74 research outputs found

    Self-Similarity in a multi-stage queueing ATM switch fabric

    Get PDF
    Recent studies of digital network traffic have shown that arrival processes in such an environment are more accurately modeled as a statistically self-similar process, rather than as a Poisson-based one. We present a simulation of a combination sharedoutput queueing ATM switch fabric, sourced by two models of self-similar input. The effect of self-similarity on the average queue length and cell loss probability for this multi-stage queue is examined for varying load, buffer size, and internal speedup. The results using two self-similar input models, Pareto-distributed interarrival times and a Poisson-Zeta ON-OFF model, are compared with each other and with results using Poisson interarrival times and an ON-OFF bursty traffic source with Ge ometrically distributed burst lengths. The results show that at a high utilization and at a high degree of self-similarity, switch performance improves slowly with increasing buffer size and speedup, as compared to the improvement using Poisson-based traffic

    Advanced photonic routing sub-systems with efficient routing control

    Get PDF
    In recent years, there has been much interest in the development of optical switches which can route optical signals from different input guides to different outputs based on thermo-optic and electro-optic technologies. Such switches, which can be reconfigured on millisecond and microsecond timescales, have already attracted commercial interest. However switches which are able to reconfigure on the nanosecond timescales required for packet switching have been more challenging and only in recent years, have router concepts been devised to allow lossless routers to be constructed able to switch on nanosecond timescales with more than 16×16 ports. This paper will therefore review the advances that have occurred to allow such operation and then describe recent studies that have begun to determine the electronic control and functionality required to enable full and practical operation of such switches in high performance networks.This research has received funding from the UK Engineering and Physical Sciences Research Council through the INTERNET Project, STAR and COPOS II grants and the European Commission under FP7 grant agreement ICT 257210 PARADIGM.This is the author accepted manuscript. The final version is available from IEEE via http://dx.doi.org/10.1109/ICTON.2015.719339

    The Design, modeling and simulation of switching fabrics: For an ATM network switch

    Get PDF
    The requirements of today\u27s telecommunication systems to support high bandwidth and added flexibility brought about the expansion of (Asynchronous Transfer Mode) ATM as a new method of high-speed data transmission. Various analytical and simulation methods may be used to estimate the performance of ATM switches. Analytical methods considerably limit the range of parameters to be evaluated due to extensive formulae used and time consuming iterations. They are not as effective for large networks because of excessive computations that do not scale linearly with network size. One the other hand, simulation-based methods allow determining a bigger range of performance parameters in a shorter amount of time even for large networks. A simulation model, however, is more elaborate in terms of implementation. Instead of using formulae to obtain results, it has to operate software or hardware modules requiring a certain amount of effort to create. In this work simulation is accomplished by utilizing the ATM library - an object oriented software tool, which uses software chips for building ATM switches. The distinguishing feature of this approach is cut-through routing realized on the bit level abstraction treating ATM protocol data units, called cells, as groups of 424 bits. The arrival events of cells to the system are not instantaneous contrary to commonly used methods of simulation that consider cells as instant messages. The simulation was run for basic multistage interconnection network types with varying source arrival rate and buffer sizes producing a set of graphs of cell delays, throughput, cell loss probability, and queue sizes. The techniques of rearranging and sorting were considered in the simulation. The results indicate that better performance is always achieved by bringing additional stages of elements to the switching system

    Switching to Photonics

    Get PDF
    The use of hardware that exploits the interplay of photons and electrons to switch voice, data, and video is discussed. The two directions being taken by current research-guided-wave and free-space photonics-are examined. Photonic time-slot interchanges are described. Multidivisional fabrics, based on a combination of space-division and time-division multiplexing, are considered, as is the wavelength-division-based photonic packet switch, another kind of multidimensional fabric. The use of self-electrooptic effect devices, (SEEDs) is discussed

    Journal of Telecommunications and Information Technology, 2018, nr 1

    Get PDF
    This paper is devoted to evaluating the performance of Space-Memory-Memory (SMM) Clos-network switches under a packet dispatching scheme employing static connection patterns, referred to as Static Dispatching (SD). The control algorithm with static connection patterns can be easily implemented in the SMM fabric due to bufferless switches in the first stage. Stability is one of the very important performance factors of packet switching nodes. In general, a switch is stable for a particular arrival process if the expected length of the packet queues does not increase without limitation. To prove the stability of the SMM Clos-network switches considered under the SD packet dispatching scheme the discrete Markov chain model of the switch is used and Foster’s criteria to extend Lyapunov’s second (direct) method of stability investigation of discrete time stochastic systems are used. The results of simulation experiments, in terms of average cell delay and packet queue lengths, are shown as well

    Efficient Scheduling for SDMG CIOQ Switches

    Full text link
    Combined input and output queuing (CIOQ) switches are being considered as high-performance switch architectures due to their ability to achieve 100% throughput and perfectly emulate output queuing (OQ) switch performance with a small speedup factor S. To realize a speedup factor S, a conventional CIOQ switch requires the switching fabric and memories to operate S times faster than the line rate. In this paper, we propose to use a CIOQ switch with space-division multiplexing expansion and grouped input/output ports (SDMG CIOQ switch for short) to realize speedup while only requiring the switching fabric and memories to operate at the line rate. The cell scheduling problem for the SDMG CIOQ switch is abstracted as a bipartite k-matching problem. Using fluid model techniques, we prove that any maximal size k-matching algorithm on an SDMG CIOQ switch with an expansion factor 2 can achieve 100% throughput assuming input line arrivals satisfy the strong law of large numbers (SLLN) and no input/output line is oversubscribed. We further propose an efficient and starvation-free maximal size k-matching scheduling algorithm, kFRR, for the SDMG CIOQ switch. Simulation results show that kFRR achieves 100% throughput for SDMG CIOQ switches with an expansion factor 2 under two SLLN traffic models, uniform traffic and polarized traffic, confirming our analysis
    corecore