denotes a function definition, x is a variable name given to the argument, and
the dot preceeds the function body. Function application is written using juxtaposition, so
we can write f x instead of f (x). Computation in the lambda calculus proceeds by reducing
terms, for example (λx.x+1)2 reduces to 2+1 and subsequently to 3.

One problem with the calculus presented above is that some syntactically correct pro-
grams are nonsensical. For example, the following expression attempts to increment a
function

(λx.x+1)(λx.x).

Proceeding in the so-called Church style, we do not wish to give semantics to such
programs and in practice programs like the one above simply crash. In order to exclude these
programs from theoretical considerations, and to report them as incorrect before they are
even run, we can introduce a type system. A type system can be viewed as a conservative
approximation to the actual execution of the program which determines whether type errors
would occur during execution. It is conservative in the sense that a program typechecks if
type errors are guaranteed not to occur, but it may fail to typecheck even if no type error
would actually occur.

To define a type system we first define the types themselves. The grammar of types
mirrors the grammar of terms. Below we show types and typing rules for the grammar of
terms introduced above, obtaining a variant of a simply-typed lambda calculus.

2.2 Types and Denotational Semantics 21

τ,σ ,ρ ::= types
N natural numbers

| τ → σ function
| 1 unit
| τ ∗σ finite product

Typing rules are usually given by induction on program terms, with a term having a
certain type provided that its subterms have certain types.

Γ ⊢ () : 1 Γ ⊢ n : N

Γ ⊢ t : N Γ ⊢ s : N

Γ ⊢ t + s : N

Γ ⊢ x : τ
((x : τ) ∈ Γ)

Γ,x : τ ⊢ t : σ

Γ ⊢ λx : τ.t : τ → σ

Γ ⊢ t : σ → τ Γ ⊢ s : σ

Γ ⊢ t s : τ

Γ ⊢ t : τ Γ ⊢ s : σ

Γ ⊢ (t,s) : τ ∗σ

Γ ⊢ t : σ ∗ρ Γ,x : σ ,y : ρ ⊢ s : τ

Γ ⊢match t with(x,y)→ s : τ

In this notation each typing rule is associated with a horizontal bar. Above the bar are
preconditions for the rule, which can be empty, and below is the typing judgement that
follows. The typing relation is denoted using ⊢, which is followed by a term, then a colon
and the term’s type. For example, the three rules on the first line say that unit is of type unit,
a number is of type number, and if two terms are of number types then their sum is also of
number type.

On the left of ⊢ is the typing context. The typing context is a partial function from
variable names to types, which holds the types of all variables currently in scope. The rules
on the second line show how it is used to type function terms. A variable can be typed only
if it is found in the context, ensuring that in well-typed programs all variables are bound
somewhere. A lambda term defining a function can be typed only if the function body can be
typed in the current context extended with a type for the variable representing the function
argument. Note that the type of the argument is given explicitly in syntax to make typing
derivations easier, although in real languages it can often be inferred automatically. Finally,
the third line gives typing rules for products, again showing how context is used to type
expressions with pattern matching. The full program should be typeable in the empty context
to be considered well-typed.

Recall that earlier we considered the following nonsensical but syntactically correct
program, now presented with type annotations

(λx : N.x+1)(λx : N.x).

22 Preliminaries

It can be verified that this program does not typecheck using the type system given above.
The second term would need to have the type N but no typing rule can give this type to a
lambda term.

In statically typed languages an automatic type checker is run before the compiler to
ensure that the program is type-safe. The type systems are set up carefully to enable this
process to be done automatically, but the details of that are not important for this dissertation.

We have defined the syntax and the type system for our calculus, but we still do not know
what the programs actually mean. It is customary at this point in textbooks to define the
so-called operational semantics, which specify how the programs reduce to simpler forms
emulating actual execution. These semantics can be used to prove properties of running
programs, such as that well-typed programs never get stuck. However, since we do not
introduce any operational semantics in this dissertation we are not going to discuss these
here.

Another popular approach is to define denotational semantics [81], which associates
well-typed program terms with mathematical objects such as numbers and functions. Such
semantics is compositional in a sense that the meaning of an expression only depends on
the meaning of its subexpressions and it is therefore particularly suitable for reasoning
about equivalences between programs. Traditionally it is often used to prove correctness of
transformations performed by a compiler, while in this dissertation we use it to show that
transformations associated with inference building blocks are correct.

We start the construction by associating types with certain mathematical spaces. In the
simple case of the calculus presented above those spaces will be just sets. These sets are
constructed by induction on the structure of types. It is customary to use double brackets ⟦·⟧
for denotational semantics.

⟦N⟧B N ⟦1⟧B 1 ⟦τ ∗σ⟧B (⟦τ⟧)× (⟦σ⟧) ⟦τ → σ⟧B (⟦σ⟧)⟦τ⟧

We associate the set of natural numbers with the type of natural numbers and a one-
element set with the unit type. For product types we use Cartesian products and for function
types we use functions, written in the exponential notation by convention.

We then associate well-typed terms with elements of the sets corresponding to the type,
again proceeding by induction on term structure. Specifically, we define the semantic relation,
again denoted by ⟦·⟧, such that for any well-typed closed term ⊢ t : τ , we have ⟦t⟧ ∈ ⟦τ⟧.
The semantics is constructed by induction on term structure. Just as we needed a context for
the typing rules to keep track of types of variables, here we need a context ρ to keep track
of values of variables. For the simple calculus presented here the definition of semantics

2.2 Types and Denotational Semantics 23

amounts mostly to pushing the semantics brackets inside the expression, so we only present
a few selected rules.

⟦n⟧(ρ)B n ⟦t + s⟧(ρ)B ⟦t⟧(ρ)+ ⟦t⟧(ρ) ⟦(t,s)⟧(ρ)B (⟦t⟧(ρ),⟦t⟧(ρ))
⟦x⟧(ρ)B ρ(x) ⟦λx : τ.t⟧(ρ)B λy.⟦t⟧(ρ[x→ y])

The semantics make precise the relationship between programs and the mathematical
objects we use to reason about what programs do. In the case presented here the correspon-
dence is trivial, but it becomes much more involved once we start adding new constructs to
the calculus. Typically most of the rules in the semantic construction is standard, so only the
interesting ones are presented to avoid clutter.

Equipped with denotational semantics we can prove certain program equivalences. For
example, the following two programs are equivalent in the calculus presented so far, which
can be shown by computing their semantics

λ f : N→ N. f (0)+ f (1) = λ f : N→ N. f (1)+ f (0).

However, these two programs may not be equivalent once the calculus is extended, as we
show below.

2.2.2 Effectful Computation and Monads

For the simple calculus above we were able to define semantics in terms of simple sets.
However, more generally we need spaces with additional structure, such as when the calculus
includes computation with side-effects. Note that side-effects are basically unavoidable,
since all useful programs need to at least produce some output.

A common side effect of computation involves updating values of mutable variables. It
is customary to include mutable variables in the lambda calculus in a form of references to
mutable cells with the syntax shown below.

t,s,r ::= terms
. . . as before

| ref t allocate a mutable cell
| t := s assign to a mutable cell
| !t dereference a mutable cell
| t;s sequence operations

24 Preliminaries

A reference to a mutable cell holding values of type τ is itself given a type τ ref. On top
of constructs for working with mutable cells we add a sequencing operations, so that we can
return a result after updating a cell.

With this extension the equivalence shown at the end of the previous subsection no longer
holds. To see that, consider the function

f = (λ r : N ref.(λx : N.r :=!r+ x; !r))(ref 0).

Now f (0)+ f (1) evaluates to 1 while f (1)+ f (0) evaluates to 2, assuming left-to-right
evaluation order. Once we have introduced computation with global effects into the calculus,
the order of evaluation becomes important. To reason about equivalences of programs using
mutable cells we need to somehow account for the state of those cells in the semantics. The
standard solution is to associate each type with a function that additionally updates a global
state.

Let G be a set of possible global states, with a state being a partial functions from locations
in a set L to values - the details of this construction are not important and we skim over the
fact that it would require restrictions on the types for which references can be constructed to
avoid divergence. We associate types with functions that produce a value and a new state
based on the current state. For example, ⟦N⟧ := G→ N×G and ⟦τ ref⟧ := G→ L×G.

Recall that for the basic calculus giving semantics to terms was trivial. Now with the
extension to reference cells defining the semantics requires carefully feeding the state through,
which is cumbersome and repetitive. For example,the semantics of addition would be

⟦t + s⟧(ρ)(g) := let(x,g′) = ⟦t⟧(ρ)(g) in let(y,g′′) = ⟦s⟧(ρ)(g′) in(x+ y,g′′).

We do not show the other rules here, but in almost all them we would find the pattern of
feeding through the updates to the global state. In the simple calculus we have shown doing
this manually is manageable, but the effort would quickly get too much once we started
adding more constructs and other effects. Worse yet, performing any kind of reasoning about
the program would be nearly impossible due to all the clutter in the semantics. Fortunately,
the pattern in question is very repetitive so we can hope to use additional abstractions to hide
it.

At this point we step back a bit and consider more generally the problem of defining
denotational semantics in a reusable fashion. In the construction presented above we map
types to sets, but we might want to use spaces with more structure instead. Those could
be measurable spaces for probabilistic programs or domains if the calculus allowed for

2.2 Types and Denotational Semantics 25

non-terminating computation. Despite this change, the semantics of the constructs from
the basic calculus would be essentially the same. We would therefore like to define their
semantics more abstractly, assuming only that the collection of spaces in question has certain
properties. Conveniently such a framework is provided by category theory.

Categories are defined in terms of objects and morphisms which generalise sets and
functions respectively. Semantics of specific language constructs are then defined in terms of
abstract properties of a category. For example, to accommodate product types the category
needs to have products that satisfy certain axioms, and for function types it needs exponentials.
A category with these and several more properties can be used to give semantics to a simple
lambda calculus and is called a Cartesian-closed category. To recover the construction
presented above we simply choose the Set category where objects are sets and morphisms
are functions between them.

To give semantics to programs with side effects, such as mutable reference cells, we need
a categorical structure called a (strong) monad [59]. For example, the construction above is
the state monad for the global store in the Set category. More generally a monad defines two
operations: how to embed pure computation in a monad and how to chain computations in the
monad where one computation uses the result of the other. These operations are traditionally
called return and >>= (pronounced ‘bind’) and for a monad M they have the types

return : X →MX >>=: MX → (X →MY)→MY.

Going back to the concrete case of the calculus with reference cells, we can define a
monad S such that SX B G→ X×G and the required operations are defined as

return(x)(g) := (x,g)

(t >>= f)(g) := let(x,g′) = t(g) in f (x)(g′).

This construction captures precisely the pattern of feeding through the global state as the
computation proceeds. We can use the monadic interface to provide an equivalent definition
of semantics for addition in our calculus, that is

⟦t + s⟧(ρ)(g) := ⟦t⟧(ρ) >>= λx.
(⟦s⟧(ρ) >>= λy. return(x+ y)

)
.

The advantage of this definition is that it is stated in terms of an abstract monad, so it
can be ported to a different setting without any change. For example, we could construct

26 Preliminaries

a probability monad of measurable spaces and use exactly this definition for semantics of
addition in a probabilistic program.

Readers unfamiliar with denotational semantics may be overwhelmed with various
constructions introduced in this section. Our goal is not so much to teach the techniques for
constructing semantics as it is to provide the readers with some understanding of why our
developments in this dissertation make use of so many esoteric concepts. In essence, this is
because constructing the semantics directly would be very complicated, likely to the point
where neither the authors nor the readers would have a good grasp of what is going on. Thus
in the subsequent chapters we take advantage of the standard abstractions established in the
programming languages community to separate our construction into different levels that to
a large extent can be appreciated separately.

Generally to construct denotational semantics for a calculus with effects we need to do
the following:

1. construct a suitable category in which the programs can be interpreted,

2. show that the category has the required properties to interpret the standard constructs
used in the calculus,

3. construct a suitable monad to interpret the effects.

This is precisely the approach we take in Chapter 4 to define the semantics for our probabilistic
calculus. We do not review any category theory in this chapter, recognising that readers
familiar with it do not need this review and readers who are not are unlikely to find such a
review sufficient. All the category theoretic content in this dissertation is isolated to Chapter
4 and can be skipped without significantly affecting the understanding of the other parts of
the dissertation.

As a final remark on monads, observe that we can take the definition of the semantics for
addition above and introduce some line breaks to arrive at the following form:

⟦t + s⟧(ρ)(g) :=

⟦t⟧(ρ) >>= λx.

⟦s⟧(ρ) >>= λy.

return(x+ y).

We can now apply a line-by-line transformation to introduce a popular syntactic sugar
for monads known as the do syntax

2.2 Types and Denotational Semantics 27

⟦t + s⟧(ρ)(g) := do

x← ⟦t⟧(ρ)
y← ⟦s⟧(ρ)
return(x+ y).

We make extensive use of this notation, both in the calculus and in the implementation.

2.2.3 Type System Extensions

The basic calculus presented in Section 2.2.1 is fairly conservative in terms of the types
it allows. In this section we introduce two extensions to the type system which make the
calculus more realistic as a model programming language.

The first extension is parametric polymorphism [85]. The idea is that some functions
are to an extent agnostic to the type of argument they receive so they should be able to
receive arguments of multiple types. For example, the identity function λx.x can safely
accept arguments of any type. However, in the calculus presented above we are forced to
pick a particular type for it. It would not be legal to apply the same function to both a number
and a unit.

A well-known extension of the simple type system presented above introduces type
variables α,β , . . . which allows terms to have multiple different types simultaneously. For
example, the identity function would be given the type α → α , where α is implicitly
universally quantified over. Such an extension is known as parametric polymorphism, since
it treats all the types uniformly, in contrast to ad-hoc polymorphism where the behaviour of
the function can be specified independently for each input type.

Since type variables complicate the type system significantly, it is common to place
restrictions on where polymorphic values can used. In the basic case they are only allowed in
a let binding, which in particular prohibits polymorphic values being passed as arguments to
functions. Relaxing this assumption leads to higher-rank polymorphism.

In real languages it is very important for the users to be able to define their own types.
Often it is convenient to define such a type polymorphically, for example to have a single
definition for a list regardless of the type of the element in the list. In that case instead of
defining a type the user defines a type constructor, which can be applied to a type to yield
another type. Notationally List would be a type constructor, ListN would be a monomorphic
type, and Listα would be a polymorphic type.

28 Preliminaries

If the names of type constructors are not syntactically distinguished from the names of
types it becomes possible to construct types that are syntactically correct but nonsensical.
An example would be ListList, not to be confused with List(Listα) which is a list of lists.
To statically prevent that we need a type system for the type system, which is called a
kind system. Usually types are given kind ∗, while type constructors are given kind ∗→ ∗.
Allowing type variables to have kinds other than ∗ is known as higher-order polymorphism.

All types of polymorphism serve the purpose of simplifying the programs by avoiding
code repetitions. This is important in practice and our implementation makes crucial use of
both higher-rank and higher-order polymorphism to make its code more concise and modular.
However, in a calculus we can exclude the polymorphism and pretend that we have defined a
family of functions, one for each monomorphic type that we use them for, in order to simplify
the presentation. We take this approach in this dissertation and formally avoid all types of
polymorphism in the calculus.

Independently of polymorphism an important extension of the simple type system is
that of recursive types. These are types defined by reference to themselves and the list type
discussed above is a prime example of that. Typically a definition of the list type would be

Listα B {Nil
∣∣ Cons(α ∗Listα)}.

The definition says that a list is either empty or an element and another list. Typically
such a recursive definition is written using a type variable and a special symbol µ

Listα B µβ .{Nil
∣∣ Cons(α ∗β)}.

Without such an extension to the type system it would not be possible to construct lists of
length unknown statically as a user-defined type. In our calculus we allow a weaker form of
recursive types known as inductive types. Intuitively the difference is that in inductive types
the type variable can not appear on the left of the function arrow, which is not a problem
for lists. We use inductive types because their semantic treatment is easier but they are
sufficiently expressive to include all the recursive types we use. The details of our use of
inductive types are given in Chapter 3.

2.2.4 Haskell

As this dissertation features a Haskell library for probabilistic programming, it includes a lot
of Haskell code. Since Haskell is a pure functional programming language, to a large extent
it looks like the lambda calculus presented above. However, there are a few differences to
keep in mind. First of all, in Haskell a type signature follows the double colon :: while the

2.2 Types and Denotational Semantics 29

single colon : is the cons for a list, the other way around from the lambda calculus. The
type signature is usually provided on a separate line preceding the actual definition. Haskell
code does not include Greek letters so type variables are written as lowercase Latin letters.
Furthermore, at type level concrete types and type constructors are uppercase while type
variables are lowercase. At the expression level constructors are uppercase and variables
are lowercase. The lambda is replaced with a backslash and in a lambda expression the dot
is replaced with → . On top of that, Haskell has a notion of a typeclass, which is similar
to an interface in many other languages. Below is the definition of the Monad typeclass
corresponding to the monadic interface discussed above.

class Monad m where
return :: a → m a
>>= :: m a → (a → m b) → m b

Monads are ubiquitous in Haskell and they have their own syntactic sugar in a form
of the do expressions. Most monads are implemented as monad transformers to enable
compositions with other monads. For example, the state monad transformer extends a monad
with the global state, forming another monad. The following snippet defines the state monad
transformer type constructor StateT and implements a Monad instance for it using the monadic
operations, including the do syntax, for the transformed monad.

newtype StateT s m a = StateT (s → m (a, s))
instance Monad m ⇒ Monad (StateT s m) where

return x = StateT (\s → return (x, s))
(StateT c) >>= f =

StateT (\s → do
(x, s’) ← c s
let (StateT d) = f x
(y, s’’) ← d s’
return (y, s’’)

)

The symbol ⇒ denotes a type constraint. The instance reads that StateT s m is a Monad

if m is a Monad.
Our overview of Haskell is necessarily brief and it is not feasible to review here all the

constructs used in the listings in subsequent chapters. The Haskell 2010 Language Report
[55] is the authoritative reference on the Haskell language that can be consulted to understand
the meaning of program snippets presented in this dissertation. Finally, Haskell is famous for
being lazy, or to be precise non-strict. This feature is not important for any code presented in
this dissertation and the reader is safe to ignore it.

30 Preliminaries

2.3 Probabilistic Programming

As explained in the introduction, in probabilistic programming we devise computer languages
for defining probabilistic models, such that inference algorithms can be applied to them
automatically. The field is vast with multiple different systems available and we can not
review them all. However, in this section we discuss some important design choices and
explain which ones we make in our formal calculus and implementation. We also include a
brief survey of the existing literature on semantics of probabilistic programs.

2.3.1 Discrete and Continuous Random Variables

The first choice is what distributions can be sampled from in the program. Typically a
PPL provides a collection of parameteric primitive distributions that the user can sample
from. These distributions can be divided into discrete, such as Bernoulli, categorical, and
Poisson, and continuous, such as normal, gamma, and beta. Some PPLs, especially ones not
targeting machine learning or statistics applications, only allow discrete distributions. The
advantages of this approach are that semantics are much simpler and that it is possible to
perform inference by enumerating different execution paths of the program. Systems that
take this approach include IBAL [70], Hansei [46], and the work on probability monads
[74, 22]. In this dissertation we restrict ourselves to discrete variables in Chapter 3 for
pedagogical reasons, but the formal calculus in Chapter 5 and the library in Chapter 6 both
allow continuous distributions as well.

Conversely some PPLs only allow continuous distributions, a prominent example being
Stan [12]. Even though defining semantics is more challenging in the continuous case,
performing inference can be easier. While technically the continuous case is strictly more
challenging [2], in practice often inference in continuous models can be done well using
gradient methods such as Hamiltonian Monte Carlo [20, 64], which are not available in the
discrete case. In this dissertation we do not consider the restriction to continuous distributions.

2.3.2 Conditioning

Another choice in the design of the PPL is what conditioning operations are allowed. Concep-
tually the simplest choice is to condition using a predicate supplied by the user. Specifically
the user inserts guards with Boolean conditions in certain places in the program. If the
condition is true then the particular execution trace is retained, otherwise it is discarded. The
total probability is then renormalised over all retained traces. For example, the sprinkler
model written using this style of conditioning can be written like this.

2.3 Probabilistic Programming 31

rain ← bernoulli 0.2
sprinkler ← bernoulli 0.1
let prob_lawn_wet = case (rain , sprinkler) of

(True , True) → 0.99
(True , False) → 0.70
(False , True) → 0.90
(False , False) → 0.01

lawn_wet ← bernoulli prob_lawn_wet
observe (lawn_wet == True)
return rain

While simple to understand and convenient to use, this style of conditioning makes it
challenging to do inference, since finding program traces that satisfy an arbitrary predicate is
not easy [31]. It is possible to some extent to propagate the constraints backwards through
the program code [66, 87], but the required program analysis is involved to the point of
being difficult to apply to feature-rich languages. In practice inference in models with such
hard constraints is usually done using likelihood-free methods, such as rejection sampling or
Approximate Bayesian Computation.

In PPLs with continuous random variables a special case of this problem arises when the
constraint is only satisfied on the measure zero subset of the execution traces, but nonetheless
one that is contained within the support of the prior. An example of that is conditioning on a
particular outcome of a normal distribution.

mean ← normal 0 1
obs ← normal mean noise
observe (obs == 0.34)
return mean

In this case we can not apply the usual formula for conditional probability, since both
the numerator and denominator are zero. However, the model still has a sensible meaning
which can be made precise through disintegration [14]. To some extent the disintegration
transformation can be applied in probabilistic programs [82], but the problems faced are
similar to the ones encountered with propagating constraints up the program.

A common way to avoid these problems is to require that the users explicitly supply the
likelihood resulting from the conditioning operation. An example of that is the sprinkler
model given in Section 1.2, which is equivalent to the formulation shown above. This style
of writing probabilistic programs essentially shifts the burden of performing the required
transformations of constraints onto the user. It is a common approach of many probabilistic
programming systems, which often additionally provide syntactic sugar that allows observa-
tions of random variables just after they were sampled, in which case the likelihood is simply

32 Preliminaries

the density of the primitive distribution used. We take this approach in this dissertation, both
in the formal calculus and in the implementation.

2.3.3 Domain-Specific Languages

Regardless of which distributions are available and which conditioning operations are sup-
ported, there remains a choice of how to implement a PPL. One possibility is to devise a
domain-specific language (DSL), that is a special language designed only for specifying
probabilistic models. Such a DSL can be completely separate from any programming lan-
guage, having its own syntax, compiler, IDEs, debuggers, and file formats. The advantage
of this approach is that such a PPL is portable and easy to teach. It is also simpler to do
sophisticated program analysis on a DSL. On the other hand providing all the developer
tools requires a tremendous amount of effort and even then the PPL is usually feature poor
compared with normal programming languages. Furthermore, incorporating a probabilistic
model into a larger application forces the users to work in multiple programming languages
simultaneously, sometimes resorting to file-based communication, which is tedious and
error-prone. Examples of stand-alone PPLs include BUGS [30], Stan [12], LibBi [61] and
Hakaru [62].

An alternative to a stand-alone implementation is to embed a DSL into an existing
programming language. The host language can then be used to put together expressions in
the PPL, but the final model only includes constructs from the DSL and not arbitrary host
language code. The advantages of embedding a DSL mirror those of stand-alone DSLs. It
takes relatively little effort to implement, allows reuse of all the developer tools from the
host language, and makes it easy to incorporate a probabilistic model as a part of a larger
application. On the other hand an embedded DSL is tied to a particular host language and
can be difficult to learn for people unfamiliar with the host language. Both embedded and
stand-alone DSLs make it relatively simple to perform sophisticated analysis of the model
structure and to enforce restrictions on what types of models are allowed. On the other hand
they tend to be less flexible than PPLs described in the next section. It is also difficult to
incorporate existing code into a model written in a DSL. Examples of PPLs implemented as
embedded DSLs include Infer.NET [58], PyMC [68], and Edward [88].

Finally, although this does not have to be the case, probabilistic programming DSLs
often enforce a constraint that the model only has a finite number of latent variables that is
known before the model is run. This restriction makes inference significantly easier, since it
is easy to maintain the identity of different latent variables across different execution traces.
However, it limits what kinds of models can be expressed, in particular excluding Bayesian
nonparametric models.

2.3 Probabilistic Programming 33

2.3.4 Extensions of General-Purpose Programming Languages

Another possibility for implementing a PPL is to extend an existing programming language
with operations for sampling and conditioning. This can be done through a generic mecha-
nism for extending the language with computational effects or in an ad-hoc fashion. Such an
extension provides a very flexible PPL that can easily incorporate any existing code from
the host language and use its full power within the model specification. Additionally the
implementation is often relatively concise. The main disadvantage is that it can be difficult
to devise good inference algorithms that can handle all the possible ways in which a model
can be written, in particular performing program analysis in such a language is difficult.
The flexibility of the host language usually means that the model can include a varying and
unbounded number of random variables and it can be difficult to align them across different
execution traces. On top of that it forces the users to use a particular programming language,
even if they are unfamiliar with it. Examples of PPLs implemented as extensions to existing
languages include Pyro, Turing [25], and Hansei [46].

Finally, some PPLs are difficult to classify as either DSLs or extensions of an existing
language. One family takes a subset of an existing language, extend it with probabilistic
effects, and write inference algorithms by compilation to the original language. Sometimes
they also provide an interface to that language, allowing existing code to be included into
the model under specific conditions and incorporating a model as a part of an application in
the existing language. Examples of such PPLs include Anglican [86], WebPPL [32], and R2
[66]. Another PPL difficult to classify is Figaro [71] which looks like a DSL embedded in
Scala but can incorporate arbitrary Scala functions.

Our library MonadBayes is developed as an extension of Haskell using monads as a
mechanism to introduce custom computational effects. It is similar in scope to other languages
described in this subsection, so we only compare its performance to these languages, in
particular to Anglican and WebPPL.

2.3.5 Semantics for Probabilistic Programs

Formal semantic treatment of probabilistic programs dates back at least to the work of Kozen
[49] who gave semantics to probabilistic while-programs using partial measurable functions
and continuous linear operators. However, the early work on probabilistic programming
semantics did not include any constructs for specifying observations. For our purposes the
most relevant papers are that of Jones and Plotkin [44] and Ramsey and Pfeffer [74] who
describe several different probability monads.

34 Preliminaries

Formal semantics for probabilistic programs including conditioning and targeting specifi-
cally machine learning applications only started to appear later, with particularly influential
papers by Park et al. [67] and Borgström et al. [10]. Since then, many authors have considered
semantics of probabilistic programs with conditioning, but most of these papers consider
idealised semantics in terms of measures and other intractable mathematical constructs. Such
semantics is well-suited to reasoning about program equivalence, but it in general does not
correspond to approximate inference algorithms actually being executed.

Semantic treatment of MCMC-based inference is scarce, with notable exceptions of Hur
et al. [40] and Borgström et al. [9] who prove correctness of MCMC samplers for imperative
and functional languages respectively. For inference algorithms based on particle filters,
van de Meent et al. [89] provide a formal specification of the Particle Gibbs with Ancestor
Sampling algorithm but do not attempt to prove its correctness. To the best of our knowledge
a semantic construction including a proof of correctness of particle filtering algorithms was
missing from the literature before the publication of papers containing the work presented in
this dissertation. Independently of our work, Zinkov and Shan [94] developed a framework
for reasoning about correctness of inference algorithms using program transformations but
they do not consider particle filtering algorithms.

Chapter 3

Formal Calculus and Discrete Inference
Semantics

In this chapter we introduce the formal probabilistic calculus for which we subsequently give
formal semantics. The calculus uses two standard probabilistic primitives, one for sampling
from a given probability distribution and one for scoring a trace of the program. In this
chapter we only allow discrete distributions, which makes the semantics much simpler. We
use this setting to introduce the structures we use to construct inference algorithms in a
setting where the main ideas of the construction are not obscured by the details of quasi-Borel
spaces. The developments in this chapter set the stage for the full semantic construction
given in the subsequent two chapters.

We use a variant of the simply-typed λ -calculus with sums and inductive types, base
types and constructors, primitives, and primitive recursion, but without effects. We also
use monad-like constructs in the spirit of Moggi’s computational λ -calculus [59]. The core
calculus is very simple, and at places we need an inherently semantic treatment, which
the core calculus alone cannot express. In those cases, we resort directly to the semantic
structures, sets or spaces. Generally, however, we use the calculus as much as possible to
take advantage of the fact that the types and functions expressed in it are by construction
well-formed objects and morphisms respectively. In the continuous case, using this calculus
yields correct-by-construction quasi-Borel spaces and their morphisms, avoiding a tedious
and error-prone manual verification. Using the core calculus also brings our theoretical
development closer to potential implementations in functional languages.

While the calculus contains many popular programming language features, it only allows
a form of primitive recursion but not general recursion. This means that every well-typed
program is guaranteed to terminate so the semantics does not need to deal with diverging
computation. While we believe our constructions can be extended to languages with general

36 Formal Calculus and Discrete Inference Semantics

τ,σ ,ρ ::= types
α positive variable

| {ℓ1 τ1
∣∣ . . . ∣∣ ℓn τn} variant

| 1 | τ ∗σ finite product
| µα.τ inductive type

|τ → σ function
|A base
|Fτ base constructors

ΓB x1 : τ1, . . . ,xn : τn variable contexts
t,s,r ::= terms

x variable
| τ.ℓ t variant constructor
| () | (t,s) nullary and binary tuples
| τ.roll iso-inductive constructor
| λx : τ.t function abstraction
| match t

with{ℓ1 x1→ s1
∣∣ · · · ∣∣ ℓn xn→ sn}

pattern matching: variants

| match t
with(x,y)→ s

binary products

| match t
withrollx→ s

inductive types

| τ.fold t inductive recursion
| t s function application
| ϕ primitive

Figure 3.1: Core calculus types (top) and terms (bottom)

recursion, this is left for future work. See Chapter 8 for details. The implementation given in
Chapter 6 allows general recursion and its behaviour is discussed therein.

3.1 Syntax

Fig. 3.1 (top) presents the types of our core calculus. To support inductive types, we include
type variables, taken from a countable set ranged over by α,β ,γ, Our kind system will
later ensure these type variables are strictly positive: they can only appear free covariantly —
to the right of a function type. Variant types use constructor labels taken from a countable set
ranged over by ℓ,ℓ1, ℓ2, Variant types are in fact partial functions with a finite domain
from the set of constructor labels to the set of types. When σ is a variant type, we write
(ℓτ) ∈ σ for the assertion that σ assigns the type τ to ℓ. We include the standard unit
type, binary products, and function types. We include unary uninterpreted base types and
constructors. While we use a list syntax for variable contexts Γ, they are in fact partial
functions with a finite domain from the countable set of variables, ranged over by x,y,z, . . .,
to the set of types.

We desugar stand-alone labels in a variant type {· · ·
∣∣ ℓ ∣∣ · · ·} to the unit type {· · ·

∣∣ ℓ() ∣∣
· · ·}. We also desugar seemingly-recursive type declarations τ B σ [α 7→ τ] to τ B µα.σ .

Example 1. The type of booleans is given by boolB {True
∣∣ False}. The type of natural

numbers is given by N B {Zero
∣∣ SuccN} desugaring to N B µα.{Zero

∣∣ Succα}. The
type of α-lists is given by Listα B {Nil

∣∣ Consα ∗Listα}, desugaring to Listα B µβ .{Nil
∣∣

Consα ∗β}.

3.2 Type System 37

Base types and constructors allow us to include semantic type declarations into our
calculus. For example, we will always include the following base types:

• I : unit interval [0,1]; • R: real line (−∞,∞); • R: extended real line [−∞,∞];
• R+: non-negative reals [0,∞); • R+: non-negative extended reals [0,∞].

In addition, once we define a type constructor such as Listα , we will later reuse it as a
base type constructor Listτ , effectively working in an extended calculus. Thus we are
working with a family of calculi, extending the base signature with each type definition in
our development.

Fig. 3.1 (bottom) presents the terms in our core calculus. Variant constructor terms τ.ℓ t
are annotated with their variant type τ to avoid label clashes. The tupling constructors are
standard. We use iso-inductive types: construction of inductive types requires an explicit
rolling of the inductive definition such as N.roll(Zero()). Variable binding in function
abstraction is intrinsically typed in standard Church-style. We include standard pattern
matching constructs for variants, binary products, and inductive types. We include a structural
recursion construct τ.fold for every inductive type τ . Function application is standard, as is
the inclusion of primitives.

To ease the construction of terms, we use the standard syntactic sugar (e.g. letx = t ins
for (λx. t)s, if thenelse for pattern matching booleans), informally elide types from the terms,
elide roll ing/unrolling inductive types, and informally use nested pattern matching.

Example 2. For Listτ = µα.{Nil
∣∣ Consτ ∗α}, we can express standard list manipulation:

x :: xs = Cons(x,xs) foldra f = Listτ.foldλ{Nil→ a
∣∣ Cons(x,b) → f (x,b)}

xs ++ ys = foldrys (::) xs map f xs = foldr [] (λ{(y,ys)→ (f (y),ys)})

where we abbreviate [a1, . . . ,an] to Cons(a1, . . . ,Cons(an,Nil) . . .).

3.2 Type System

To ensure the well-formedness of types, which involve type variables, we use a simple kind
system, presented in Fig. 3.2. Each kinding judgement ∆ ⊢k τ : type asserts that a given type
τ is well-formed in the type variable context ∆, which is finite set of type variables.

The kinding judgements are standard. All type variables must be bound by the enclosing
context, or by an inductive type binder. The contravariant position in the function type
τ→ σ must contain a closed type, ensuring that free type variables can only appear in strictly
positive positions. Variable contexts Γ must only assign closed types.

38 Formal Calculus and Discrete Inference Semantics

∆ ⊢k α : type
(α ∈ ∆)

for all 1≤ i≤ n: ∆ ⊢k τi : type
∆ ⊢k {ℓ1 τ1

∣∣ . . . ∣∣ ℓn τn} : type ∆ ⊢k 1 : type
∆ ⊢k τ : type ∆ ⊢k σ : type

∆ ⊢k τ ∗σ : type
∆,α ⊢k τ : type

∆ ⊢k µα.τ : type

⊢k τ : type ∆ ⊢k σ : type

∆ ⊢k τ → σ : type

∆ ⊢k A : type
∆ ⊢k τ : type

∆ ⊢k Fτ : type
for all (x : τ) ∈ Γ: ⊢k τ : type

⊢k Γ : context

Figure 3.2: Core calculus kind system. The highlighted precondition ensures that free type
variables can not appear in the contravariant position. This restriction excludes fully recursive
types and only allows inductive types.

Γ ⊢ x : τ
((x : τ) ∈ Γ)

Γ ⊢ t : τi

Γ ⊢ τ.ℓi t : τ
((ℓi τi) ∈ τ)

Γ ⊢ () : 1
Γ ⊢ t : τ Γ ⊢ s : σ

Γ ⊢ (t,s) : τ ∗σ Γ ⊢ τ.roll :
(
σ [α 7→ τ]

)
→ τ

(τ = µα.σ)
Γ,x : τ ⊢ t : σ

Γ ⊢ λx : τ.t : τ → σ

Γ ⊢ t : {ℓ1 τ1
∣∣ . . . ∣∣ ℓn τn} for each 1≤ i≤ n: Γ,xi : τi ⊢ si : τ

Γ ⊢match t with{ℓ1 x1→ s1
∣∣ · · · ∣∣ ℓn xn→ sn} : τ

Γ ⊢ t : σ ∗ρ Γ,x : σ ,y : ρ ⊢ s : τ

Γ ⊢match t with(x,y)→ s : τ

Γ ⊢ t : µα.σ Γ,x : σ [α 7→ µα.σ] ⊢ s : τ

Γ ⊢match t withrollx→ s : τ

Γ ⊢ t :
(
σ [α 7→ ρ]

)
→ ρ

Γ ⊢ τ.fold t : τ → ρ
(τ = µα.σ)

Γ ⊢ t : σ → τ Γ ⊢ s : σ

Γ ⊢ t s : τ Γ ⊢ ϕ : τϕ

Figure 3.3: Core calculus type system.

Example 3. The types from Example 1 are well-kinded: α ⊢k bool,N,Listα : type.

We define capture avoiding substitution of types for type variables in the standard way,
which obeys the usual structural properties. Henceforth we consider only well-formed
types in context, leaving the context implicit wherever possible, and gloss over issues of
alpha-convertibility of bound type variables.

To type terms, we assume each primitive ϕ has a well-formed type ⊢k τϕ : type associated
with it. Fig. 3.3 presents the resulting type system. Each typing judgement Γ ⊢ t : τ asserts
that a given term t is well-typed with the well-formed closed type ⊢k τ : type in the variable
context ⊢k Γ : context.

The rules are standard. By design, every term has at most one type in a given context.

3.3 Primitive Recursion 39

Example 4. Once desugared, the list manipulation terms from Example 2 have types:

(::) : τ ∗Listτ → Listτ foldr : σ → (τ ∗σ → σ)→ Listτ → σ

map : (τ → σ)→ (Listτ → Listσ) (++) : (Listτ)∗ (Listτ)→ Listτ

3.3 Primitive Recursion

As is well-known [41, 27], structural recursion on inductive types allows us to express
primitive recursion. By ‘primitive recursion’, we mean recursing through values of an
inductive type µα.σ using a term of the form: Γ,k : σ [α 7→ (µα.σ) ∗ρ] ⊢ t : ρ with the
intention that t can use either arbitrary (total) processing on the sub-structures of its input k,
or make a primitive recursive call to itself with a sub-structure. In order to desugar such a
term into a function of type τ ∗ (µα.σ)→ ρ , we use terms of the following type, defined by
induction on types:

πα.σ ,ρ : σ [α 7→ (µα.σ)∗ρ]→ σ [α 7→ µα.σ]

and interpret the primitive recursive declaration t embodied by:

Γ,x : µα.σ ⊢match(µα.σ).fold
(
λk : σ [α 7→ (µα.σ)∗ρ].(rollπα.σ ,ρk, t)

)
x

with(_,r)→ r : σ

.

This translation is global in nature: the structure of the term π depends on the type of t.
Thus, it does not constitute a macro translation [23]. With this point in mind, we will allow
ourselves to use primitive recursive definitions.

Example 5. We define a function aggr : List(R+ ∗X)→ List(R+ ∗X) which takes a list of
weighted values and aggregates all the weights based on their values. We make use of the
auxiliary function add : (R+ ∗X) ∗ List(R+ ∗X)→ List(R+ ∗X), which adds a weighted
value to an already aggregated list. We define add by primitive recursion:

add((s,a),xs)Bmatchxs with{[] → [(s,a)] −− new entry
(r,x) :: xs→ if x = a

then(s+ r,a) :: xs −− accumulate
else (r,x) :: add((s,a),xs)} −− recurse

40 Formal Calculus and Discrete Inference Semantics

and set aggrB foldr [] add. This example makes use of an equality predicate between X
elements, restricting its applicability.

3.4 Denotational Semantics

We give a set-theoretic semantics to the calculus. In such set-theoretic semantics, types-
in-context ∆ ⊢k τ : type are interpreted as functors ⟦τ⟧ : Set∆→ Set, i.e., ⟦τ⟧ assigns a set
⟦τ⟧(Xα)α∈∆

for every ∆-indexed tuple of sets, and a function

⟦τ⟧(fα : Xα → Yα)α∈∆
: ⟦τ⟧(Xα)→ ⟦τ⟧(Yα)

for every ∆-indexed tuple of functions between the sets with corresponding index, and this
assignment preserves composition and identities.

In order to interpret iso-inductive types µα.τ , we need canonical isomorphisms between
the sets ⟦τ⟧(⟦µα.τ⟧)∼= ⟦µα.τ⟧. We will do this in a standard way, by interpreting ⟦µα.τ⟧ as
the initial algebra for the functor ⟦τ⟧ : [Set∆→ Set]→ [Set∆→ Set]. This means that for every
functor A : Set∆→ Set with a natural family of functions {aX : (⟦τ⟧A)(X)→ A(X)}X∈Set∆ ,
there is a canonical natural family of functions {foldX : ⟦µα.τ⟧(X)→ A(X)}X∈Set∆ .

A technical requirement is needed to ensure that this initial algebra exists: we fix a
regular cardinal κ , and demand that each type denotes a κ-ranked functor (ranked functor
for short), that is, that it denotes a functor that preserves κ-filtered colimits1. The κ-ranked
functors are closed under composition, products, sums, and initial algebras. Initial algebras
for κ-ranked functors on locally presentable categories always exist, because they can be
built in an iterative way by transfinite induction (see e.g. [45]).

Set-Theoretic Interpretation

To interpret types, we assume a given interpretation B ⟦−⟧ of the base types A as sets B ⟦A⟧
and of base type constructors F as ranked functors B ⟦F⟧ : Set→ Set. We then interpret each
well-formed type in context ∆ ⊢k τ : type as a ranked functor ⟦τ⟧ : Set∆→ Set, as depicted
in Fig. 3.4.

In this definition, the parameter d is either a tuple of sets or a tuple of functions, depending
on whether the relevant equations define how the functor in question transforms objects or
morphisms. When interpreting type variables, we write d(α) for the α-indexed component

1We do not use simpler classes of functors, such as polynomial functors or containers, as they are not closed
under subfunctors, given by subsets in the discrete case and subspaces in the continuous case, which we need in
the sequel.

3.4 Denotational Semantics 41

⟦α⟧d B d(α) ⟦{ℓ1 τ1
∣∣ . . . ∣∣ ℓn τn}⟧d B

n

∑
i=1
⟦τi⟧d ⟦1⟧d B 1

⟦τ ∗σ⟧d B (⟦τ⟧d)× (⟦σ⟧d) ⟦A⟧d BB ⟦A⟧

⟦Fτ⟧d BB ⟦F⟧(⟦τ⟧d) ⟦µα.τ⟧d B µX .⟦τ⟧d[α 7→ X] ⟦τ → σ⟧d B (⟦σ⟧d)⟦τ⟧()

Figure 3.4: Core calculus type-level semantics. The highlighted part guarantees existence of
the relevant initial algebras. This construction is enabled by the restriction of the type system
highlighted in Figure 3.2.

of d. The interpretation of simple types uses disjoint unions, singletons, finite products,
and exponentials, i.e. the bi-cartesian closed structure of Set. We interpret inductive types
⟦µα.τ⟧d using the initial algebra for the ranked functor λX . ⟦τ⟧d[α 7→ X] : Set→ Set. In
the semantics of the function type τ → σ , the exponential makes no use of the functor’s
arguments, and relies on the fact that all type variables are strictly positive. We use the given
interpretation of base types and type constructors to interpret them.

Lemma 1. The semantics of types is well-defined: every well-formed type ∆ ⊢k τ : type
denotes a ranked functor ⟦τ⟧ : Set∆→ Set. In particular, every closed type denotes a set.

The proof is by induction on the kinding judgements, using well-known properties of
Set.

We will always interpret the base types I, R, etc. by the sets they represent.

Example 6. We calculate the denotations of the types from Example 1. Booleans denote a
two-element set ⟦bool⟧= {False,True}, and the natural numbers denote the set of natural
numbers ⟦N⟧= N. By Lemma 1, ⟦List⟧ denotes a ranked functor List : Set→ Set, and this
functor is given by the set of sequences of X-elements ListX B

⋃
n∈NXn.

Beyond establishing the well-definedness of the semantic interpretation, Lemma 1 equips
us with syntactic means to define ranked functors. Once defined, we can add these functors
to our collection of base types (in an extended instance of the core calculus). In the sequel,
we will often restrict a given ranked functor F : Set→ Set by specifying a family of subsets
GX ⊆ FX . Doing so is analogous to imposing an invariant on a datatype. The subsets GX
form a subfunctor G⊆ F precisely if they are closed under the functorial action of F , i.e.,
for every function f : X → Y and a ∈ GX , F f (a) ∈ GY .

Lemma 2. Subfunctors of ranked functors over Set are ranked.

We can prove this lemma directly, but it also follows from a higher-level argument using
the commutation of finite limits and κ-directed colimits in Set.

42 Formal Calculus and Discrete Inference Semantics

instance Monad (List)where
returnx = [x]
xs >>= f = foldr []

(
λ (x,ys). f (x)++ ys

)
xs

(a) Declaring monadic interfaces

Sugar Elaboration
• x← t;s t >>= λx.s
• return t returnT t
• t;s _← t;s

(b) Haskell’s do-notation

Figure 3.5: Monadic programming notation

3.5 Monadic Programming

In the sequel, we will be working with types that support a monadic programming style.
More precisely, a monadic interface T consists of a triple T = (T, returnT ,>>=T) where: T
assigns to each set X a set T X ; returnT assigns to each set X a function returnT

X : X → T X ;
and >>=T assigns to each pair of sets X and Y a function >>=T

X ,Y : T X× (TY)X → TY . We
borrow Haskell’s type-class syntax to define such interfaces. As an example, Fig. 3.5a defines
a monadic interface over List.

Each such monadic interface T allows us to use standard do-notation summarised in
Fig. 3.5b. Though simple in principle, we must take care when treating this notation as
syntactic sugar, as choosing the appropriate function returnX or >>=X ,Y at each desugaring
step must take typing information into account. When we use do-notation in the sequel, we
ensure that such choices can be disambiguated. Finally, we will delimit our use of do-notation
to within a do-block T .do{. . .}, omitting the monadic interface T or the entire delimiter
when either is clear from the context.

Importantly, we do not insist that a monadic interface satisfies the monad associativity
and unit laws: (returnx) >>= f = f (x), a >>= return = a, and (a >>= f) >>= g = a >>=

(λx.(f x >>= g)).

3.6 Discrete Inference

We can now lay-out the core ideas in the simpler, set-theoretic case: a semantic structure
for higher-order (discrete) probabilistic programs, intermediate representations of these
programs for the purpose of inference, valid transformations between these representations,
and modular building blocks for creating new representations and transformations from
existing ones. For simplicity, we consider representations and transformations from simple
rather naive inference algorithms only in this section. In Chapter 5 we show how the core
ideas here apply to advanced algorithms when aided with further technical developments.

3.6 Discrete Inference 43

3.6.1 The Mass Function Monad

For our purposes, probabilistic programming languages contain standard control-flow mech-
anisms and data types, such as our core calculus, together with probabilistic choice and
conditioning operations. In the discrete case, these are given by two effectful operations:

Γ ⊢comp flip : bool

Γ ⊢ t : R+

Γ ⊢comp score t : 1

In Bayesian probabilistic programming, we think of flip as drawing from a (uniform) prior
distribution on bool, and of score as recording a likelihood. Typically, one calls score(f (x))
where f is a density function of a distribution, which records the likelihood of observing
data x from the distribution f . The score might be zero, indicating a hard constraint - this
path is impossible. The score might be in the unit interval, corresponding to the probability
of a discrete observation. In general the score is a likelihood function can take any positive
real value. The inference problem is to approximate the posterior distribution, from the
unnormalized posterior defined by the program, combining a prior and likelihood.

To give a set-theoretic semantic structure to such a higher-order language with these two
constructs, it suffices to give a monadic interface T for which the associativity and unit laws
hold, together with two functions:

flip : ⟦1⟧→ T ⟦bool⟧ score : ⟦R+⟧→ T ⟦1⟧ .

For the purposes of the discrete development, the following monad fits the bill. A (finite)
mass function over a set X is a function µ : X → R+ for which there exists a finite set F ⊆ X
such that µ is 0 outside F: in other words, the support set supp µ B

{
x ∈ X

∣∣µ(x) ̸= 0
}

is
finite. For every set X , let MassX B {µ : X → R+|µ is a mass function}. The mass function
monad is given by:

MassB instance Monad (Mass)where
returnx0 = λx. if (x = x0) then 1 else 0
µ >>= f = λy. ∑x∈supp µ µ(x) · (f (x)(y))

and we set flip = λ_. 1
2 and scorer = λ{()→ r}. Intuitively, values of MassX represent

unnormalized probabilistic computations of a result in X . From the Bayesian perspective, the
meaning of a program is the unnormalized posterior.

Lemma 3. The monadic interface Mass defines a ranked monad over Set.

44 Formal Calculus and Discrete Inference Semantics

This monad is also known as the free positive cone monad, as it constructs the ‘positive
fragment’ of a vector space over the field of reals with basis X .

3.6.2 Inference Representations

The mass function semantics is accurate, but idealised: realistic implementations cannot
be expected to compute mass functions at arbitrary types, and especially at higher-order
types. Instead, probabilistic inference engines would manipulate some representation of the
program, while maintaining its semantics.

Definition 4. A discrete inference representation T is a sextuple

T =
(

T, returnT ,>>=T ,flipT ,scoreT ,mT
)

consisting of:

• a monadic interface
(

T, returnT ,>>=T
)

;

• two functions flipT : 1→ T2 and scoreT : R+→ T1, where 1 := ⟦1⟧, 2 := ⟦bool⟧; and

• an assignment of a meaning function mT
X : T X →MassX for every set X

such that the following laws hold for all sets X, Y , and x ∈ X, a ∈ T X, r ∈ R+, and
f : X → TY :

returnMass x = m(returnT x) m(a >>=T f) = (ma) >>=Mass
λx. m(f x)

m(flipT) = flipMass m(scoreT r) = scoreMass r

As with monadic interfaces, we use a type-class notation for defining inference represen-
tations.

Example 7 (Discrete weighted sampler). Consider the type

Termα B {Return(R+ ∗α)
∣∣ Flip(Termα ∗Termα)},

which induces a ranked functor Term. The elements of TermX are binary trees, which we
call terms, whose leaves contain weighted values of type X . Fig. 3.6a presents the inference
representation structure of the functor Term. Flip represents a probabilistic choice while
Return holds the final value and the total weight for the branch. Thus an immediately
returning computation is represented by a leaf with weight 1. The auxiliary function scale in

3.6 Discrete Inference 45

instance Discrete Monad (Term)where
returnx= Return(1,x)
a >>= f = let(scale : R+ ∗TermX → TermX) = −− uses primitive recursion

λ s.λ{Return(r,x) → Return(s · r,x)∣∣Flip(kFalse,kTrue)→ Flip(scale(s,kFalse),scale(s,kTrue))}
in matchawith{

Return(r,x) →scale(r, f x)∣∣Flip(kFalse,kTrue)→Flip(kFalse >>= f , −− uses primitive recursion
kTrue >>= f)}

flip = Flip(Return(1,False),Return(1,True))
scorer = Return(r,())
ma = foldλ{Return(r,x) →Mass .do{scorer;returnx}∣∣Flip(µFalse,µTrue)→Mass .do{x← flip;

if x then µTrue else µFalse}}

(a) Discrete weighted sampler representation

instance Discrete Monad (Enum)where
returnx= [(1,x)]
xs >>= f= let(scale : R+ ∗EnumX → EnumX) =

λ{(r,xs)→mapλ{(s,y)→ (r · s,y)}
xs}

in foldr []
λ{((r,x),ys)→ scale(r, f x)++ ys}
xs

flip = [(1
2 ,False),(

1
2 ,True)]

scorer = [(r,())]
mxs = λa. −− mxs a = ∑(r,x)∈xs

x=a
r

foldr0

(
λ{((r,x),s)→

if x = a then r+ s else s}

)
xs

(b) Discrete enumeration sampler

instance Inf Trans(W)where
liftT a = T .do{x← a;

return(1,x)}
returnWT x= returnT (1,x)
a >>=WT f = T .do{(r,x)← a;

(s,y)← f (x);
return(r · s,y)}

flipWT = liftflipT

scoreWT r = returnT (r,())
mWT a = λx. ∑(r,x)∈suppmT (a) r
(tmap t)X = tR+∗X

(c) Discrete weighting transformer

Figure 3.6: Example inference representations (a,b) and transformers (c)

46 Formal Calculus and Discrete Inference Semantics

the definition of >>= scales the leaves of its input term by the input weight. The function >>=

itself substitutes terms for the leaves according to its input function f , making sure the newly
grafted terms are scaled appropriately. The probabilistic choice operation flip constructs
a single node with each leaf recording the probabilistic choice unweighted. Conditioning
records the input weight.

The meaning function recurses over the term, replacing each node representing a proba-
bilistic choice by probabilistic choice of the mass function monad, and reweighting the end
result appropriately.

The main step in validating the inference representation laws involves >>=: first show
that composing the meaning function with the auxiliary function scale scales the meaning of
the input term appropriately, and then proceed by structural induction on terms.

The weighted sampler representation in fact forms a proper monad over Set: it is the
free monad for an algebraic theory with a binary operation flip and unary operations scorer

subject to flip(scorer(x),scorer(y)) = scorer(flip(x,y)). As the mass function monad also
validates these equations, the meaning function is then the unique monad morphism from
Term to Mass preserving the operations flip and score.

However, we emphasise that an inference representation need not form a proper monad,
and that the meaning function need not be a monad morphism. Indeed, the PopSam rep-
resentation introduced in Section 5.2 is not a monad and most of the non-trivial inference
transformations we discuss are not monad morphisms.

The weighted sampler representation allows us to incorporate both intensional and opera-
tional aspects into our development. Bayesian inference ultimately reduces a representation
into probabilistic simulation. The weighted sampler representation can thus act as an internal
representation of this simulation. Moreover, its continuous analogue will allow us to ma-
nipulate traces when analysing the Trace Markov Chain Monte Carlo algorithm in Section
5.4.

Example 8 (Enumeration). The type EnumαB List(R+∗α) induces a ranked functor Enum.
Elements of EnumX form an enumeration of the mass function they represent, with the same
value x potentially appearing multiple times with different weights. Values not appearing in
the list at all have weight 0.

Fig. 3.6b presents an inference representation structure using Enum. Returning a value
lists the unique non-zero point mass. The >>= operation applies the given function to each
element listed, scales the list appropriately and accumulates all intermediate lists. The choice
operation enumerates both branches with equal probability, and conditioning inserts a scaling
factor. The meaning function assigns to an element the sum of its weights. This definition
uses an equality predicate.

3.6 Discrete Inference 47

Establishing the inference representation laws is straightforward.

3.6.3 Inference Transformations

We can now define the central validity criterion in our development. We decompose Bayesian
inference algorithms into smaller transformations between inference representations. To
be correct, these transformations need to preserve the meaning of the representation they
manipulate:

Definition 5. Let T , S be two inference representations. A discrete inference transformation
t : T → S assigns to each set X a function tX : T X → SX satisfying mT (a) = mS(tX(a)) for
every a ∈ T X.

This validity criterion guarantees nothing beyond the preservation of the overall mass
function of our representation. The transformed representation may not be better for inference
along any axis, such as better convergence properties or execution time. It is up to the
inference algorithm designer to convince herself of such properties by other means: formal,
empirical, or heuristic.

Some transformations change the representation type:

Example 9 (Enumeration). Define a transformation: t : Term→ Enum by:

t B λ{Return(r,x) → Enum .do{scorer;returnx}∣∣ Flip(xFalses ,xTrues)→ Enum .do{b← flip; if b then xTrues else xFalses }}
.

Straightforward calculation shows it preserves the meaning functions.

The last example is a special case: analogous functions form inference transformations tT :
Term→ T for every discrete inference representation T . To establish meaning preservation,
calculate that both mTerm and mT ◦ tT are monad morphisms that preserve probabilistic choice
and conditioning and appeal to the initiality of Term.

An inference transformation need not be natural:

Example 10 (Aggregation). Recall the functions aggrX : List(R+ ∗X)→ List(R+ ∗X) from
Example 5 which aggregate list elements according to their X component by summing
their weights. It forms an inference transformation aggr : Enum→ Enum. The meaning
preservation proof uses straightforward structural induction. Note that aggr is not a natural
transformation.

48 Formal Calculus and Discrete Inference Semantics

3.6.4 Inference Transformers

We can decompose the weighted sampler representation Term, which forms a monad, by
transforming the discrete sampler representation DSamX B {ReturnX

∣∣ Sample(DSamX ∗
DSamX)} with the following writer monad transformer WT X B T (R+ ∗X), i.e. Term=

WDSam. Such decompositions form basic building blocks for constructing and reasoning
about more sophisticated representations.

Definition 6. An inference transformer F is a triple (F , tmapF , liftF) whose components
assign:

• inference representation F T to every inference representation T ;

• inference transformation tmapF t : F T → F S to every inference transformation t :
T → S; and

• inference transformation liftT : T → F T to every inference representation T .

We use type-class notation for defining inference transformers.

Example 11. The weighting inference transformer structure on WT X B T (R+ ∗X) is given
in Fig. 3.6c. We lift a representation in T into WT by assigning weight 1 to it. The monadic
interface uses the standard writer monad for the multiplication structure on R+, accumulating
the weights as computation proceeds. We lift the probabilistic choice from T , but crucially
we reimplement a new conditioning operation using the explicitly given weights. The mass
function meaning of a representation then accumulates the mass of all weights associated to
a given value. We transform an inference transformation by picking the component of the
appropriate type.

It is straightforward to show that WT is an inference representation, using preservation
of return and >>= by the meaning function to reduce the proof to manipulations of weighted
sums over R+. Establishing the validity of lift and tmap is straightforward.

The weighting transformer augments the representation with a new conditioning opera-
tion, but transforms its choice operation to the new representation. We will later see more
examples of both kinds.

3.6.5 Summary

We have introduced our three core abstractions, inference representations, transformations,
and transformers, in relation to a mathematical semantic structure, the mass function monad.
The examples so far show that the higher-order structure in our core calculus acts as a useful

3.6 Discrete Inference 49

glue for manipulating and defining these abstractions. In the continuous case, we will also
use this higher-order structure to represent computations over the real numbers.

Chapter 4

Mathematical Tools for Continuous
Semantics

In this chapter we develop the mathematical machinery required to give denotational seman-
tics to the calculus extended with continuous distributions. The principal difficulty associated
with such a construction lies in giving measurable space structure to sets of higher-order
functions in a systematic way. Attempting to do this naively results in the application func-
tional, which takes a function and an argument and returns the result of applying the function
to the argument, not being a measurable function itself [5]. In technical terms the category of
measurable spaces is not Cartesian closed. This issue proved to be challenging with many
authors such as Staton et al. [84] and Ehrhard et al. [21] devoting considerable effort to
dealing with it.

Intuitively this problem is artificial, in the sense that mathematical objects that cause
issues with measurability do not correspond to actual probabilistic programs that can be
expressed in the relevant languages. This is because probabilistic programs usually only
include distributions over discrete and Euclidean spaces as primitives and it is not possible
to construct arbitrary distributions over function spaces. Any such distribution is in fact a
push-forward of a distribution over numeric types.

This insight was used by Heunen et al. [38] to devise quasi-Borel spaces (QBS), which
only allow certain types of distributions, namely ones obtained by a push-forward of a
distribution over the real line. QBS form a Cartesian closed category which is suitable for
developing denotational semantics of probabilistic programs with continuous distributions
and higher-order functions.

In this chapter we review the relevant concepts in category theory and the construction
of QBS. We also construct a probability monad suitable for our semantic construction and
show that it has the required properties. Since working directly in QBS is counterintuitive,

52 Mathematical Tools for Continuous Semantics

we also provide a synthetic measure theory for QBS which allows us to work with notation
very similar to classical measure theory in the subsequent chapter. The readers not already
familiar with category theory will likely find this chapter difficult to follow. Fortunately,
the technical developments presented in this chapter are well encapsulated, so the reader
can afford to skim this chapter and still be able to follow the rest of the dissertation. We
would ask such a reader to focus their attention in this chapter on Section 4.2, in particular
on Figures 4.1 and 4.2 which list the notations and properties of the synthetic measure theory
that we use in Chapter 5.

This chapter is not original work of the author of this dissertation but rather the author’s
review of work done by others. Some of the constructions presented in this chapter were
introduced as novel in [80] where they were mostly developed by the remaining authors.

4.1 Category Theory

Basic Notions. We assume basic familiarity with categories C , D , functors F,G : C →D ,
and natural transformations α,β : F→G, and their theory of limits, colimits, and adjunctions.
To fix notation, a cartesian closed category is a category with finite products, denoted by 1,
×, ∏

n
i=1, and exponentials, denoted by XY . In this subsection, we use the fragment of our

core calculus consisting of the simply-typed λ -calculus (with sums, if necessary) to more
compactly review the relevant concepts.

Monads. A strong monad T over a cartesian closed category is a triple (T, return,>>=)
consisting of an assignment of an object T X and a morphism returnX : X → T X for every
object X , and an assignment of a morphism >>=X ,Y : T X × (TY)X → TY , satisfying the
monad laws from § 3.5. Given a monad T , a T -algebra A is a pair (|A| ,>>=A) consisting of
an object |A|, called the carrier, and an assignment of a morphism >>=A

X : |A|X → |A|T X to
every object X satisfying

(returnx >>=A f) = f x and ((a >>= f) >>=A g) = a >>= (λx. f (x) >>=A g).

The pair (T X ,>>=) always forms a T -algebra called the free T -algebra over X . The Eilenberg-
Moore category C T for a monad T consists of T -algebras and their homomorphism. The
Kleisli category C T consists of the same objects as C , but morphisms from X to Y in C T are
morphisms X → T Y in C . The Kleisli category C T inherits any coproducts C has. A strong
monad T is commutative when, for every

a : T X ,b : TY ⊢ T .do{x← a;y← b;return(x,y)} = T .do{y← b;x← a;return(x,y)}.

4.2 Synthetic Measure Theory 53

(The notion of strong/commutative monad is due to [47]; our formulation of algebras also
appears in [56].)

Biproducts. A zero object Z is both initial and terminal. A category has (finite, countable,
etc.) biproducts if it has a zero object (and hence zero morphisms 0X ,Y : X→Z→Y) and the
following canonical morphisms are invertible:[(

δi, j
)

j∈I

]
i∈I

: ∑i∈I Xi→∏ j∈I X j where: δi,iB idXi, δi, j B 0Xi,X j for i ̸= j.

Algebraic Structure. Recall the notion of a commutative monoid (M,1, ·) in a category
with finite products. We extend it to countably many arguments. Let C be a category with
countable products. A σ -monoid (see also [36]) is a triple (M,0,Σ) consisting of: an object
M; a morphism 0 : 1→M; and a morphism Σ : MN→M such that:

• setting δ0B idM : M→M and δiB 0◦! : M→ 1→M, i > 0, we have Σ◦(δi)i∈N = δ0;
and

• for every bijection ϕ :N∼=N×N, a(−,−) : MN×N ⊢Σ

(
Σ

(
a(i, j)

)
j∈N

)
i∈N

=Σ

(
aϕ(k)

)
k∈N

.

4.2 Synthetic Measure Theory

Synthetic mathematics identifies structure and axioms from which we can recover the main
concepts and results of specific mathematical theories, and transport them to new settings.
We now briefly recount the relevant parts of Kock’s development [48]. (In the finite discrete
case, this is also related to Jacob’s work on effectuses [42].)

4.2.1 Axioms and Structure

Let C be a cartesian closed category with countable products and coproducts, and let M
be a commutative monad over C . If the morphism ! : M0→ 1 is invertible, then both the
Eilenberg-Moore category C M and the Kleisli category C M have zero objects. As a conse-

quence, we have a canonical M-homomorphism >>=
[(

δi, j
)

j

]
i
: M∑i∈NXi→∏ j∈NMX j.

Definition 7. A measure category is a pair (C ,M) consisting of a cartesian closed category
C with countable products and coproducts, and equalisers; and a commutative monad M
over C such that the morphisms ! : M0→ 1 and >>=

[(
δi, j
)

j

]
i
: M∑i∈NXi→∏ j∈NMX j

are invertible.

54 Mathematical Tools for Continuous Semantics

We fix a measure category (C ,M) for the remainder of this section. The intuition is that
MX is the object of distributions/measures over X . ’Kock’ shows that, while short, the above
definition has surprisingly many consequences.

Both the Eilenberg-Moore and the Kleisli categories have countable biproducts, and as
a consequence, all M-algebras have a σ -monoid structure and all M-homomorphisms are
σ -monoid homomorphisms with respect to it. Moreover, this structure on the free algebra on
the terminal object RBM1 extends to a σ -semiring structure by setting: 1B return() and
r · sBM.do{r;s}. Kock calls this structure the σ -semiring of scalars. Each M-algebra A
has an R-module structure

r : R,a : |A| ⊢ r⊙aBM.do{r;a}

. As C has equalisers, for each object X , we may form the equaliser PX subX MX
M!−−−−−−→→
1

R

because R = M1. Each subX is monic, the monadic structure factors through sub turning P
into a commutative monad P, and sub : P ↣ M into a strong monad monomorphism.

The morphism M! : MX → R is called the total measure morphism, and P is then the sub-
object of all the measures with total measure 1, and so we think of it as the object of probabil-
ity measures over X . For example, every P-algebra is closed under convex linear combinations
of scalars: if r− : N→ R satisfies Σ(ri)i = 1 then µ− : (PX)N ⊢M!(Σ

(
ri⊙µ

i

)
i
) = 1.

4.2.2 Notation and Basic Properties

Kock’s theory shines brightly when we adopt a measure-theoretic notation, as in Fig. 4.1,
by thinking of MX as the object of measures over X , and R as the object of scalars these
measures take values in. The functorial action of the monad allows us to push measures
along morphisms, and pushing all the measure into the terminal object gives a scalar we think
of as the total measure of an object. The monadic return acts as a Dirac distribution. The
main advantage is the Kock integral, synonymous to the monadic >>=. The main difference
between the Kock integral

�
and the usual Lebesgue integral

∫
from measure theory is

that the Kock integral evaluates to a measure, and not a scalar. Calculating with the Kock
integral is analogous to using Lebesgue integrals with respect to a generic test function,
and proceeding by algebraic manipulation. The scalar rescaling ⊙ allows us to rescale a
distribution by an arbitrary weight function. A kernel is a morphism k : X →MY , and we
use the usual notation for integration against a kernel and iterated integration. We define the
product measure by iterated integration. Finally, the >>= operation of an M-algebra A gives

4.2 Synthetic Measure Theory 55

Notation Meaning Terminology
R BM1 Scalars

f : Y X ,µ : MX ⊢ f∗µ B (M f)(µ) Push-forward
µ : MX ⊢ µ(X) B !∗µ The total measure
x : X ⊢ δ x B return(x) Dirac distribution
µ : MX , f : (MY)X ⊢

�
X f (x)µ(dx) B µ >>= f Kock integral

w : RX ,µ : MX ⊢ w⊙µ B
�

X(w(x)⊙δ x)µ(dx) Rescaling[
f : (T Z)X×Y ,

x : X ,k : (TY)X

]
⊢
�
Y f (x,y)k(x,dy) B

�
Y f (x,y)k(x)(dy) Kernel integration[

f : (MX)X×Y ,

µ ∈M(X×Y)

]
⊢
P

X×Y f (x,y)µ(dx,dy)B
�

X×Y f (z)µ(dz) Iterated integrals

µ : MX ,ν : MY ⊢ µ⊗ν B
�

X

(�
Y δ (x,y)ν(dy)

)
µ(dx) Product measure

µ : MX , f : |A|X ⊢ EA
x∼µ [f (x)] B µ >>= f Expectation

f : RX ,µ : MX ⊢
∫

X f (x)µ(dx) B ER
x∼µ [f (x)] Lebesgue integral

Figure 4.1: Synthetic measure theory notation

rise to an expectation operation. Here we will only make use of the scalars’ algebra structure,
which generalises the usual Lebesgue integral.

The justification for this notation is that it obeys the expected properties, which we now
survey. The commutativity of the monad lets us change the order of integration:

Theorem 8 (Fubini-Tonelli). For every pair of objects X, Y in a measure category (C ,M):

P
X×Y f (x,y)(µ ⊗ ν)(dx,dy) =

�
X µ(dx)

�
Y ν(dy) f (x,y) =

�
Y ν(dy)

�
X µ(dx) f (x,y).

Moreover, for every M-algebra A:

µ : MX ,ν : MY, f : |A|X×Y ⊢ EA
x∼µ

y∼ν

[f (x,y)] = EA
x∼µ

[EA
y∼ν

[f (x,y)]] = EA
y∼ν

[EA
x∼µ

[f (x,y)]].

As usual, we allow placing the binder µ(dx) on either side of the integrand f (x).

The push-forward operation interacts with rescaling in the following way:

Theorem 9 (Frobenius reciprocity). For all objects X, Y in a measure category (C ,M):

w : RX ,µ : MX , f : Y X ⊢ w⊙
(

f∗µ
)
= f∗

(
(w◦ f)⊙µ

)
.

56 Mathematical Tools for Continuous Semantics

µ : MX ,a : Y X ⊢
�

X δ a(x)µ(dx) = a∗µ
x0 : X , f : (MY)X ⊢

�
X f (x)δ x0

(dx) = f (x0)

x0 : X , f : |A|X ⊢ Ex∼δ x0
[f (x)] = f (x0)

r : M1,µ : MX ⊢
�
1

µ r(dξ) = r⊙µ

f : Y X ⊢ f∗δ x = δ f (x)
µ : MX ⊢

�
X δ xµ(dx) = µ

µ : MX ⊢ µ(X) =
�

X 1µ(dx)

µ : MX ,a : Y X , f : (MZ)Y ⊢
�

X(f ◦a)(x)µ(dx) =
�
Y f (y)(a∗µ)(dy)

x0 : X ,w : RX , f : (TY)X ⊢
�

X f (x)(w⊙δ x0
)(dx) = w(x0)⊙ f (x0)

µ : MX ,w : RX , f : (TY)X ⊢
�

X f (x)(w⊙µ)(dx) =
�

X w(x)⊙ f (x)µ(dx)

µ : MX , f : (MY)X ⊢ E(KY ,>>=)
x∼µ [f (x)] =

�
X f (x)µ(dx)

µ : MX ,a : Y X , f : |A|Y ⊢ Ey∼a∗µ [f (y)] = Ex∼µ [(f ◦a)(x)]

µ : M(X1×X2), f : (MY)Xi ⊢
P

X1×X2
f (x)µ(dx,dy) =

�
X f (x)((πi)∗µ)(dx)

µ : MX , f : (MY)X ,g : (MZ)Y ⊢
�

X µ(dx)
�
Y g(y) f (x)(dy) =

�
Y g(y)

(�
X f (x)µ(dx)

)
(dy)

µ : MX ,ν : MY,g : (MZ)Y ⊢
�
Y (µ⊗g(y))ν(dy) = µ⊗

�
Y g(y)ν(dy)

ΓB µ
1

: X1,µ2
: X2 , i = 1,2 :

Γ ⊢ (πi)∗(µ1
⊗µ

2
) = µ

3−i
(X3−i)⊙µ

i

�
X µ

1
µ

2
(dx) = µ

2
(X2)⊙µ

1
Γ, f : (MY)Xi ⊢

P
X1×X2

f (xi)(µ1
⊗µ

2
)(dx1,dx2) = µ

3−i
(X3−i)⊙

�
Xi

f (xi)µ i
(dxi)

Γ, f 1 : Y X1
1 , f 2 : Y X2

2 ⊢ (f 1× f 2)∗(µ1
⊗µ

2
) = (f 1

∗ µ
1
)⊗ (f 2

∗ µ
2
)�

X1×X2

(
f 1(x1)⊗ f 2(x2)

)
(µ

1
⊗µ

2
)(dx1,dx2) =

(�
X1

f 1(x1)µ1
(dx1)

)
⊗
(�

X2
f 2(x2)µ2

(dx2)
)

Figure 4.2: Toolbox for synthetic measure theory

When calculating in this notation, we use the equations in Figure 4.2 which contains a
toolbox that includes most of the equations we come to expect from standard measure theory,
like the change of variables law. To validate them, inline the definitions and proceed using
the usual category-theoretic properties.

The following two sections contain relevant extensions to Kock’s theory.

4.2.3 Radon-Nikodym Derivatives

The Radon-Nikodym Theorem is a powerful tool in measure theory, and we now phrase a
synthetic counterpart. As usual in the synthetic setting, we set the definitions up such that the
theorem will be true. Doing so highlights the difference between three measure-theoretic
concepts that coincide in measure theory, but may differ in the synthetic setting.

4.3 Quasi-Borel Spaces 57

Let µ,ν ∈MX be measures. We say that ν is absolutely continuous with respect to µ ,
and write ν Î µ , when there exists a morphism w : X → R such that ν = w⊙µ . Given two
morphisms w,v : X → R and a measure µ ∈MX , we say that w and v are equal µ-almost
everywhere (µ-a.e.) when w⊙ µ = v⊙ µ . A measurable property over X is a morphism
P : X → bool. Given a measure µ ∈MX a measurable property P over X holds µ-a.e., when
the morphism [P]B λx. if P x then 1 else 0 is equal µ-a.e. to 1.

Theorem 10 (Radon-Nikodym). Let (C ,M) be a well-pointed measure category. For every
ν Î µ in MX, there exists a µ-a.e. unique morphism dν

dµ
: X → R satisfying dν

dµ
⊙µ = ν .

4.2.4 Kernels

We say that a kernel k : X →MY is Markov when, for all x, k(x,Y) = 1, i.e., when k factors
through the object of probability measures via sub : P ↣ M. We now restrict attention
to kernels k : X → MX over the same object X . We say that such a kernel preserves
a measure µ when µ >>= k = µ . Recall the morphism swap B λ (x,y).(y,x) : X ×Y →
Y ×X . Given a measure µ ∈MX and a kernel k, we define the box product by µ ⊠ k BP

X×X δ (x,y)µ(dx)k(x,dy). A kernel k is reversible with respect to a measure µ ∈MX when
swap∗(µ ⊠ k) = µ ⊠ k.

The following standard results on kernels transfer into the synthetic setting. If a Markov
kernel k is reversible with respect to µ , then k preserves µ . Kernels obtained by rescaling the
Dirac kernel, i.e., λx.w(x)⊙δ x are reversible w.r.t. all measures. Finally, linear combinations
λx. ∑n∈N rn⊙ kn(x) of reversible kernels w.r.t. µ are also reversible w.r.t. µ .

4.3 Quasi-Borel Spaces

It remains to show that there is a concrete model of synthetic measure theory that contains
the classical measure theoretic ideas that are central to probability theory and inference. This
is novel because Kock’s work [48] is targeted at the geometric/topological setting, whereas
probability theory is based around Borel sets rather than open sets. It is non-trivial because
the traditional setting for measure theory does not support higher-order functions [5] and
commutativity of integration is subtle in general. In this section we resolve these problems
by combining some recent discoveries [38, 83], and exhibit a model of synthetic measure
theory which contains classical measure theory, for instance:

• the σ -semiring over the morphisms 1→ R is isomorphic to the usual σ -semiring over
the extended non-negative reals, R+;

58 Mathematical Tools for Continuous Semantics

• this isomorphism induces a bijective correspondence between the morphisms R→
1+1 and the Borel subsets of R+, as characteristic functions, and also between the
morphisms R→ R and the measurable functions R+→ R+;

• it also induces an injection of the morphisms 1→M(R) into the set of Borel measures
on R+, whose image contains all the probability measures; the morphisms R→M(R)
include all the Borel probability kernels;

• the canonical morphism RR×M(R)→ R, (f ,µ) 7→
∫

f (x)µ(dx), corresponds to clas-
sical Lebesgue integration.

Moreover, each object X can be seen as a set U(X) = C (1,X) with structure, because the
category is well-pointed, in the sense that the morphisms X →Y are a subset of the functions
U(X)→U(Y).

4.3.1 Rudiments of Classical Measure Theory

Measurable spaces are the cornerstone of conventional measure theory, supporting a notion
of measure.

Recall that a σ -algebra on a set X is a set ΣX of subsets of X that is closed under countable
unions and complements. A measurable space is a set together with a σ -algebra. A measure
is a σ -additive function ΣX → R+. A function f between measurable spaces is measurable
if the inverse image of every measurable set according to f is measurable.

For example, on a Euclidean space Rn we can consider the Borel sets, which form the
smallest σ -algebra containing the open cubes. There is a canonical measure on Rn, the
Lebesgue measure, which assigns to each cube its volume, and thus to every measurable
function f : Rn → R+ a Lebesgue integral

∫
Rn f ∈ R+. A slightly more general class of

measures is the σ -finite measures, which include the Lebesgue measures and are closed
under disjoint unions and product measures.

A measurable space that arises from the Borel sets of a Polish space is called a standard
Borel space. In fact, every standard Borel space is either countable or isomorphic to R.
Standard Borel spaces are closed under countable products and countable disjoint unions.

4.3.2 Quasi-Borel Spaces

In this section we fix an uncountable standard Borel space, R. For example, R= R. The
basic idea of quasi-Borel spaces is that rather than focusing on measurable sets of a set X , as
in classical measure theory, one should focus on the admissible random elements R→ X .

4.3 Quasi-Borel Spaces 59

Definition 11 ([38]). A quasi-Borel space (QBS) is a set X together with a set of functions
MX ⊆ [R,X] such that (i) all the constant functions are in MX , (ii) MX is closed under pre-
composition with measurable functions on R, and (iii) MX satisfies the piecewise condition:
if R=

⊎
∞
i=1Ui, where Ui is Borel measurable and αi ∈MX for all i, then

⊎
∞
i=1 αi∩ (Ui×X)

is in MX .
A morphism f : X → Y is a function that respects the structure, i.e. if α ∈ MX then

(f ◦α) ∈MY . Morphisms compose as functions, and we have a category QBS.
A QBS X is a subspace of a QBS Y if X ⊆ Y and MX = {α : R→ X | α ∈MY}.

A measurable space X can be turned into a QBS when given the set of measurable func-
tions R→ X as MX . When X and Y are standard Borel spaces considered as QBSes this way,
QBS(X ,Y) comprises the measurable functions, so QBS can be thought of as a conservative
extension of the universe of standard Borel spaces. The three conditions on quasi-Borel spaces
ensure that coproducts and products of standard Borel spaces retain their universal properties
in QBS. In fact, the category of QBSs has all limits and colimits. It is also cartesian closed;
e.g., RR BQBS(R,R), and M(RR) =

{
α : R→ (RR)

∣∣∣ uncurry(α) ∈QBS(R×R→ R)
}

.
For any QBS X , MX = QBS(R,X).

4.3.3 A Monad of Measures

The following development is novel.

Definition 12. A measure on a quasi-Borel space is a triple (Ω,α,µ) where Ω is a standard
Borel space, α ∈QBS(Ω,X), and µ is a σ -finite measure on Ω.

For example, Ω might be Rn and µ might be the Lebesgue measure. A measure deter-
mines an integration operator: if f ∈QBS(X ,R+) then define

∫
f d(Ω,α,µ)B

∫
Ω

f (α(x))µ(dx)

using Lebesgue integration according to µ . We say that two measures are equal, denoted
(Ω,α,µ)≈ (Ω′,α ′,µ ′), if they determine the same integration operator. We write [Ω,α,µ]

for an equivalence class of measures.
As an aside, we note that not every integration operator on R in the classical sense is

a measure in the sense of Def. 12, because we restrict to σ -finite µ . Technically, the only
integration operators that arise in this way are those corresponding to s-finite measures. This
is a class of measures that includes the probability measures, and which works well with
iterated integration and probabilistic programming [83].

60 Mathematical Tools for Continuous Semantics

The measures up-to≈ form a monad, as follows. First, the set of all measures MX forms a
QBS by setting MMX = {λ r. [Dr,α(r,−),µ|Dr] | µ σ -finite on Ω, D⊆R×Ωmeasurable, α ∈
QBS(D,X)}, where Dr = {ω | (r,ω) ∈ D}. In consequence, when Ω′ is a standard Borel
space, for every morphism f : Ω′→MX , there exist Ω, µ , D⊆Ω′×Ω and α ∈QBS(D,X)

such that f (ω ′) = [Dω ′,α(ω ′,−),µ|D
ω ′]. One intuition is that α is a partial function

Ω′×Ω→ X , with domain D.
The unit of the monad, return : X → MX , is return(x) B [1,λ_.x,δ()] where δ() is

the Dirac measure on the one-point space 1. We often write δ x for return(x). The bind
>>=: MX×MY X →MY is

[Ω,α,µ] >>= ϕ B [D,β ,(µ⊗µ
′)|D],

where ϕ(α(r)) = [Dr,β (r,−),µ ′]. Note that (ϕ ◦α) : Ω→MX must be of this form because
it is a morphism from a standard Borel space. The measure µ⊗µ ′ is the product measure,
which exists because µ and µ ′ are σ -finite.

This structure satisfies the monad laws, it is commutative by the Fubini-Tonelli theorem,
and it satisfies the biproduct axioms, and so it is a model of synthetic measure theory. Every
measure on 1 is equivalent to one of the form ([0,r], !,µ) where r ∈ R+, ! : [0,r]→ 1 is the
unique such random element, and µ is the Lebesgue measure. Thus M1∼= R+.

As another aside, we note that when Ω,Ω′ are standard Borel spaces, the Kleisli mor-
phisms Ω→MΩ′ correspond to s-finite kernels, which were shown in [83] to provide a fully
complete model of first-order probabilistic programming.

Chapter 5

Continuous Inference Semantics

In this chapter we provide the main theoretical contribution of the dissertation, which is a
denotational semantics for probabilistic programs with continuous distributions correspond-
ing to popular Monte Carlo algorithms. The construction is analogous to the discrete one
presented in Chapter 3 and it uses the same calculus, extended with a primitive for sampling
from a continuous distribution. The formal developments in this chapter heavily rely on the
mathematical tools introduced in Chapter 4.

The crucial advantage of our semantics is that it corresponds to approximate inference
algorithms that are commonly run in practice rather than measures corresponding to exact but
intractable results. However, by relating the approximate semantics to the exact one based
on measures we can state and prove correctness of the inference algorithms obtained in this
fashion. Specifically, our formal notion of correctness corresponds to the sampler in question
being unbiased.

Our semantics is compositional in a way that allows various components of Monte
Carlo algorithms to be easily combined. Specifically, we have three different components
of intermediate representations, two used in Sequential Monte Carlo methods and one in
Metropolis-Hastings, and a collection of transformations corresponding to each component.
These can be combined in various ways, for example to obtain an interpretation corresponding
to the Resample-Move SMC algorithm. The semantic construction guarantees that all
samplers obtained by such combinations are unbiased. Such compositions are discussed
more thoroughly in Chapter 7.

5.1 Inference representations

We now develop the continuous counterpart to Sec. 3.6. The semantic structure of the
category of quasi-Borel spaces allows us to transport many of the definitions with little

62 Continuous Inference Semantics

change. For example, a monadic interface T consists of analogous data, but the assignments
are indexed by quasi-Borel spaces, T assigns quasi-Borel spaces, and returnT and >>=T

assign quasi-Borel space morphisms.

Definition 13. A continuous representation T is a tuple (T , returnT ,>>=T ,mT) consisting
of:

• a monadic interface (T , returnT ,>>=T);

• an assignment of a meaning morphism mT
X : T X →MX for every space X

such that mT preserves returnT and >>=T .
A sampling representation is a tuple (T , returnT ,>>=T ,mT ,sampleT) such that its first

four components form a continuous representation, it has an additional Qbs-morphism
sampleT : 1→ T I, and mT maps sampleT () to the uniform Qbs-measure U = [I, id,Uniform]

on the unit interval I, where Uniform is the usual uniform distribution on I.
A conditioning representation T is similarly a tuple (T , returnT ,>>=T ,scoreT ,mT), with a

Qbs-morphism scoreT : R+→ T 1 such that for each r, mT maps scoreT (r) to the r-rescaled
unit Qbs-measure r⊙δ () = [1,λ_.(),r ·δ()].

An inference representation T is a tuple (T , returnT ,>>=T ,sampleT ,scoreT ,mT) with
the appropriate components forming both a sampling representation and a conditioning
representation.

This definition refines Definition 4 with sampling and scoring representations, allowing
us to talk about inference transformers that augment a representation of one kind into another.

Example 12 (Continuous sampler). By analogy with Example 7, we define in Fig. 5.1a a
sampling representation using the type Samα B {Returnα

∣∣ Sample(I→ Samα)}. Validat-
ing the preservation of sample and the monadic interface is straightforward. It also follows
from more general principles: Sam is the initial monad with an operation sample : T I.

We define inference transformations between any two representations as in Definition 5.
We have four kinds of representations, and when defining transformers we can augment a
representation with additional capabilities:

Definition 14. Let k1, k2 be a pair of kinds of representation. A k1 to k2 transformer F is a
tuple (F , tmapF , liftF) consisting of an assignments of:

• a k2 representation F T to every k1 representation T ;

• an inference transformation tmapF t : FT → FS to every transformation t : T → S;
and

5.1 Inference representations 63

instance Sampling Monad (Sam)where
returnx = Returnx
a >>= f = matchawith{

Returnx→ f (x)
Samplek→

Sample(λ r.k(r) >>= f)}
sample = Sampleλ r.(Returnr)
ma = matchawith{

Returnx→δ x
Samplek→

�
I k(x)U(dx)}

(a) Continuous sampler representation

instance Cond Trans(W)where
returnWT x= returnT (1,x)
a >>=WT f = T .do{(r,x)← a;

(s,y)← f (x);
return(r · s,y)}

(tmap t)X = tR+∗X
liftT a = T .do{x← a;return(1,x)}
mWT a = λx.

�
R+×X r⊙δ xmT (a)(dr,dx)

scoreWT r = returnT (r,())

(b) Continuous weighting inference transformer

Figure 5.1: Continuous representations and tranformers

• an inference transformation liftT : T → F T to every k1 representation T .

When the two kinds k1, k2 differ, we say that that the transformer is augmenting.

When defining a k1 to k2 transformer, we adopt a Haskell-like type-class constraint
notation k1 =⇒ k2 used for example in Fig. 5.4a.

Example 13. By analogy with Example 11, Fig. 5.1b presents the continuous weighting
transformer structure on WT X B T (R+ ∗X). It augments any representation transformer
with conditioning capabilities. Each conditioning operation is deferred to the return value,
and so we can view this transformer as freely adding a conditioning operation that commutes
with all other operations. When the starting representation had conditioning capabilities,
we have an inference transformation waggr : WT → T , given by waggraB T .do{(r,x)←
a; scoreT r;returnx} which conditions based on the aggregated weight.

Its validity follows from a straightforward calculation using the meaning preservation of
T .

In the continuous case, the output of the final inference transformation will always be
WSam X or a similar PopSam X described in the next section. From this representation, we
obtain the Monte Carlo approximation to the posterior by using a random number generator
to supply the values required by Sam. Interpreting the program directly in WSam X and
sampling from that would correspond to simple importance sampling from the prior, which
usually needs a very large number of samples to give a good approximation to the posterior.
Our goal in approximate Bayesian inference is therefore to find another representation
for the program and a sequence of inference transformations that map it to WSam X .

64 Continuous Inference Semantics

While, in principle, this output represents the same posterior distribution, hopefully it uses
a representation that requires fewer samples to obtain a good approximation than a direct
interpretation in WSam X . We emphasise that approximation is only done in this final
sampling step, while all the inference transformations that happen before it are exact.

5.2 Population

Given a representation T , we define a representation structure over PopT X B T (List(R+ ∗
X)). We further deconstruct this representation transformer as the composition of two
transformers: the continuous weighting transformer W from Example 13, and Haskell’s
notorious ListT transformer.

The negative reputation associated to the transformer ListTT X B T (ListX) stems from
its failure to validate the monad laws when T is not commutative.1 However, it is a per-
fectly valid representation transformer, described in Fig. 5.2a, since we do not require that
representations satisfy monad laws.

To prove the meaning function preserves return, simply calculate. For >>= preservation,
show that

as : List(T X) ⊢ mListTT (sequenceas) = ∑
a∈as

mT (a)

and proceed via straightforward calculation using the linearity of the Kock integral and the
commutative (σ -)monoid structure on measures.

By composing the two representation transformers, we obtain the representation to
conditioning transformer Pop, given explicitly in Fig. 5.2b.

Fig. 5.2c presents a N+-indexed family of inference transformations. Fix any n ∈ N.
The spark function generates a population of particles with the unit value, and the same
weight 1

n . Thus, spawn(n,a) takes a distribution a over particle populations, sparks n equally
weighted particles, and for each of them, samples a population based on a. A straightforward
calculation confirms that the meaning of spark is 1, and so spawn(n,−) : PopT → PopT is
an inference transformation. In the version of SMC we consider below, we will only pass to
spawn a distribution a over uniformly-weighted single-particle populations.

We use spawn to resample a new population. Thinking operationally, we have a popula-
tion of weighted particles and we obtain a new population by sampling with replacement
from the current one, where the probability of selecting a given particle is proportional to its
weight. Doing so is equivalent to simulating a discrete weighted sample using a uniform one.

1For a list transformer “done right”, see Jaskelioff’s thesis [43], and its generalisations [72, 24].

5.2 Population 65

Auxiliary functions:
sequence : List(T X)→ T (ListX)
sequenceB foldr (return[])

(λ (a,r).T .do{x ← a;
xs← r;
return(x :: xs)}

concat : List(ListX)→ ListX
concatB foldr []++

∑x∈xs f (x)B foldr0
(
λ (x,s). f (x)+ s

)
xs

instance Rep Trans(ListT)where
returnListTT x = returnT [x]
a >>=ListTT f = T .do{xs← a;

letbs = map f xs in
yss← sequencebs;
return(concatyss)}

mListTT a =
�
ListX mT (a)(dxs)∑x∈xs δ x

liftListTT a = T .do{x← a;return [x]}
(tmap t)X = tListX

(a) The list transformer

instance Cond Trans(Pop)where
returnPopT = return(W◦ListT)T
>>=PopT = >>=(W◦ListT)T
liftPopT = liftW(ListTT) ◦ liftListTT
tmapPopT = tmapW(ListTT) ◦ tmapListTT
mPopT = m(W◦ListT)T

= λa.
�

List(R+×X)

mT (a)(dxs)∑(r,x)∈xs r⊙δ x

scorePopT = score(W◦ListT)T
(b) The population transformer

replicate : N∗X → ListX
replicate(Zero ,x) = []
replicate(Succn,x) = x :: replicate(n,x)
spark : N+→ PopT 1
sparkB returnT

(
replicate(n,(1

n ,()))
)

spawn : N+ ∗PopT X → PopT X
spawn(n,a)B PopT .do{sparkn;a}

(c) Spawning new particles

Figure 5.2: Representing populations

66 Continuous Inference Semantics

dwrand(xs,r)B
letw = ∑(r,_)∈xs r in
if w = 0
then Fail
else foldr (w · r,Fail)

(λ ((s,x),(fuel,result)).
if 0≤ fuel < s
then(−1,Takex)
else −− potential underflow

(fuel− s,result))
xs

(a) A discrete weighted randomiser

dwsampleT (xs)B
T .do{score(∑(r,_)∈xs r);

r← sample;
matchdwrand(xs,r) with{

Fail →fail∣∣ Takex→returnx}}

(b) A discrete weighted sampler

resample : N+ ∗PopT X → PopT X
resample(n,a)B

T .do{xs← a;
spawn(n,dwsamplePopT xs)}

(c) Resampling

Figure 5.3: The resampling transformation

Lemma 15. There is a Qbs-morphism dwrand : List(R+ ∗X) ∗ I→ {TakeX
∣∣ Fail} such

that:

• For all xs for which ∑(r,_)∈xs r = 0, we have dwrand(xs,−)∗U = δFail.

• For all xs for which w := ∑(r,_)∈xs r > 0, we have dwrand(xs,−)∗U = ∑(r,x)∈xs
ri
w ⊙

δTakex.

Fig. 5.3a presents one such morphism, though its precise implementation does not
matter to our development. As a consequence, for every sampling representation T for
which we have an element fail : T X such that mT (fail) = 0, we can define a discrete
weighted sampler dwsampleT (xs) : List(R+X)→ T X in Fig. 5.3b which will then satisfy
mT (dwsampleT (xs)) = ∑(r,x)∈xs r⊙δ x.

The resampling step in Fig. 5.3c operationally takes the current population, creates a
computation/thunk that samples a single particle from this population, and then spawns n new
particles that are initialised with this thunk. The morphism resample(n,−) : PopT → PopT
is an inference transformation because, as we know, spawn(n,−) is one and dwsamplePopT :
PopT → PopT samples a population consisting of just a single unit weight particle with a
probability proportional to its renormalised weight in the original population.

5.3 Sequential 67

instance Cond =⇒ Cond Trans(Sus)where
returnSusT x = returnT (Returnx)
a >>=SusT f = fold(λb.T .do{

t← b;
match t with{

Returnx→ f (x)∣∣ Yieldc →Yieldc})}
a

liftSusT a = T .do{x← a; returnSusT x}
(tmapSusT t)X= SusT X .fold(λb. mS(b))
mSusT a = mT (finishSusT (a))
scorer = returnT (Yield liftSusT (scorer))

(a) The suspension transformer

advanceT : SusT X → SusT X
advanceT a = T .do{

t← a;
match t with{

Returnx→returnT x∣∣ Yield t →t}}
finishT : SusT X → T X
finishT a = foldλb.T .do{

t← b;
match t with{

Returnx→returnx∣∣ Yieldb →b}}

(b) Suspension operations

Figure 5.4: The suspension transformation

5.3 Sequential

The second transformer in the SMC algorithm allows us to suspend computation after
each conditioning. The suspension transformer equips the standard resumption monad
transformer SusT X B T{ReturnX

∣∣ Yield(SusT X)}, presented in Fig. 5.4a, with inference
transformations.

The two transformations on suspended computations in Fig. 5.4b take one step, and
complete the computation, accordingly. As the meaning function for the transformed rep-
resentation returns the meaning the computation would have if it was allowed to run to
completion, these two operations do not change the meaning and so form inference transfor-
mations.

We can now put all the components together:

Theorem 16. Let T be a sampling representation. For every pair of natural numbers n, k,
the following composite forms an inference transformation:

smcT
n,k B (Sus◦Pop)T tmapSus spawn(n,−)−−−−−−−−−−−→ (Sus◦Pop)T

(advance◦ tmapSus resample(n,−))◦k−−−−−−−−−−−−−−−−−−−−→ (Sus◦Pop)T finish−−−→ PopT .

In the above (−)◦− : XX ×N→ XX denotes n-fold composition. The transformation
smcT

n,k amounts to running the SMC algorithm with n particles for k steps. If the represen-
tation T is operational in nature, such as the continuous sampler Sam, we get a sequence

68 Continuous Inference Semantics

of weighted values over the return type when we run the resulting representation. By con-
struction, the distribution on the results, rescaled according to their final weights, would be
identical to the desired posterior distribution.

When the representation T is not a commutative monad, like the continuous sampler Sam,
the resulting representation PopT is not a monad: the monad laws do not hold. Therefore, to
encompass representations of PopT one must generalise beyond monads.

5.4 Traced

Markov Chain Monte Carlo (MCMC) algorithms operate by repeatedly using a transition
kernel to generate a new sample from a current one. Thus they can be thought of as performing
a random walk around the space they are exploring. If the transition kernel is well-behaved,
they are guaranteed to preserve the distribution. A popular MCMC algorithm used for
Bayesian inference is Metropolis-Hastings (MH), where the transition kernel consists of a
proposal kernel followed by a decision to either accept the proposed sample or keep the old
one. The accept or reject step is used to correct for bias introduced by the proposal kernel,
thus producing a valid MCMC algorithm for a rich family of proposal kernels.

MH is a general inference method, but it requires specialised knowledge about the space
on which they operate. In the context of a probabilistic programming language, the Trace
MH algorithm replaces the unknown target space with the space of program traces, which
are shared by all probabilistic programs. Thus, Trace MH allows probabilistic programming
language designers to devise general-purpose kernels to effectively explore traces.

We analyse the Trace MH as follows. First, we prove a quasi-Borel space counterpart
of the Metropolis-Hastings-Green (MHG) Theorem, that forms the theoretical foundation
for the correctness of MH. We then present the tracing representation and show its validity.
We present the Trace MH algorithm, parameterised by a proposal kernel for traces, and give
sufficient conditions on this kernel for the resulting transformation to be valid. We then give
a concrete proposal kernel and show that it satisfies these general conditions.

5.4.1 Abstract Metropolis-Hastings-Green

In the abstract, the key ingredient in MH is the Metropolis-Hastings-Green (MHG) morphism
η presented in Fig. 5.5a, formulated in terms of an arbitrary inference representation T . This
transformation is usually known as the update step of the MH algorithm. It is parameterised
by a (representation of a) proposal kernel ψ : X → T X , and by a chosen (representation of a)
Radon-Nikodym derivative ρ : X×X → R+.

5.4 Traced 69

ψ : (T X)X ,ρ : RX×X
+ ,a : T X ⊢

T .do{x← a;
y← ψ(x);
r← sample;
if r < min(1,ρ(x,y))
then returny
else returnx}

(a) The Metropolis-Hastings-Green
morphism ηψ,ρ(a) : T X

p ∈ t =
match(p, t)with{([] ,Returnx)→ True

(r :: rs,Sample f)→ [rs ∈ f (r)]
−− any other case:
(_ ,_)→ False}

w− : ∑t∈WSamX Paths t→ R+ v− : ∑t∈WSamX Paths t→ X
wReturn(r,x)([]) = r vReturn(r,x)([]) = x
wSample t−(s :: rs) = wts(rs) vSample t−(s :: rs) = vts(rs)

(b) Traces through a probabilistic program

Figure 5.5: Basic notions in Trace MH

To use η in an inference transformation, we need to provide well-behaved parameters
ψ,ρ , and their behaviour may depend on the representation of the input distribution a. In
particular, the parameter ρ should represent a well-behaved appropriate Radon-Nikodym
derivative. To simplify our proofs, we also require that the proposal kernel ψ is Markov,
which suffices for our application.

Theorem 17 (Metropolis-Hastings-Green). Let X be a QBS, a ∈ T X a distribution, ψ :
X → T X a kernel, and ρ : X ×X → R+ a Qbs-morphism. Set kB mT ◦ψ and µ B [ρ ̸=
0]⊙ (mT (a)⊠ k).

Assume that: 1. k is Markov; 2. [1= (ρ ◦ swap) ·ρ] holds µ-a.e.; 3. ρ is a Radon-Nikodym
derivative of swap∗µ with respect to µ; and 4. ρ(x,y) = 0 ⇐⇒ ρ(y,x) = 0 for all x,y ∈ X.

Then (mT ◦ηψ,ρ)(a) = mT (a).

Using Kock’s synthetic measure theory, we were able to follow closely standard measure-
theoretic proofs of MHG [28]. The synthetic setting highlights the different roles each of the
three abstractions: a.e.-equality, a.e.-properties, and Radon-Nykodim derivatives play in the
proof that our formulation exposes (cf. § 4.2.3).

5.4.2 Tracing Representation

A sampling trace is a sequence of samples that occur during the execution of a probabilistic
program. We represent such programs as elements of the continuous weighted sampler
WSam from (cf. Fig. 5.1). Consequently, the collection of traces through a program t ∈
WSamX is a subset of ListI. Fig. 5.5b defines a measurable predicate [∈] : WSamX ×
ListI→ bool that tests whether a given sequence p of probabilistic choice forms a complete
trace in the program t. Consequently, we can define the set of paths through a given program

70 Continuous Inference Semantics

t by Paths t B {p ∈ ListI|p ∈ t} ⊆ ListI, and equip it with the subspace structure it inherits
from ListI. We can therefore define the set

∑
t∈WSamX

Paths t :=
{
(t, p) ∈WSamX×ListI

∣∣p ∈ t
}
⊆WSamX×ListI,

which we can also equip with a subspace structure. We can now define the weight w− and
valuation v− morphisms in Fig. 5.5b that retrieve the likelihood and value at the end of a
trace.

We can now define the tracing inference representation. It is parameterised by an
inference representation T and given for X as the following subspace of WSamX×T (ListI):

TrT X B

(t,a) ∈WSamX×T (ListI)

∣∣∣∣∣∣
�
ListI δ x∈t mT (a)(dx) = δTrue

mWSam(t) =
�
ListI δ vt(p)mT (a)(dp)

 .

Thus, a representation consists of a program representation t, together with a distribution
a on all lists, but maintaining two invariants. First, the lists are mT (a)-almost-everywhere
paths through t, and so we can indeed think of a as a representation of a distribution over
traces. Second, if we calculate the posterior of the paths through t according to mT (a), it
should have the same meaning as the original program.

We stress that an implementation need not compute the meaning of the program. But this
representation guarantees that the meaning will be preserved by the inference operations.

Note that the integrand in the definition of (t,a) ∈ TrT X is only partially defined. This
partiality is not an issue because the first condition guarantees it is mT (a)-a.e. defined. We
can then choose the constantly 0 distribution when p /∈ t.

Fig. 5.6a presents the inference representation structure of TrT . Most of the proof
revolves around preserving the invariant, i.e., that these definitions define set-theoretic
functions.

The inference transformation marginalT : TrT X→ T X marginalises the trace transformer
once it is no longer useful. It first samples a path and then uses it to run the program discarding
the weight: marginal (t,a) = do{x← a;return vt(x)}. Its correctness is precisely the
invariant.

5.4.3 Inference with MHG

The transition from T to TrT still requires a proposal kernel and a representation of the
appropriate derivative, but these can now be given in terms of concrete traces.

5.4 Traced 71

instance Inf =⇒ Inf Monad (TrT)where
returnx = (returnWSam x, returnT [])
(t,a) >>= (f ,g) =

(t >>=WSam f ,T .do{p← a;
q← g◦ vt(p);
return(p++q))})

m(t,a) = mWSam(t) =
�
ListI δ vt(p)mT (a)(dp)

tmap t = id× tListI
sample = (sampleWSam,

T .do{r← sample;return[r]})
scorer = (scoreWSam,

T .do{scorer;return[]})

(a) The tracing inference

ηTrT
ψ,ρ : TrT X → TrT X

ηTrT
ψ,ρ (t,a)B

(
t,ηψt ,ρt (a)

)
(b) Trace MH update-step

priT : WSamX → T (List(I))
priT (t)B fold
λ{Return(r,x)→ returnT []∣∣Samplek → T .do{

r← sampleT ;
k(r)}}

(c) Prior representation

Figure 5.6: Building blocks of Trace MH

Given an inference representation T , a trace proposal kernel is a transformation repre-
senting a kernel ψ : (∑t∈WSamX Paths t)→ T (ListI). A trace derivative is a transformation
representing the derivative ρ : (∑t∈WSamX Paths t×Paths t)→ R+. Given a trace proposal
kernel ψ and a trace derivative ρ , Fig. 5.6b presents the trace MHG update transformation
using the corresponding MHG update on T (ListI).

The Trace MH update step requires some assumptions to form an inference transforma-
tion:

Theorem 18 (Trace Metropolis-Hastings-Green). Let T be an inference representation, ψ a
trace proposal kernel, and ρ a trace derivative. Assume that, for every (t,a) ∈ TrT X, letting
kB mT ◦ψt and µ B [ρt ̸= 0]⊙ (mT (a)⊠ k):

1. k is Markov;

2. [1 = ρt · (ρt ◦ swap)] holds µ-a.e.;

3. ρt is a Radon-Nikodym derivative of swap∗µ with respect to µ; and

4. ρt(p,q) = 0 ⇐⇒ ρt(q, p) = 0 for all p,q ∈ List(I).

Then ηTrT
ψ,ρ : TrT → TrT is a valid inference transformation.

We will now demonstrate such a simple and generic trace proposal kernel and trace
derivative that implement a MHG update step of a popular lightweight Metropolis-Hastings
algorithm in several probabilistic programming language systems [31, 40, 92, 32].

72 Continuous Inference Semantics

For any inference representation T , Fig. 5.6c defines the morphism priT that maps a
representation t ∈WSamX to its prior distribution on paths over t. Let UD(n) ∈M(N) be the
measure for the uniform discrete distribution with support {0,1, . . . ,n}. Intuitively, it assigns
a probability 1

n+1 to every element in the support. It can be easily defined from sampleM,
which denotes the uniform distribution on I, as in Lemma 15.

We now define our concrete proposal ψt and derivative, a.k.a. ratio, ρt :

ψt : List(I)→ T (List(I))
ψt(p)B T .do{i← UD

T (|p|)
q← priT (sub(t, take(i, p)))
return(take(i, p)+q)}

ρt : List(I)×List(I)→ R+

ρt(p,q)B wt(q)·(|p|+1)
wt(p)·(|q|+1)

where sub(t,x) selects a subterm of a given term by following the list x and take(i, p) retrieves
the i-th prefix of p. This proposal and derivative/ratio satisfy the condition in the Trace MH.

Our approach lets us combine MH updates with other inference building blocks. For
example, recall the SMC algorithm from Section 5.3. Each time it performs resampling,
multiple particles are given the same values, which results in inadequate coverage of the
space, a phenomenon known as degeneracy. One way to ameliorate this problem is to apply
multiple MH transitions to each particle after resampling in order to spread them across the
space, resulting in an algorithm known as resample-move SMC [19].

The implementation of resample-move SMC is very similar to that of SMC from Section
5.3, except we introduce an additional layer Tr between Sus and Pop:

Theorem 19. Let T be a sampling representation. For every pair of natural numbers n, k, ℓ
the following composite forms an inference transformation:

rmsmcT
n,k,ℓB (Sus◦Tr◦Pop)T tmapSus tmapTr spawn(n,−)−−−−−−−−−−−−−−−→ (Sus◦Tr◦Pop)T

(advance◦ tmapSus η◦ℓ ◦tmapSus tmapTr resample(n,−))◦k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (Sus◦Tr◦Pop)T marginal◦finish−−−−−−−−−→ PopT .

In the above we apply ℓ MH transitions after each resampling. Our compositional
correctness criterion corresponds to a known result that resample-move SMC is an unbiased
importance sampler.

Chapter 6

Implementation of Inference Building
Blocks

We now describe an implementation of a Haskell library for probabilistic programming based
on the semantic construction presented in the chapters above. In this chapter we show an
implementation of the basic building blocks while in the subsequent one we show how to
combine them to obtain compound inference algorithms. The work presented in these two
chapters has been published as [79] and is a result of collaborations with the other authors
of that paper. In order to make these chapters more accessible to readers less interested in
formal semantics we describe the relevant concepts avoiding references to chapters 3 and
5 whenever possible. We apologise to readers who read the previous chapters and find the
presentation here overly repetitive.

Our library provides a monadic typeclass with probabilistic effects that can be used to
construct probabilistic programs using arbitrary pure Haskell code. The modelling language is
thus expressive, constituting what is sometimes called a universal probabilistic programming
language [31]. The main novelty of our library is its compositional approach to specifying
Bayesian inference algorithms. The library is called MonadBayes and it is freely available
online1.

We prefix our development with two remarks for Bayesian inference cognoscenti. First,
we focus on the most general family of inference algorithms, namely samplers that do not
use gradient information. We ignore: gradient-based techniques such as Hamiltonian Monte
Carlo, that assume the likelihood function is differentiable; optimisation based methods,
including variational inference; and enumeration based methods such as belief propagation.

1https://github.com/adscib/monad-bayes

https://github.com/adscib/monad-bayes

74 Implementation of Inference Building Blocks

type R = Double
class Monad m ⇒ MonadSample m where

random :: m R
bernoulli :: R → m Bool
bernoulli p = fmap (< p) random
-- and other default distributions:
-- normal , gamma , beta , geometric ,
-- poisson , dirichlet

class Monad m ⇒ MonadCond m where
score :: Log R → m ()

class (MonadSample m, MonadCond m) ⇒ MonadInfer m

Figure 6.1: Inference representations using Haskell type-classes. Log R is a numeric type
representing non-negative real numbers using their logarithms.

While these classes of algorithms are less generic than sampling, they are still important and
we plan to develop them in future work.

Second, our library implements basic versions of advanced sampling algorithms. How-
ever, their successful application in practice requires incorporating established heuristics,
such as: adaptive proposal distributions, controlling resampling with effective sample size,
tuning rejuvenation kernels based on population in SMC2, and so on. We believe these
are largely orthogonal to the core design, so excluding them makes for a clearer and more
accessible presentation of the main ideas.

6.1 Basic building blocks

We express the building blocks for inference algorithms in Haskell. Unless stated otherwise,
the structures presented in this section follow the mathematical formulation from Chapter 5.
We distinguish three types of building blocks:

1. Inference representations
Inference representations are data structures representing distributions. Concretely,
they are instances/implementations of the monad type-class/interface, but they need
not satisfy the monad laws. We use them as the intermediate representation in the
inference/compilation process.

In Haskell, we express these abstract interfaces as type-classes, as in Figure 6.1. There
are three separate type-classes: the sampling representation MonadSample, and the
conditioning representation MonadCond. A representation that is both a sampling and
conditioning representation is called an inference representation MonadInfer. Together

6.1 Basic building blocks 75

with the Monad interface, the interfaces in the figure can express our probabilistic
programs of interest. Our library includes default implementations for common
probability distributions in terms of random, which is a uniform distribution on the unit
interval [0,1]. Specific representations can overwrite these default implementations for
better efficiency.

To reason about correctness of algorithms involving a representation m, we define a
semantics map µ :: m a → D a assigning to each representation c :: m a a distribution
over its return type µc :: D a. This “type” of distributions and the semantics map are
mathematical objects impossible to implement. They are pure reasoning abstractions,
and to ensure correctness, we require the semantics map preserves the monadic struc-
ture. Since D is itself a monad, both in terms of an interface and satisfying the monad
laws, we require that the following equations hold.

µ . return = return µ (c >>= f) = µ(c) >>= (µ. f)

Furthermore, we require that µ (random) is the uniform distribution over the unit
interval [0,1], and that µ (score r) is the (unique) distribution over the singleton with
total measure r. The details are presented in Chapter 5.

2. Inference transformations
Inference transformations are mappings t :: m a → m’ a between inference repre-
sentations m, m’. They can be thought of as passes in a compilation process. For
reasoning purposes, such an inference transformation is correct if it preserves the
semantics map of the transformed inference representation: µ . t= µ. It follows that a
composition of correct inference transformations is a correct inference transformation,
so algorithms given by composition of correct inference transformations are correct
by construction. Unless stated otherwise, all inference transformations are correct
based on the reasoning in Chapter 5. As a consequence, the weighted samplers our
inference algorithms produce are unbiased by construction. Being unbiased means that
the weighted expectation of the sampler is identical to the expectation of the model.

3. Inference transformers
Inference transformers are compositional building blocks of inference representa-
tions, much like monad transformers are building blocks of monads. By analogy
with monad stacks we call a sequence of inference transformers an inference stack
and implicitly identify a stack [mT1, mT2, ..., mTn] with the composed transformer
mT1 . mT2 mTn. Our inference transformations often apply to a specific trans-
former in the stack, and are polymorphic in the remainder of the stack. Like monad

76 Implementation of Inference Building Blocks

transformers, inference transformers specify a function to lift a transformation through
them, which we call hoist since lift is already used in Haskell. These abstractions
allow us to apply inference transformations to particular layers in the inference stack.

This chapter uses these abstractions to define basic inference building blocks. The
following Chapter 7 shows how to compose them to obtain advanced inference algorithms.

6.1.1 Models

The following example program implements a simple random walk using the abstractions
introduced above. It models a particle travelling in one dimension in discrete time. At each
time step the particle moves randomly according to a Gaussian distribution. The model
takes as argument a data-set containing noisy observations about the particle’s location. The
model captures our hypothesis about the particle’s movement, subject to some unknown
parameters such as the rate in which it is moving. The goal of inference is to fit this model to
the observed data, updating these parameters accordingly.

1 random_walk :: MonadInfer m ⇒ [R] → m [R]
2 random_walk ys = do
3 s ← gamma 1 1
4 let expand xs [] = return xs
5 expand (x:xs) (y:ys) = do
6 x’ ← normal x s
7 obs x’ y
8 expand (x’:x:xs) ys
9 where

10 obs x y = score (normalPdf x 1 y)
11 xs ← expand [0] ys
12 return (reverse xs)

The parameter s controls the deviation of the particle from its current position. We emphasise
that the parameter in this case is the sampling operation in the dynamic call to gamma on line
3, rather than the static program variable s. The model starts at position 0, and iteratively
constructs the desired list of locations in reverse. At each step, we sample the next location
x’ from a normal distribution around x with a standard deviation of s (line 6). This sample is
then fitted to the observed data point y, using the helper function obs from line 10. It uses the
probability density function (pdf) for the normal distribution

normalPdf µ σ z := 1√
2πσ

e−
(z−µ)2

2σ2

6.1 Basic building blocks 77

centered around x with standard deviation 1, representing our assumption that y is a noisy
observation of x, where the noise distributes normally with standard deviation 1. The call
obs x’ y on line 7 thus lowers the score of samples x’ that are far from the observed location
y. In standard statistical modelling terminology the calls to normal x s on line 6 are called
latent variables. The output of the model is the predicted sequence of true positions of the
particle based on provided noisy observations. It is reversed only because Haskell lists are
more easily extended at the front than at the back so expand constructs this list in the reverse
order.

The type of random_walk is abstract with respect to the inference representation m. Thus we
express models as computations constructed in terms of an abstract inference representation
interface. This architecture lends itself to a shallowly embedded probabilistic programming
DSL, with the usual benefits of DSLs, e.g., the ability to call standard library functions such
as reverse. We could alternatively use a stand-alone language for expressing models that a
suitable front-end would convert to a desired inference representation.

6.1.2 Basic Samplers

To interpret the program above we need to construct a concrete inference representation.
The simplest one is a sampler that draws concrete values for random variables from the
prior. Such a sampler type can be constructed as a state monad that references a global
pseudo-random number generator. Since the generator is mutable, in Haskell we need to use
the ST monad.

1 newtype Sampler a =
2 Sampler (forall s. ReaderT (GenST s) (ST s) a)
3 instance MonadSample Sampler where
4 random = Sampler $ do
5 gen ← ask
6 lift (MWC.uniform gen)

Line 5 retrieves the reference to the random seed, line 6 uses the standard library MWC for
random number generation, and lifts it to the underlying reader monad transformer.

We can directly execute computations of type Sampler to obtain concrete samples, for
example:

runSampler :: Sampler a → a
runSampler (Sampler s) = runST $ do

gen ← MWC.create
runReaderT s gen

78 Implementation of Inference Building Blocks

The represenation Sampler is a sampling representation, i.e., an instance of MonadSample,
but not a conditioning representation, i.e., an instance of MonadCond: Sampler does not support
conditioning. To obtain a working inference algorithm we need to add an interpretation of
score, by applying a suitable inference transformer.

We use the weighting inference transformer W. Theoretically it is the writer monad
transformer for the multiplicative monoid structure on Log R given by multiplication, but in
our implementation we are using the state monad transformer instead since we found it to be
much faster. In either case, W m a is an m-computation returning pairs (a, Log R) of the result
type together with the accumulated log-likelihood.

newtype W m a = W (StateT (Log R) m a)
runW :: Monad m ⇒ W m a → m (a, Log R)
runW (W x) = runStateT x 1
instance MonadSample m ⇒ MonadSample (W m) where

random = lift . random
instance Monad m ⇒ MonadCond (W m) where

score w = W (modify (* w))
hoistW :: (forall x. m x → n x) → W m a → W n a
hoistW f (W m) = W (mapStateT f m)

Weighting a representation m equips it with conditioning operation making W m a conditioning
representation. If m was a sampling representation, its weighted version is also a sampling
representation by lifting the sampling operation. Finally, the function hoist lifts inference
transformations applicable to m and turns them into inference transformations applicable to
T m. When m is already a conditioning representation, we may use the conditioning available
through the weighting transformer, or hoist score r to use the ambient conditioning of m.

We construct a simple inference algorithm by interpreting the model in W Sampler a

and unwrapping type constructors to obtain a weighted sampler of type Sampler (a, Log R).
When a is a numeric type, we can approximate the expectation of the model by repeatedly
running the sampler and calculating the weighted average. Unfortunately such an algorithm
usually has low statistical efficiency and it needs to generate impractically many samples
to obtain good predictions. Therefore, advanced inference algorithms first apply multiple
inference transformations between more advanced inference representations before arriving
at the final weighted sampler representation.

6.1.3 Population

The Pop inference transformer turns a single sample into a collection of weighted samples
called the population. It is the weighted list transformer, i.e., the composition of W with the
ListT transformer.

6.1 Basic building blocks 79

newtype Pop m a = Pop (W (ListT m) a)
deriving(Monad ,MonadSample ,MonadCond ,MonadInfer)

runPopulation :: Monad m ⇒ Pop m a → m [a, Log R]
runPopulation (Pop p) = runListT (runW p)
hoistP :: (forall x. m x → n x) → Pop m a → Pop n a
hoistP f (Pop m) = Pop (hoistW (mapListT f) m)

The samples in the population are usually referred to as particles. The usual problem with
treating ListT as a monad transformer, namely that ListT-transformed monads do not always
satisfy the monad laws, does not apply to inference representation: we do not require that
our representations satisfy the monad laws.

In this dissertation we use three inference transformations associated with Pop:

spawn :: Monad m ⇒ Int → Pop m ()
resample :: MonadSample m ⇒ Pop m a → Pop m a
pushEvidence :: MonadInfer m ⇒ Pop m a → Pop m a

One is (spawn n >>), which increases the population size n times adjusting the weights
accordingly. Next comes resample, which draws a new population with uniform weights
from the current population. Resampling’s purpose is to remedy situations when a single
sample has a large weight compared to the other particles in the population and dominates the
result making the other particles irrelevant. Finally, we have pushEvidence which normalises
the weights in the population, while at the same time incorporating the sum of the weights as
a score in m.

The meaning function µ is defined in terms of the weighted average over the population.
We can state it concisely by making use of pushEvidence and a categorical distribution.

µ
Pop m(p) = µ

m(runPopulation (pushEvidence p) >>= categorical)

In the above categorical is a distribution that draws a sample from a weighted list with
probabilities proportional to weights.

Since all of the presented transformations preserve the weighted average µ , they are
correct inference transformations. The details of resample may vary since there are multiple
good choices. Our library uses systematic resampling [19] due to its good computational
efficiency.

By itself Pop is similar to W. To appreciate its utility we need to combine it with different
inference transformers, where it abstracts away the maintenance of the particle population.

80 Implementation of Inference Building Blocks

6.2 Advanced building blocks

Sequential Monte Carlo (SMC) and Markov Chain Monte Carlo (MCMC) are two of the
most general inference algorithms for probabilistic programs. When we express them as
inference representations and reuse the basic building blocks of the previous section, we
obtain the components that underlie many advanced inference algorithms.

6.2.1 Sequential

Many models exhibit a sequential structure where observations are interleaved with sampling.
In those models a possible inference strategy is to consider a program up to a certain
point, do inference on the partial posterior it defines, then run the program a little more,
do more inference, and so on. To implement such algorithms we introduce the sequential
transformer Seq which introduces suspensions after each score in the program. Seq is the
standard coroutine transformer [8]. In our library we use the implementation of the coroutine
transformer available in the monad-coroutine library2 but the snippet below shows how to
implement it from scratch.

data Seq m a = Seq {runSeq :: m (Either a (Seq m a))}

instance Monad m ⇒ Monad (Seq m) where
return x = Seq (return (Left x))
Seq c >>= f = Seq $ do

t ← c
case t of

Left x → runSeq (f x)
Right m → return (Right (m >>= f))

instance MonadTrans Seq where
lift = Seq . fmap Left

suspend :: Monad m ⇒ Seq m ()
suspend = Seq (return (Right (return ())))

instance MonadSample m ⇒ MonadSample (Seq m) where
random = lift random

instance MonadCond m ⇒ MonadCond (Seq m) where
score w = lift (score w) >> suspend

We have two inference transformations associated with Seq:

2http://hackage.haskell.org/package/monad-coroutine

http://hackage.haskell.org/package/monad-coroutine

6.2 Advanced building blocks 81

advance :: Monad m ⇒ Seq m a → Seq m a
advance (Seq m) = Seq (m >>= either (return . Left) runSeq)
finish :: Monad m ⇒ Seq m a → m a
finish (Seq m) = Seq (m >>= either return finish)

The advance transformation runs the program to the next suspension point. The finish

transformation runs the program to the end. When reasoning about Seq, the meaning function
is:

µ
Seq m(c) := µ

m(finish c)

Finally, hoistS applies the inference transformation only to the part of the program executed
so far.

hoistS :: (forall x. m x → m x) → Seq m a → Seq m a
hoistS tau (Seq m) = Seq (tau m)

Combining Seq with Pop, we obtain a Sequential Monte Carlo variant known as the
particle filter [19] that we refer to simply as SMC. Within the context of SMC, recall that a
sample in a population is called a particle. The algorithm starts by initialising a population
of size n, then repeatedly runs the program to the next score, resamples the population, runs
to the next score and so on. We implement it by composing the inference transformations we
have introduced so far.

smc :: MonadSample m ⇒ Int → Int → Seq (Pop m) a → Pop m a
smc k n = finish .

compose k (advance . hoistS resample) . hoistS (spawn n >>)

The argument k is the number of time steps in SMC, n is the number of particles used, and

compose :: Int → (a → a) → a → a

is k-fold function composition. To execute the sampler, we use the instance where m is
Sampler.

6.2.2 Traced

The final transformer we present supports a class of algorithms known as Trace Markov
Chain Monte Carlo (MCMC). This transformer provides the necessary machinery to perform
Metropolis-Hastings (MH) updates described in Section 2.1.2, in particular by enabling
calculation of the required densities. As these updates are performed on traces of programs,
rather than just the outputs, this transformer also includes a tracing mechanism.

82 Implementation of Inference Building Blocks

The idea behind MH is to represent a distribution over a space a as a simulation of a
random walk through the space a according to some predefined proposal kernel k :: a → m a.
If the simulation is currently at value x, the kernel k determines a distribution k x over the
proposed values. The second fundamental part of MCMC is the acceptance rate ρ . This
rate is a non-negative function ρ : a → a → Log R. At each step, given some x :: a sampled
from a distribution c :: m a, we sample a new proposal y∼k x and, with probability ρ x y,
we accept the new proposal y, taking it as the new point, or reject it and remain with x. We
can summarise this process in the following code:

abstractMH :: MonadSample m ⇒ m a → m a
abstractMH c = do

x ← c
y ← k x
b ← bernoulli (ρ x y)
if b then return y

else return x

If the kernel k and the rejection rate ρ are correctly chosen, then abstractMH is a bona fide
inference transformation. The mathematical justification for this fact is the Metropolis-
Hastings-Green theorem stated in Section 5.4.

We might try to run MH directly on the space of the program outputs. Unfortunately
this is not feasible since computing the acceptance ratio in that case requires an intractable
marginalisation over all the random variables in the program. Instead, the Trace MCMC
family of algorithms operates on traces through the probabilistic program. For a concrete
example, consider the sprinkler model from the introduction. The trace would contain the
values sampled for the variables rain and sprinkler. The Trace MCMC algorithm maintains
a distribution over such traces, using a suitable proposal kernel to generate a new trace
through the model.

Here, we take traces to be lists of real numbers [R] from the unit interval [0,1], each
corresponding to one invocation of random in the program. For example, in the sprinkler
model a trace [0.15, 0.5] would correspond to rain = True and sprinkler = False, while
[0.3, 0.05] would correspond to rain = False and sprinkler = True.

If the variable names in the program are globally unique, we could have a record where
each field corresponds to the random variable with the same name. However, in a general
model, samples may be nested in complicated control flow. Wingate et al. [91] devised a
popular method for tagging random choices in the program based on the context in which
they are executed. On top of that, the random choices stored in the trace are often augmented
with additional information such as the distribution they were drawn from or some control
flow information extracted from the program [54]. These sophisticated representations of

6.2 Advanced building blocks 83

traces can improve the statistical efficiency of MCMC algorithms. They are compatible with
the design we present in this dissertation but we refrain from using them for simplicity.

A traced inference representation consists of two components, one being the trace and the
other a representation that can run the full program with a modified trace. There are multiple
possible ways to combine these two components, which trade off computational efficiency
for flexibility. Below we present a sequence of Tr datatypes, each more expressive than the
previous in a sense of allowing additional inference transformations, but less computationally
efficient in cases where the additional flexibility is not required. The first one was is the
construction presented in Chapter 5, while the subsequent ones are extensions of it. We
expect the additional inference transformations associated with these extensions to be correct,
although we have not proven that.

All of these variations share a common definition of a Trace data structure. Specifically,
a Trace consists of a list of values for the latent variables [R], the output value a, and the
density Log R. It is equipped with methods for constructing basic traces and combining them
within a monad.

data Trace a =
Trace {

variables :: [R],
output :: a,
density :: Log R

}

pure :: a → Trace a
pure x = Trace {variables = [], output = x, density = 1}

singleton :: Double → Trace Double
singleton u = Trace {variables = [u], output = u, density = 1}

scored :: Log Double → Trace ()
scored w = Trace {variables = [], output = (), density = w}

bind :: Monad m ⇒ m (Trace a) → (a → m (Trace b)) → m (Trace b)
bind dx f = do

t1 ← dx
t2 ← f (output t1)
return $ t2 {variables = variables t1 ++ variables t2,

density = density t1 * density t2}

84 Implementation of Inference Building Blocks

Full Tracing of the Whole Program

We begin with the most straightforward construction that allows our basic modular implemen-
tation [80] of the Trace Metropolis-Hastings algorithm. It consists of a weighted free monad
over random and a computation generating a trace in the transformed inference representation.
For efficiency we use the Church-encoded version of the free monad from the package free3,
that is F f = forall r. (a → r) → (f r → r) → r.

-- sampling functor
newtype SamF a = Random (R → a)

data Tr m a = Tr (W (F SamF) a) (m (Trace a))
traceDist (Tr m d) = d

instance Monad m ⇒ Monad (Tr m) where
return x = Tr (return x) (return (pure x))
(Tr mx dx) >>= f = Tr my dy where

my = mx >>= model . f
dy = dx ‘bind ‘ (traceDist . f)

instance MonadSample m ⇒ MonadSample (Tr m) where
random = Tr random (fmap singleton random)

instance MonadCond m ⇒ MonadCond (Tr m) where
score w = Tr (score w) (score w >> return (scored w))

hoistT :: (forall x. m x → m x) → Tr m a → Tr m a
hoistT f (Tr m d) = Tr m (f d)

marginal :: Monad m ⇒ Tr m a → m a
marginal (Tr m d) = fmap output d

mhStep :: MonadSample m ⇒ Tr m a → Tr m a
mh :: MonadSample m ⇒ Int → Tr m a → m [a]

The implementation of mhStep follows the structure of abstractMH above, suitably instan-
tiated for traces. We emphasise that Tr is not an instance of MonadTrans since it does not
allow for computation in m to be lifted to Tr m. For reasoning, the semantic function of Tr is
defined in terms of marginal, which marginalises the trace and the model, leaving only the

3http://hackage.haskell.org/package/free

http://hackage.haskell.org/package/free

6.2 Advanced building blocks 85

return value:
µ
Tr m(c) := µ

m(marginal c)

The inference transformation mhStep performs a single step of the Trace MH algorithm
updating the trace but leaving the program unchanged. Specifically, a new trace is proposed
by taking the old trace and randomly modifying one of the random variables in it, selected
again at random. Since the number of random variables used in the program can vary
dynamically, the length of the new trace is adjusted to match the length required by the
program. If the trace is too long it is truncated, if it is too short it is extended with freshly
sampled values. This adjustment requires a pass through the program so at the same time
we compute the likelihood associated with the adjusted trace. Finally, based on the ratio of
likelihoods, as well as some correcting factors [91], we compute the probability of accepting
the new trace. With that probability we retain the proposed trace, otherwise we keep the old
one. The details of this construction are given in Section 5.4.

Repeating this procedure multiple times defines a Markov process on the space of
execution traces, which constitutes the Trace MH algorithm. It is available in our library
as the mh inference transformation. However, the basic building block is mhStep, forming a
component of larger inference algorithms such as the resample-move SMC in Section 7.1.

The efficiency of MH crucially depends on the choice of the proposal kernel. Our library
uses as a default the single-site kernel sampling from the prior as proposed by Wingate et al.
[91].

Partial Tracing of the Whole Program

The construction presented above is suitable if all random variables in the program are subject
to the Trace MH updates. This is not the case in the family of inference algorithms known
as pseudo-marginal MH, where only a subset of variables is updated using MH and the
remaining ones are marginalised using another inference algorithm. This marginalisation
is usually performed approximately using importance sampling. This is the case for all the
algorithms we present in this dissertation, but the marginalisation could also be done with
enumeration or a different inference algorithm.

To enable pseudo-marginal MH methods we extend the construction above by replacing
the free monad with a free monad transformer applied to m. This transformer enables us to
lift computations in m into Tr m, which is not possible with the previous construction. In
Haskell this change means Tr becomes an instance of the MonadTrans class. The variables
in computations lifted from m are then marginalised by m as far as Trace MH is concerned
while the ones created in Tr m are subject to Trace MH updates. Since Trace caches the

86 Implementation of Inference Building Blocks

output and the density of the pseudo-marginal computation, we realise what Andrieu and
Roberts [4] call the grouped independence MH which is known to be asymptotically correct.
In Section 7.2 we present a concrete pseudo-marginal inference algorithm constructed in this
fashion.

data Tr m a = Tr (W (FT SamF m) a) (m (Trace a))
instance MonadTrans Tr where

lift m = Tr (lift $ lift m) (fmap pure m)

Note that we define lift in such a way that the lifted random variables are resampled
at every mhStep proposal. If we only included m in the second component of Tr and not the
first, they would be fixed throughout MH updates. While that is also potentially useful, this
is not what pseudo-marginal MH requires so we do not pursue this possibility here. We do
not show code for the remaining instances and transformations since it is exactly the same as
for the version above.

Partial Tracing of Program Fragments

In certain situations it is desirable to freeze the values of random variables using the contents
of the current trace. This is useful when we know we will not update them any more but still
want to keep the Tr structure for the random variables that come later. We present a concrete
use case for this operation in Section 7.1.

data Tr m a = Tr (m (W (FT SamF m) a, (Trace a)))
runTr (Tr c) = c

instance Monad m ⇒ Monad (Tr m) where
return x = Tr (return (return x, pure x))
(Tr cx) >>= f = Tr $ do

(mx , tx) ← cx
let m = mx >>= pushM . fmap fst . runTraced . f
t ← return tx ‘bind ‘ (fmap snd . runTraced . f)
return (m, t)

instance MonadTrans Tr where
lift m = Tr $ fmap ((,) (lift $ lift m) . pure) m

instance MonadSample m ⇒ MonadSample (Tr m) where
random = Tr $ fmap ((,) random . singleton) random

hoistT :: (forall x. m x → m x) → Tr m a → Tr m a

6.3 Evaluation 87

hoistT f (Tr c) = Tr (f c)

instance MonadCond m ⇒ MonadCond (Tr m) where
score w = Tr $ fmap ((,) (score w)) (score w >> return (scored w))

marginal :: Monad m ⇒ Tr m a → m a
marginal = fmap (output . snd) . runTr

freeze :: Monad m ⇒ Tr m a → Tr m a
freeze (Tr c) = Tr $ do

(_, t) ← c
let x = output t
return (return x, pure x)

The only difference from the previous construction is that we pushed the weighted free
monad into m, which lets us implement the freeze inference transformation that commits
to values stored in the current trace. This is useful if we later extend the program and do
not want to update values for some variables anymore. We use it in Section 7.1 to obtain an
efficient variant of resample-move SMC.

This implementation is strictly more expressive than the previous two so in principle it
could be used instead of them. It is also significantly less computationally efficient due to the
additional abstraction layers. We therefore prefer the previous constructions of Tr whenever
possible.

6.3 Evaluation

To evaluate our architecture, we compare with state-of-the-art probabilistic programming
systems Anglican [92] and WebPPL [32] since they implement similar inference algorithms
and their front-end languages are extensions of popular programming languages, Clojure and
Javascript respectively.

Benchmarks. To check if there is a significant overhead associated with the abstractions
we compare execution times on a set of popular benchmarks [86]. The models we use are
logistic regression (LR), hidden Markov model (HMM), and a latent Dirichlet allocation
(LDA). Each of these models has a parameter that controls the size of the dataset, namely
the number of labelled examples for LR, sequence length for the HMM, and document
length for LDA. We run the inference algorithms SMC, MH, and RM-SMC from Section
6.1 and Chapter 7 on these models comparing execution times. For RM-SMC we use the

88 Implementation of Inference Building Blocks

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
tim

e
[s

]

MH100

LR

0 200 400 600 800 1000
0

1

2

3
SMC100

0 200 400 600 800 1000
0.0

2.5

5.0

7.5

10.0

RMSMC10-1

0 200 400 600 800 1000
0.0

0.5

1.0

1.5

2.0

Ex
ec

ut
io

n
tim

e
[s

]

HMM

0 200 400 600 800 1000
0

1

2

3

0 200 400 600 800 1000
0.0

2.5

5.0

7.5

10.0

0 500 1000 1500 2000 2500
Dataset size

0

1

2

3

4

Ex
ec

ut
io

n
tim

e
[s

]

LDA

0 500 1000 1500 2000 2500
Dataset size

0

2

4

6

8

10

0 500 1000 1500 2000 2500
Dataset size

0

20

40

60

80

MonadBayes
Anglican
WebPPL

Figure 6.2: Execution times of inference algorithms with varying dataset size. The numbers
in the algorithm description indicate the parameters used. For MH we used 100 transitions,
for SMC 100 particles, and for RM-SMC 10 particles and 1 rejuvenation step per particle per
resampling step. The dataset size is the number of observations in LR and HMM and the
total number of words in all documents in LDA.

rmsmcLocal and compare it with the corresponding WebPPL implementation. We do not
compare Anglican here since it currently does not implement RM-SMC.

6.3.1 Quantitative Evaluation

Figure 6.2 shows how execution time scales with the size of the dataset. It shows that the cost
of both MH and SMC increases linearly with model size in each implementation as expected.
The plots show that Anglican and WebPPL have a noticeable starting overhead compared to
our library. We expect this overhead to stem from just-in-time compilation in the Java and
NodeJS virtual machines.

The slopes of each line are a measure of the time needed to incorporate an additional
data point, with steeper slopes corresponding to higher cost. The slopes for different systems
are model-dependent and we attribute these differences to a variety of factors, such as

6.3 Evaluation 89

200 400 600 800 1000
0.0

0.5

1.0

1.5

Ex
ec

ut
io

n
tim

e
[s

]

MH

LR50

200 400 600 800 1000
0

1

2

3
SMC

20 40 60 80 100

2

4

6

8

RMSMC10

200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

Ex
ec

ut
io

n
tim

e
[s

]

HMM20

200 400 600 800 1000
0.00

0.25

0.50

0.75

1.00

1.25

20 40 60 80 100

2

4

6

200 400 600 800 1000
Number of steps

0.25

0.50

0.75

1.00

1.25

Ex
ec

ut
io

n
tim

e
[s

]

LDA50

200 400 600 800 1000
Number of particles

0

1

2

3

4

20 40 60 80 100
Number of rejuvenation steps

5

10

15

MonadBayes
Anglican
WebPPL

Figure 6.3: Execution times of inference algorithms with varying sample size. The numbers
after model names are the sizes of the datasets used. The number 10 in RMSMC10 indicates
that we used 10 particles and only varied the number of rejuvenation steps. The x axis for
RMSMC shows the number of rejuvenation steps applied per particle after each resampling
operation.

differences in: the data structures used in the model; the pseudo-random number generators;
and performance characteristics of the host language.

For RM-SMC our implementation scales linearly with dataset size while WebPPL appears
to scale quadratically. We suspect this is due to WebPPL implementation traversing the whole
trace at MH updates, even though only a fixed number of variables at the end are candidates
for updates. We avoid this issue using the freeze transformation and achieve linear scaling.

Figure 6.3 shows how execution times scale with the number of samples produced or the
number of MH transitions performed. In all cases the scaling is linear as expected. For MH
and SMC the slopes of all lines for the three systems are similar which indicates that the cost
of an additional sample is similar, although Anglican and WebPPL again suffer from some
initial overhead. For RM-SMC the slope of the line associated with our library is significantly
higher than for WebPPL. We speculate the cause to be that each mhStep in our library goes
through the Pop layer while WebPPL only does it once per rejuvenation sequence. We leave
reducing that overhead for future work.

90 Implementation of Inference Building Blocks

Table 6.1: Net addition of Lines of Code (LoC), excluding comments and import statements.
The entry “N/A” means that an algorithm is not available in a given language.

MH SMC RM-SMC PMMH SMC2

MonadBayes 67 70 11 4 20
Anglican 100 87 N/A N/A N/A
WebPPL 314 334 0 N/A N/A

6.3.2 Qualitative Evaluation

To estimate the implementation effort involved in writing the inference algorithms, Table 6.1
lists the number of lines of code (LoC) used for this purpose in the three systems. Although
LoC are not a reliable metric, particularly comparing across languages, they do offer some
estimation of the implementation effort. WebPPL requires no additional lines to implement
RM-SMC because it implements SMC as a special case of RM-SMC with zero rejuvenation
steps. The figure shows that our modular implementation of MH and SMC is actually
shorter than monolithic implementations in Anglican and WebPPL. Neither of these systems
implements PMMH or SMC2 which would involve substantial effort while they are short
snippets of code in our library. We can expect this difference to become more and more
pronounced as we continue to build complex inference algorithms from smaller and reusable
building blocks.

Apart from the reduced number of LoC, our architecture makes the code more reliable,
maintainable, and malleable for reasoning as it is close to our semantic validation of inference.
In the next section, we also argue that our architecture enables modular testing. We expect
these features to reduce the number of bugs in implementations and ease refactoring.

Finally, we profiled our implementation on these benchmarks to investigate the bottle-
necks and suggest optimisations. The insights from profiling has lead us to two optimisations.
First, we replaced WriterT with StateT in W, then we switched to a Church-encoded version
of the free monad in Tr. We report the benchmark results after applying those optimisations.
Profiling the final code reveals that a substantial amount of time, up to 90% depending on the
benchmark, is spent on the overhead associated with inference representations and not on
doing essential numeric work. The biggest offenders seem to be the Pop and W transformers.
We hope that this overhead could be further reduced by suitable techniques but we do not see
a clear way to do it.

6.4 Testing 91

6.4 Testing

An important benefit of the modular implementation is enhanced testing capabilities. Every
inference transformation can be tested independently and the correctness of their composition
follows from correctness of individual components. Furthermore, in certain circumstances it
is possible to replace statistical tests with deterministic ones.

A standard approach to test an algorithm implementation is to compare with a reference
implementation, less efficient but clearly correct, on a set of small examples. In the context of
Bayesian inference we can use exact enumeration of a small discrete model like the sprinkler
model from the introduction. Unfortunately, probabilistic algorithms only give approximate
answers that can be arbitrarily bad with non-zero probability. We can therefore never be sure
if the answers they provide are correct, and any statistical test is bound to produce both false
positive and false negative results.

In our library we can perform deterministic tests of Monte Carlo methods by replacing
the bottom monad Sampler with Exact that computes exact answers for discrete models. It is
defined as follows, omitting conversions between R and Log R:

newtype Exact a = Exact {run :: [(a, Log R)]}
instance Monad Exact where

return x = Exact [(x,1)]
m >>= f = Exact

[(y, p*q) | (x,p) ← run m, (y,q) ← run (f x)]
instance MonadSample Exact where

random = error "Not␣available"
bernoulli p = Exact [(True , p), (False , 1-p)]

instance MonadCond Exact where
score w = Exact [((),w)]

normalForm :: Ord a ⇒ Exact a → [(a, Log R)]
-- sort , aggregate , and remove zeros

The function normalForm sorts the list according to the first components, aggregates
weights of equal elements, and removes elements with zero weight. It allows us to compare
distributions represented by lists for equality.

Any correct inference transformation should not alter the result of Exact. For example, if
~== is an acceptable approximate floating-point equality, then we can write a deterministic
test for smc as follows:

(normalForm . (>>= Exact) . runPopulation . smc 2 2)
sprinkler ~== normalForm sprinkler

92 Implementation of Inference Building Blocks

Our implementation of traces as [R] is fundamentally continuous so it does not work
with Exact. However, a more elaborate trace type that distinguishes between continuous and
discrete variables would enable us to write similar tests for mhStep.

Deterministic tests of the kind described above are limited in that they can only be applied
to small discrete models and only verify certain aspects of correctness. In particular for SMC
it only checks that the result is unbiased but not that it is consistent. Similarly a test for MH
would only check that it preserves the posterior distribution but not that it converges to it.
Nonetheless, we found those tests to be invaluable in practice. For example, if we forgot to
preserve the total weight in resample, such a bug would quickly be caught by the test shown
above.

Chapter 7

Compositions of Inference Algorithms

In this chapter we demonstrate how to build sophisticated inference algorithms by combining
MH and SMC in different ways. We implement these algorithms by composing specific
inference transformations, each of which is defined for a particular transformer. We adhere
fully to the inference representation interface, and only compose the basic inference transfor-
mations and their hoistings, maintaining the inference representation abstraction. Our library
is the first probabilistic programming system that supports this level of compositionality.

7.1 Resample-Move SMC

A common problem with particle filters is that of particle degeneracy, where after resampling
many particles are the same, effectively reducing the sample size. One way to ameliorate this
problem is to introduce rejuvenation moves, where after each resampling we apply a number
of MCMC transitions to each particle independently, thus spreading them around the space.
If we use an MCMC kernel that preserves the target distribution at a given step, the resulting
algorithm is correct. This algorithm is known as the resample-move SMC (RM-SMC) and
was originally introduced by Gilks and Berzuini [29]. Algorithm 1 presents pseudocode for
a classical formulation of this algorithm, highlighting its constituent components.

To implement RM-SMC we use the stack Seq Tr Pop. Inlining the types, a program is
interpreted as a population of traced coroutines. It allows us to apply MH transitions to
partially executed coroutines, which is exactly what we require for the rejuvenation steps.
The implementation of resample-move SMC is similar to that of SMC, with the introduction
of mhStep.

94 Compositions of Inference Algorithms

Algorithm 1 Resample-Move Sequential Monte Carlo in its classical formualtion. Braces
indicate the conceptual components of the algorithm that we directly reflect in the implemen-
tation.

for i = 1 : N do
Wi =

1
N

 Spawn particles
end for
for t = 1 : T do

W ← 1
N ∑iWi

for i = 1 : N do
Ai ∼Categorical({Wj}N

j=1)


Resample

X̃i←XAi

Wi←W
end for
for i = 1 : N do

for j = 1 : K do
X̃ t

i ∼ K(X̃ t
i , ·)

 MH steps
end for

end for
for i = 1 : N do

X t
i ∼ p(xt |X̃ t−1

i)

W t
i =W t−1

i
p(dxt ,yt |X̃ t−1

i)

p(dxt |X̃ t−1
i)

(X t
i)

 Advance

end for
end for

Sam
Pop
Tr
Seq−

Sam
spawn n
hoistT
hoistS −

−

Sam
resample
hoistT −

Sam
Pop

mhStep→
hoistS −

Sam
Pop
Tr

advance→

Sam
Pop
Tr
Seq−

Sam
Pop
Tr

finish→

Sam
Pop
Tr −

Sam
Pop

marginal→
Sam
Pop

Figure 7.1: Graphical depiction of RM-SMC as a sequence of transformations between
intermediate representations.

7.2 Particle Marginal MH 95

rmsmc :: MonadSample m
⇒ Int -- k : number of time steps
→ Int -- n : number of particles
→ Int -- t : number of MH steps
→ Seq (Tr (Pop m)) a -- model
→ Pop m a --result

rmsmc k n t = marginal . finish .
compose k (advance . hoistS (

compose t mhStep . hoistT resample)) .
(hoistS . hoistT) (spawn n >>)

In the above t is the number of MH transitions to be applied after each resampling step.
The inference stacks and transformations constituting rmsmc are depicted visually in Figure
7.1.

The version of RM-SMC presented above is computationally intensive. In some models
it is better to restrict the rejuvenation transitions to the subset of random variables introduced
since the last resampling. We can accomplish that using the freeze transformation from
Section 6.2.2.

rmsmcLocal :: MonadSample m ⇒ Int → Int → Int →
Seq (Tr (Pop m)) a → Pop m a

rmsmcLocal k n t = marginal . finish .
compose k (advance . hoistS (freeze .

compose t mhStep . hoistT resample)) .
(hoistS . hoistT) (spawn n >>)

7.2 Particle Marginal MH

RM-SMC uses the MH update inside SMC. An alternative composition is to use SMC inside
an MH update. A particular instance is the algorithm called Particle Marginal Metropolis-
Hastings (PMMH) [3], a pseudo-marginal MH algorithm that uses SMC to approximately
integrate over the latent variables in the model. It is primarily used for parameter estimation
in time series models.

PMMH is only applicable to models with a specific structure, namely the probabilistic
program needs to decompose to a prior over the global parameters m param and the rest of the
model param → m a. Combining these using >>= would yield the complete model of type m a.
For example, the random walk model from Section 6.1.1 would be decomposed as follows:

96 Compositions of Inference Algorithms

s :: MonadSample m ⇒ m R
s = gamma 1 1
random_walk ’ :: MonadInfer m ⇒ [R] → R → m [R]
random_walk ’ ys s = do

let obs x y = score (normalPdf x 1 y)
let expand xs [] = return xs

expand (x:xs) (y:ys) = do
x’ ← normal x s
obs x’ y
expand (x’:x:xs) ys

xs ← expand [0] ys
return (reverse xs)

The idea is to do MH on the parameters of the model. Recall that for MH we need to
compute the likelihood for the particular values of parameters but that involves integrating
over the remaining random variables in the model which is intractable. Fortunately to obtain
valid MH it is sufficient to have an unbiased estimator for the likelihood which is produced
by a single sample from W. MH with such an estimator is referred to as pseudo-marginal MH.
If instead of taking a single weight from W we take the sum of weights from Pop we obtain
an unbiased estimator with lower variance. In particular if such a Pop is a result of smc the
resulting algorithm is known as PMMH.

The full implementation of PMMH is then as follows:

pmmh :: MonadInfer m
⇒ Int -- t: number of MH steps
→ Int -- k: number of time steps
→ Int -- n: number of particles
→ Tr m b -- param: model parameters prior
→ (b → Seq (Pop m) a) -- model
→ m [[(a, Log R)]] -- result

pmmh t k n param model =
mh t (param >>= runPopulation . pushEvidence .

hoistP lift . smc k n . model)

The code above can be read as follows. First it applies SMC to the model and lifts the
entire SMC computation through Tr. Then it scores the sum of weights in Tr and keeps the
population as the output. This process is depicted visually in Figure 7.2. The preprocessed
computation is combined with the prior on parameters. Running mh then produces exactly
the desired algorithm, since the only score in Tr is the sum of weights from the population.

7.3 SMC2 97

Sam
Pop
Seq −

Sam

smc→

Sam

Pop −

Sam
lift

hoistP→

Sam
Tr
Pop −

Sam
Tr

pushEv→

Sam
Tr
Pop −

Sam
Tr

runPop→
Sam
Tr

Figure 7.2: Graphical depiction of the preprocessing step involved in PMMH. Once the
model is transformed in this fashion, it is combined with the parameters prior and a standard
MH algorithm is executed on the resulting program.

7.3 SMC2

The final inference algorithm we discuss, proposed by Chopin et al. [15], can be regarded as
a hybrid of resample-move SMC and PMMH approaches and is used for joint estimation
of the posterior over parameters and latent variables in state-space models. It features an
outer population of particles, much like RM-SMC, each of which holds different values
for the parameters. These particles are filtered through observations using resampling and
MH-based rejuvenation where appropriate. However, like in PMMH, these MH transitions
do not use exact densities but rather estimators obtained from an inner particle filter over the
latent variables. The two particle filters are synchronised in the sense that they step through
the same observations simultaneously.

Like PMMH, SMC2 is only applicable to programs separable into the prior over parame-
ters and the rest of the model. Furthermore, for SMC2 we need a variant of smc that performs
pushEvidence after each step. We call it smcPush and its implementation is almost identical to
smc.

smcPush :: MonadInfer m ⇒
Int → Int → Seq (Pop m) a → Pop m a

smcPush k n =
finish . compose k (advance .

hoistS (pushEvidence . resample)) .
hoistS (spawn n >>)

We want to instantiate m to Seq (Tr (Pop Sampler)) and run rmsmc on it. Unfortunately
doing that naively has the unintended consequence that the random variables from model end
up being traced which is not what we want. To remedy this situation we introduce a type
synonym that performs the necessary lifting.

98 Compositions of Inference Algorithms

Sam

SMC2

Pop
Seq −

Sam

SMC2

smcPush→

Sam

SMC2

Pop −

Sam

SMC2

runPop→

Sam

SMC2

−

Sam

setup

→

Sam
Pop
Tr
Seq

Figure 7.3: Graphical depiction of the preprocessing step involved in the implementation of
SMC2.

newtype SMC2 m a = SMC2 (Seq (Tr (Pop m)) a)
deriving(Monad)

setup (SMC2 m) = m
instance MonadTrans SMC2 where

lift = SMC2 . lift . lift . lift
instance MonadSample m ⇒ MonadSample (SMC2 m) where

random = lift random
instance MonadCond m ⇒ MonadCond (SMC2 m) where

score = SMC2 . score

The SMC2 synonym thus ensures that the random variables bypass the transformers that need
not be concerned with them. We can then complete the SMC2 implementation as follows.

sm c2 :: MonadSample m
⇒ Int -- k: number of time steps
→ Int -- n: number of inner particles
→ Int -- p: number of outer particles
→ Int -- t: number of MH transitions
→ Seq (Tr (Pop m)) b -- param: model parameters
→ (b → Seq (Pop (SMC2 m)) a) -- model
→ Pop m [(a, Log R)]

sm c2 k n p t param model =
rmsmc k p t (param >>= setup . runPopulation .

smcPush k n . model)

Much like in the PMMH case, the implementation consists of a preprocessing step on
the model, followed by combining the model with the parameters prior, followed by running
an existing algorithm, in this case RMSMC. The preprocessing step is depicted visually in
Figure 7.3.

7.3 SMC2 99

Our framework allows more complicated compositions of similar kind, for example using
RM-SMC within SMC2 or introducing two types of parameters with varying scope. Their
implementation would be analogous to the examples presented above.

Chapter 8

Conclusion

Design of Bayesian inference algorithms for probabilistic programs is a never-ending task
where new variations of existing methods are proposed in literature every year. Implemen-
tation of these algorithms is subject to all the usual pitfalls of building software, as well as
many problems that do not manifest themselves when writing deterministic programs. Even
though conceptually many algorithmic developments are simple, incorporating them into
existing implementations often involves making major changes and risks introducing bugs
along the way. This directly limits the adoption of new inference algorithms and therefore
restricts the set of models for which practitioners can easily perform inference.

In this dissertation we presented a modular construction for building inference algorithms
for probabilistic programs, based on monad transformers, and showed that it can be used to
decompose complicated inference algorithms into a small collection of easy-to-understand
building blocks which we subsequently put together in various ways. Specifically, we
focused on Monte Carlo algorithms and developed building blocks corresponding to the
ideas of resampling, sequential sampling, and Metropolis-Hastings updates. We used them
to construct algorithms such as Sequential Monte Carlo, Resample-Move Sequential Monte
Carlo, Particle Marginal Metropolis-Hastings, and Sequential Monte Carlo squared. Once
the building blocks are defined, each of these otherwise complicated algorithms can be
implemented in a just few lines of code. Moreover, individual operations in this code
correspond to high-level logical components of these algorithms.

We have developed a theoretical framework around a specific variant of the lambda calcu-
lus, which allows formal reasoning about inference algorithms and proving their correctness,
and a Haskell implementation that can be used in practice to write probabilistic programs
and perform inference in them. The calculus and the library are closely related, sharing
the fundamental aspect of their design, but there remains a gap between them. Thus we do
not have formal semantics for the programs actually run and we can not presently verify

102 Conclusion

correctness of our inference algorithm implementations using formal methods, although we
expect this gap to be bridged in the near future. The design presented in this dissertation
could then form a foundation for a formally verified probabilistic programming library. In
the meantime we have shown how the proposed modular implementation can be used to
enable a new class of deterministic testing methods for randomized inference algorithms.

The use of Haskell was convenient, as we could reuse the existing support for monads
and their transformers for inference representations. However, the same design ports to
other modern functional languages that contain higher-order functions and inductive types.
In the absence of a type-class mechanism, one can use ML-style modules: users construct
models abstractly with respect to a module signature containing random and score. Each
inference representation is a module implementing this signature, and inference transformers
are functors. To a certain extent our design can also be ported to imperative languages,
although the lack of a powerful type system would likely make it more difficult to ensure
correctness of implementations.

We have achieved performance comparable with existing probabilistic programming
libraries available in general-purpose languages, although profiling shows there remains a
significant overhead associated with the abstractions we use. While the convenience of a
high-level language may in many cases already be worth reduced performance, additional
work on minimising this overhead would make our approach even more practical.

Apart from optimising the code to increase computational efficiency, there are certain
additions to the MonadBayes library that could increase the statistical efficiency. In particular
these include the tools that would enable users to specify proposal distributions and transition
kernels in a model-specifc way. In our implementation that would come mostly in the form
of a more sophisticated Tr representation that could refer to specific program variables in a
user-friendly manner.

An alternative approach to embedding probabilistic programs in existing languages is to
use a stand-alone DSL for constructing models, such as used in Stan [12] and LibBi [61].
Such representations avoid the overheads discussed above and as a result can be used to
generate computationally efficient inference code. It would be interesting to investigate if the
approach we described here could be used to build modular compilers for such languages
without sacrificing their efficiency. The idea to use monad transformers to build compilers in
a modular fashion has been previously explored by Liang and Hudak [51].

Our semantic account was provided for a relatively expressive lambda calculus, although
it lacked a mechanism to specify general recursion. This precludes some kinds of probabilistic
programs, in particular those corresponding to Bayesian nonparametric models [78]. While
a probabilistic program that diverges with non-zero probability is not very useful, there

103

exists a class of programs where infinite runs are possible but the program terminates with
probability one. Constructing a domain theory for QBS would allow us to extend our
semantic construction to such programs, where the inference algorithms provided should still
work.

Many modern algorithms for Bayesian inference, such as Hamiltonian Monte Carlo [65]
and black-box variational inference [75] rely on gradient information that can be obtained by
methods of automatic differentiation. Inclusion of these methods can make a probabilistic
programming system dramatically more practical as demonstrated by the success of Stan.
We could incorporate these algorithms into our framework, the only obstacle being the
lack of availability of suitable automatic differentiation tools. On the semantics side the
problem is that no denotational account of automatic differentiation exists as of writing this
paragraph, although it is being worked on by programming languages researchers. On the
implementation side we could not find a suitable automatic differentiation library in Haskell.
We have experimented with the ad library1 but the resulting types were so complicated that
we did not find the results satisfactory, although it did work. We hope that a more clever
implementation hiding type-level complexities or an alternative automatic differentiation
package will unlock the power of gradient-based inference algorithms for our library.

Finally, modern machine learning, especially in the context of big data, increasingly
makes use of dedicated numerical libraries for efficiently performing matrix operations,
including automatic differentiation, on GPUs. Currently the most popular choices are
Tensorflow [1] and PyTorch2. Probabilistic programming systems such as Edward [88] and
Pyro3 exploit these libraries to deliver massive performance boosts. For example, Tran et al.
[88] report that Hamiltonian Monte Carlo in Edward is more than an order of magnitude
faster than in Stan. Taking advantage of such libraries could therefore greatly improve
computational efficiency of inference.

Currently, PyTorch is only available in Python and existing Tensorflow bindings for
Haskell and OCaml are not supported officially. There are several alternatives written directly
in functional programming languages that cover all the core features required although they
presently do not easily combine. For example, the Haskell library Accelerate [13] supports
efficient matrix computation on CPUs and GPUs, but there is no automatic differentiation
library built on top of it. On the other hand a recently released Owl library [90] for OCaml
offers efficient matrix operations and automatic differentiation, but currently only emits
CPU code. Since all the components are already there, it is simply a matter of investing
sufficient developer time to create a natively functional numerical library for modern machine

1http://hackage.haskell.org/package/ad
2https://github.com/pytorch
3http://pyro.ai/

http://hackage.haskell.org/package/ad
https://github.com/pytorch
http://pyro.ai/

104 Conclusion

learning. We believe that in the near future such libraries, whether implemented from scratch
in functional languages or as convenient bindings to imperative libraries, will make functional
programming a serious player in the area of machine learning in general and probabilistic
programming in particular. We hope that the constructions presented in this dissertation will
help bring the modularity and reliability often associated with functional programming into
the realm of state-of-the-art machine learning applications.

An alternative to developing numerical libraries for functional programming languages is
to transfer our developments to imperative languages where these tools already exist. Unfor-
tunately the design of these languages makes it difficult to use sophisticated compositional
constructions of the kind presented in this dissertation. Nonetheless, attempting to bring
them over to mainstream machine learning languages is a worthwhile direction for future
work.

Bibliography

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems.

[2] Ackerman, N. L., Freer, C. E., and Roy, D. M. (2011). Noncomputable conditional
distributions. In LiCS.

[3] Andrieu, C., Doucet, A., and Holenstein, R. (2010). Particle Markov chain Monte Carlo
methods. Journal of the Royal Statistical Society, 72:269–342.

[4] Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient
Monte Carlo computations. The Annals of Statistics, 37:697–725.

[5] Aumann, R. J. (1961). Borel structures for function spaces. Illinois Journal of Mathe-
matics, 5:614–630.

[6] Barber, D. (2012). Bayesian Reasoning and Machine Learning. Cambridge University
Press.

[7] Bishop, C. (2006). Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer-Verlag New York.

[8] Blažević, M. (2011). Coroutine pipelines. The Monad Reader, pages 29–50.

[9] Borgström, J., Dal Lago, U., Gordon, A. D., and Szymczak, M. (2016). A lambda-
calculus foundation for universal probabilistic programming. In ICFP.

[10] Borgström, J., Gordon, A. D., Greenberg, M., Margetson, J., and Van Gael, J. (2011).
Measure transformer semantics for Bayesian machine learning. In ESOP.

[11] Brooks, S., Gelman, A., Jones, G. I., and Meng, X. (2011). Handbook of Markov chain
Monte Carlo. Chapman and Hall.

[12] Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). Stan: A probabilistic programming
language. Journal of Statistical Software, 76.

106 Bibliography

[13] Chakravarty, M. M. T., Keller, G., Lee, S., McDonell, T. L., and Grover, V. (2011).
Accelerating haskell array codes with multicore gpus. In DAMP.

[14] Chang, J. T. and Pollard, D. (1997). Conditioning as disintegration. Statistica Neer-
landica, 51:287–317.

[15] Chopin, N., Jacob, P. E., and Papaspiliopoulos, O. (2013). SMC2: an efficient algorithm
for sequential analysis of state space models. Journal of the Royal Statistical Society
Series B: Statistical Methodology, 75:397–426.

[16] Church, A. (1941). The calculi of lambda-conversion. Princeton University Press.

[17] Del Moral, P. (1996). Non linear filtering: Interacting particle solution. Markov
Processes and Related Fields, 2:555–580.

[18] Douc, R., Cappé, O., and Moulines, E. (2005). Comparison of resampling schemes for
particle filtering. arXiv:cs/0507025.

[19] Doucet, A. and Johansen, A. M. (2011). A tutorial on particle filtering and smoothing:
Fifteen years later. In Crisan, D. and Rozovskii, B., editors, The Oxford Handbook of
Nonlinear Filtering, chapter 8. Oxford University Press.

[20] Duane, S., Kennedy, A., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo.
Physics Letters B, 195:216–222.

[21] Ehrhard, T., Pagani, M., and Tasson, C. (2018). Measurable cones and stable, measur-
able functions. Proceedings of the ACM on Programming Languages, POPL.

[22] Erwig, M. and Kollmansberger, S. (2006). Probabilistic functional programming in
Haskell. Journal of Functional Programming, 16:21–34.

[23] Felleisen, M. (1991). On the expressive power of programming languages. Sci. Comput.
Program., 17(1-3):35–75.

[24] Fiore, M. and Saville, P. (2017). List objects with algebraic structure. In 2st In-
ternational Conference on Formal Structures for Computation and Deduction, FSCD
2017.

[25] Ge, H., Xu, K., and Ghahramani, Z. (2018). Turing: a language for flexible probabilistic
inference. In AISTATS.

[26] Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions of Pattern Analysis and Machine
Intelligence, PAMI-6:721–741.

[27] Geuvers, H. and Poll, E. (2007). Iteration and primitive recursion in categorical terms.
In Reflections on Type Theory, Lambda Calculus, and the Mind, Essays Dedicated to Henk
Barendregt on the Occasion of his 60th Birthday, pages 101–114, Nijmegen. Radboud
Universiteit.

[28] Geyer, C. (2011). Introduction to MCMC. In Handbook of Markov chain Monte Carlo.
Chapman and Hall.

Bibliography 107

[29] Gilks, W. and Berzuini, C. (2001). Following a moving target - Monte Carlo inference
for dynamic Bayesian models. Journal of the Royal Statistical Society, 63:127–146.

[30] Gilks, W. R., Thomas, A., and Spiegelhalter, D. J. (1994). A language and program for
complex Bayesian modelling. Journal of the Royal Statistical Society. Series D, 43.

[31] Goodman, N., Mansinghka, V., Roy, D., Bonawitz, K., and Tenenbaum, J. (2008).
Church: a language for generative models. In UAI.

[32] Goodman, N. and Stuhlmüller, A. (2014). Design and implementation of probabilistic
programming languages. http://dippl.org.

[33] Gordon, A. D., Henziger, T. A., Nori, A. V., and Rajamani, S. K. (2014). Probabilistic
programming. In FOSE.

[34] Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F - Radar and Signal
Processing, 140:107–113.

[35] Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination. Biometrika, 82:711–732.

[36] Haghverdi, E. and Scott, P. (2006). A categorical model for the geometry of interaction.
Theoretical Computer Science, 350(2):252 – 274. Automata, Languages and Programming:
Logic and Semantics (ICALP-B 2004).

[37] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, 57:97–109.

[38] Heunen, C., Kammar, O., Staton, S., and Yang, H. (2017). A convenient category for
higher-order probability theory. In LiCS.

[39] Hoffman, M. D. and Gelman, A. (2014). The no-U-turn sampler: Adaptively setting
path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research,
15:1593–1623.

[40] Hur, C.-K., Nori, A., Rajamani, S. K., and Samuel, S. (2015). A provably correct
sampler for probabilistic programs. In FSTTCS.

[41] Hutton, G. (1999). A tutorial on the universality and expressiveness of fold. J. Funct.
Program., 9(4):355–372.

[42] Jacobs, B. (2017). From probability monads to commutative effectuses. Journ. of
Logical and Algebraic Methods in Programming. To appear.

[43] Jaskelioff, M. (2009). Lifting of Operations in Modular Monadic Semantics. PhD
thesis, University of Nottingham.

[44] Jones, C. and Plotkin, G. (1989). A probabilistic powerdomain of evaluations. In LiCS.

[45] Kelly, G. M. (1980). A unified treatment of transfinite constructions for free algebras,
free monoids, colimits, associated sheaves and so on. Bull. Austral. Math. Soc., 22:1–83.

http://dippl.org

108 Bibliography

[46] Kiselyov, O. and Shan, C. (2009). Embedded probabilistic programming. In IFIP
Working Conference on Domain-Specific Languages.

[47] Kock, A. (1972). Strong functors and monoidal monads. Archiv der Mathematik,
23(1):113–120.

[48] Kock, A. (2012). Commutative monads as a theory of distributions. Theory and
Applications of Categories, 26(4):97–131.

[49] Kozen, D. (1981). Semantics of probabilistic programs. Journal of Computer and
System Sciences, 22:328–350.

[50] Landin, P. J. (1966). The next 700 programming languages. Communications of the
ACM, 9:157–166.

[51] Liang, S. and Hudak, P. (1996). Modular denotational semantics for compiler construc-
tion. In ESOP.

[52] Liu, J. S. and Chen, R. (1996). Sequential Monte Carlo methods for dynamic systems.
Journal of the American Statistical Association, 93:1032–1044.

[53] MacKay, D. J. C. (2003). Information Theory, Inference and Learning Algorithms.
Cambridge University Press.

[54] Mansinghka, V., Selsam, D., and Perov, Y. (2014). Venture: a higher-order probabilistic
programming platform with programmable inference. arXiv:1404.0099.

[55] Marlow, S. (2010). Haskell 2010 language report. https://www.haskell.org/onlinere-
port/haskell2010/.

[56] Marmolejo, F. and Wood, R. J. (2010). Monads as extension systems — no iteration is
necessary. Theory and Applications of Categories, 24(4):84–113.

[57] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., and Teller, A. H. (1953).
Equation of state calculations by fast computing machines. The Journal of Chemical
Physics, 21.

[58] Minka, T., Winn, J., Guiver, J., Webster, S., Zaykov, Y., Yangel, B., Spengler, A., and
Bronskill, J. (2014). Infer.NET 2.6. Microsoft Research Cambridge. http://research.mi-
crosoft.com/infernet.

[59] Moggi, E. (1989). Notions of computation and monads. In LiCS.

[60] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Adaptive
Computation and Machine Learning. MIT Press.

[61] Murray, L. M. (2013). Bayesian state-space modelling on high-performance hardware
using libbi. arXiv:1306.3277.

[62] Narayanan, P., Carette, J., Romano, W., Shan, C., and Zinkov, R. (2016). Probabilistic
inference by program transformation in Hakaru (system description). In FLOPS.

Bibliography 109

[63] Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods.
Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto.

[64] Neal, R. M. (1998). Annealed importance sampling. Technical Report 9805, Department
of Statistics and Department of Computer Science, University of Toronto.

[65] Neal, R. M. (2010). MCMC using Hamiltonian dynamics. In Handbook of Markov
Chain Monte Carlo. Chapman and Hall.

[66] Nori, A. V., Hur, C.-K., Rajamani, S. K., and Samuel, S. (2014). R2: An efficient
MCMC sampler for probabilistic programs. In AAAI.

[67] Park, S., Pfenning, F., and Thrun, S. (2008). A probabilistic programming language
based upon sampling functions. ACM Transactions on Programming Languages and
Systems, 31.

[68] Patil, A., Huard, D., and Fonnesbeck, C. J. (2010). PyMC: Bayesian stochastic
modelling in Python. Journal of Statistical Software, 35.

[69] Pearl, J. (1982). Reverend Bayes on inference engines: A distributed hierarchical
approach. In AAAI.

[70] Pfeffer, A. (2001). IBAL: A probabilistic rational programming language. In IJCAI.

[71] Pfeffer, A. (2015). Practical Probabilistic Programming. Manning.

[72] Piróg, M. (2016). Eilenberg-Moore monoids and backtracking monad transformers. In
Atkey, R. and Krishnaswami, N. R., editors, Proceedings 6th Workshop on Mathematically
Structured Functional Programming, MSFP@ETAPS 2016, Eindhoven, Netherlands, 8th
April 2016., volume 207 of EPTCS, pages 23–56.

[73] Raiffa, H. and Schlaifer, R. (1961). Applied Statistical Decision Theory. Division of
Research, Graduate School of Business Adminitration, Harvard University.

[74] Ramsey, N. and Pfeffer, A. (2002). Stochastic lambda calculus and monads of probabil-
ity distributions. In POPL.

[75] Ranganath, R., Gerrish, S., and Blei, D. (2014). Black-box variational inference. In
AISTATS.

[76] Ritchie, D., Mildenhall, B., Goodman, N. D., and Hanrahan, P. (2015). Controlling
procedural modeling programs with stochastically-ordered sequential Monte Carlo. ACM
Transactions on Graphics, 34.

[77] Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence,
82:279–302.

[78] Roy, D., Mansinghka, V., Goodman, N., and Tenenbaum, J. (2008). A stochastic
programming perspective on nonparametric Bayes. ICML workshop on nonparametric
Bayesian methods.

[79] Ścibior, A., Kammar, O., and Ghahramani, Z. (2018a). Functional programming for
modular Bayesian inference. Proceedings of the ACM on Programming Languages, 2.

110 Bibliography

[80] Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., Ostermann, K., Moss,
S. K., Heunen, C., and Ghahramani, Z. (2018b). Denotational validation of higher-order
Bayesian inference. Proceedings of the ACM on Programming Languages, 2.

[81] Scott, D. and Strahey, C. (1971). Towards a mathematical semantics for computer
languages. In Proceedings of the Symposium on Computers and Automata.

[82] Shan, C. and Ramsey, N. (2017). Exact Bayesian inference by symbolic disintegration.
In POPL.

[83] Staton, S. (2017). Commutative semantics for probabilistic programming. In ESOP.

[84] Staton, S., Yang, H., Heunen, C., Kammar, O., and Wood, F. (2016). Semantics for
probabilistic programming: higher-order functions, continuous distributions, and soft
constraints. In LiCS.

[85] Strachey, C. (2000). Fundamental concepts in programming languages. 13:11–49.

[86] Tolpin, D., van de Meent, J., and Wood, F. (2015). Probabilistic programming in
Anglican. In Machine Learning and Knowledge Discovery in Databases. Springer.

[87] Toronto, N., McCarthy, J., and Van Horn, D. (2015). Running probabilistic programs
backwards. In ESOP.

[88] Tran, D., Hoffman, M. D., Saurous, R. A., Brevdo, E., Murphy, K., and Blei, D. M.
(2017). Deep probabilistic programming. In ICLR.

[89] van de Meent, J.-W., Yang, H., Mansinghka, V., and Wood, F. (2015). Particle Gibbs
with ancestor sampling for probabilistic programs. In AISTATS.

[90] Wang, L. (2017). Owl: A general-purpose numerical library in OCaml.
arXiv:1707.09616.

[91] Wingate, D., Stuhlmüller, A., and Goodman, N. (2011). Lightweight implementations
of probabilistic programming languages via transformational compilation. In AISTATS.
The published version contains a serious bug in the algorithm description, which was fixed
in Revision 3 available from the authors page.

[92] Wood, F., van de Meent, J.-W., and Mansinghka, V. (2014). A new approach to
probabilistic programming inference. In AISTATS.

[93] Zhang, N. L. and Poole, D. (1994). A simple approach to Bayesian network computa-
tions. In CCAI.

[94] Zinkov, R. and Shan, C. (2016). Composing inference algorithms as program transfor-
mations. In UAI.

	Table of contents
	1 Introduction
	1.1 Bayesian Modelling
	1.2 Probabilistic Programming
	1.3 Approximate Inference
	1.4 Formal Semantics of Programming Languages
	1.5 Outline of the Dissertation

	2 Preliminaries
	2.1 Bayesian Inference Algorithms
	2.1.1 Exact Inference
	2.1.2 Markov Chain Monte Carlo
	2.1.3 Importance Sampling

	2.2 Types and Denotational Semantics
	2.2.1 Lambda Calculus Syntax and Semantics
	2.2.2 Effectful Computation and Monads
	2.2.3 Type System Extensions
	2.2.4 Haskell

	2.3 Probabilistic Programming
	2.3.1 Discrete and Continuous Random Variables
	2.3.2 Conditioning
	2.3.3 Domain-Specific Languages
	2.3.4 Extensions of General-Purpose Programming Languages
	2.3.5 Semantics for Probabilistic Programs

	3 Formal Calculus and Discrete Inference Semantics
	3.1 Syntax
	3.2 Type System
	3.3 Primitive Recursion
	3.4 Denotational Semantics
	3.5 Monadic Programming
	3.6 Discrete Inference
	3.6.1 The Mass Function Monad
	3.6.2 Inference Representations
	3.6.3 Inference Transformations
	3.6.4 Inference Transformers
	3.6.5 Summary

	4 Mathematical Tools for Continuous Semantics
	4.1 Category Theory
	4.2 Synthetic Measure Theory
	4.2.1 Axioms and Structure
	4.2.2 Notation and Basic Properties
	4.2.3 Radon-Nikodym Derivatives
	4.2.4 Kernels

	4.3 Quasi-Borel Spaces
	4.3.1 Rudiments of Classical Measure Theory
	4.3.2 Quasi-Borel Spaces
	4.3.3 A Monad of Measures

	5 Continuous Inference Semantics
	5.1 Inference representations
	5.2 Population
	5.3 Sequential
	5.4 Traced
	5.4.1 Abstract Metropolis-Hastings-Green
	5.4.2 Tracing Representation
	5.4.3 Inference with MHG

	6 Implementation of Inference Building Blocks
	6.1 Basic building blocks
	6.1.1 Models
	6.1.2 Basic Samplers
	6.1.3 Population

	6.2 Advanced building blocks
	6.2.1 Sequential
	6.2.2 Traced

	6.3 Evaluation
	6.3.1 Quantitative Evaluation
	6.3.2 Qualitative Evaluation

	6.4 Testing

	7 Compositions of Inference Algorithms
	7.1 Resample-Move SMC
	7.2 Particle Marginal MH
	7.3 SMC2

	8 Conclusion
	Bibliography

