Switching to photonics

Voice, video, and data will eventually be switched by bardware that exploits the interplay of photons and electrons

elecommunications in the future will rely on light as heavily in switching as it does today on light in transmission. The vast infor-mation-carrying capacity of optical fiber will be joined to the astounding connectivity of photonics.
Each new wave of switching hardware will have more photonics embedded in it. In 1995, the first specialized applications will be appearing. By 2000 there may not be purely photonic switching but there certainly will be abundant photonics; for example, photonic links will interconnect printed-circuit boards, multichip modules, and equipment frames. By 2010, optoelectronic switching fabrics could be bringing business community and residential customers alike a panoply of broadband services: video, highdefinition television, and switched videotelephone conversations and conferences; fast data file transfers and information retrieval; data exchange for diskless workstations; and animated graphics, for example, all in addition to today's voice and data services.
A future photonic switching office for telecommunications will support more than 10000 channels, each with a bandwidth greater than $150 \mathrm{Mb} / \mathrm{s}$. The aggregate bit rate for the office's switching fabric will be greater than 1 million megabits per second (1 terabit per second). In contrast, today, channel bandwidths are $64 \mathrm{~kb} / \mathrm{s}$, and an electronic switching office handles an aggregate bit rate of less than $15 \mathrm{~Gb} / \mathrm{s}$.
ENGIMEERING FOCUS. As of now, laboratories in industry and universities around the world are at work on a variety of photonic switching architectures and devices [see table, p. 45]. A few photonic switching devices have just come on the market, though they are still small arrays. In addition, some prototype hardware was demonstrated at the Telecom '91 conference in Geneva, Switzer-
H. Scott Hinton AT\&T Bell Laboratories
land, last October. The focus now in many laboratories is on engineering-increasing capacity and performance while reducing size and cost. Still other concepts are in an early experimental stage.
The work is proceeding along two divergent paths. Guided-wave photonics is better understood and more highly developed. It capitalizes on temporal bandwidth: combining a large number of users into a single physical channel, either through time multiplexing or wavelength multiplexing, in structures like optical fibers and star and directional couplers. These structures are bandwidth transparent (support any bit rate).
The alternative, free-space photonics, exploits spatial bandwidth: serving many users in parallel through many separate channels in structures like lenses, mirrors, holograms, and arrays of optical logic gates or optoelectronic integrated circuits. Essentially, guided-wave photonic switching supports many users on a small number of physical

> For future photonic switching offices, the aggregate bit rate will be an amazing 1 terabit per second

channels, while free-space photonics supports a large number of users on a large number of lower-speed channels.
GUIDING WAVES. Probably the most highly developed version of guided-wave photonic switching is based on directional couplers. Indeed, these devices have been the mainstay of photonic switching for 15 years.

A directional coupler is like a switchtrack on a railway: it sends light signals straight through or diverts them to an adjacent channel. These devices can handle massive bit flows easily, but they are relatively slow in switching a signal from one path to another. They also are subject to cross talk and sig nal attenuation and cannot be integrated on a large scale. Nonetheless, they have an important application: as protection switches for fiber transmission links. If a failure occurs on a fiber link, a directional-couplerbased fabric can reroute its traffic all at once to an alternative link. The microsecond
reconfiguration time required is trifling.
Ericsson Ab, Stockholm, Sweden, and AT\&T Co., Berkeley Heights, N.J., now offer directional coupler switches for sale in eight-by-eight arrays (eight inputs switchable to eight outputs).

A basic directional coupler consists of two optical inputs, two optical outputs, and one or more electrical control input [Fig. 1]. Couplers are usually made of a crystal of lithium niobate into which a titanium channel is diffused to create a lightwave guide, although there has been some work on gallium arsenide and indium gallium arsenide phosphide material systems. A change in voltage on the device's electrodes alters the optical properties of the material, rerouting the channels from the bar or bypass state to the cross or exchange state (from straight through to criss-cross).

Up to a point, two-by-two directional couplers can be integrated in a single fabric. One factor limiting fabric size is the attenuation
by the device of signals passing through it. But the signal loss can be reduced by special interconnection network topologies. For example, the dilated Benes rearrangeable network limits loss to a logarithmic (instead of a linear) increase with switch size-they keep loss low until the switches become very numerous.

A further limit on fabric size is cross talk. To minimize cross talk, special networks are used to ensure that no two inputs on a directional coupler are active simultaneously. Again, the dilated Benes scheme keeps cross talk low, although others, like the the Ofman and extended generalized shuffle networks, are good too.

Defining terms

Coanectivity: effective number of connections to and from a device or other hardware.
Fabric: interconnection network hardware composed of switching nodes and links between them. Fully conmected: said of a switch in which any input channel can be connected to any output channel, provided another connection does not occupy part of the path.
Nonblocking: said of a switch in which any idle input channel can be connected to any idle output channel.
Packel-swilthed neiwork: network that divides information into blocks, each containing address and control data.
Photonlcs: technologies based on interactions between electrons and photons.

Anatomy of a directional coupler

Yet other limits on integration are the great length of directional couplers in relation to their width and the large minimum bending radius of the diffused waveguides. All these constraints add up to a maximum integrated array size of 32 by 32 . Larger switching fabrics have to be built up by interconnecting 32 -by- 32 arrays.

Another approach to guided-wave switching is time-division, rather than spacedivision, multiplexing. The division can be done by interchanging time slots or by using multiple-access devices like star couplers.
In time-slot interchangers, users are assigned slots on a single channel. Switching is done by a reconfigurable fabric that rearranges the temporal positions of the slots according to each's destination. The slots are then separated and sent onward. The connection between users is virtual.

In multiple-access switching, however, the connection between users is real and physical, albeit intermittent. For example, a star coupler network combines all its input
channels and distributes them equally to all its outputs. Decoders on the output ports, instructed by a central controller, select the input they want to receive.
SLOT INTERCHANEE. Most proposed photonic time-slot interchangers (TSIs), when an input arrives in a given time slot, send it directly to the desired output time slot in a single step, over an optical-fiber delay line. The photonic interchanger based on directional couplers chooses a fiber whose length will delay the input slot just the right amount to fit it into the output slot. Work on this is being done at NEC Corp., Tokyo, and AT\&T Bell Laboratories, Murray Hill, N.J..

The input is divided into time slots composed of many bits, with a little dead time between slots. That way, the coupler need not switch too often, and its low switching speed is not a handicap. Time slots for voice, data, and video users may be freely mixed. AT\&T Bell Laboratories' Disco system demonstrated the principle in an eight-byeight switching fabric.

Another kind of time-slot interchanger shifts the input slots through intermediate time-slot stages until they are in the desired output slot. With this scheme, the intermediate stages do not have to be fully connected or nonblocking, as they do in the single-stage interchanger. This time-division system is analogous to a multistage spacedivision network. One such system has been proposed by researchers at the University of Colorado, Boulder.

Time-division multiplexing by multipleaccess fabrics may use a passive shared medium such as an optical-fiber ring. For input and output, the ring is accessed either by passive taps such as fiber couplers or by active taps such as directional couplers. In a synchronous ring, each user is assigned a unique time slot in which to read information from the ring. Other users can send information to a user by entering it into the destination user's time slot. Access to the time slots is arbitrated by a central controller. Asynchronous, distributed-control
schemes are another possibility.
Like time-division fabrics, wavelength division can rearrange input channels or share them through multiple access. A wavelength interchanger, for example, can switch a wavelength-multiplexed channel-one combining signals at different wavelengths. Since each user has a unique wavelength, a connection can be made between two users by converting a transmitter's wavelength to that of the appropriate receiver [Fig. 2].
In a wavelength interchanger recently proposed by NEC, the multiplexed input enters an optical splitter, where its power is divided equally among a group of internal channels. Each channel subjects the multiplexed input to coherent detection: the input is mixed with a monochromatic laser beamtuned to a different wavelength for each channel-so that the information on the desired input signal is electrically extracted. This electrical information is used to modulate a fixed-wavelength output laser. The various output wavelengths are then multiplexed and sent on from the interchanger on a single optical-fiber channel.
A promising multiple-access wavelength interchanger is based on a star coupler, a device that combines all inputs and distributes them to all output channels. Each input has a unique wavelength. Each output channel has a tunable filter that a central controller tunes individually to match the wavelength of the input destined for it.
Several kinds of tunable filter are being pursued, including movable gratings, etalons (wavelengthselective interferometers), and coherent detectors. All devices have advantages and disadvantages. Movable gratings have good resolution but are slow. Etalons are fast but have less resolution. Coherent detectors offer both speed and high resolution, but are expensive to use because they need a tunable mixing laser.
TIME-SPACE-TIME. Multidivisional fabrics-those based on a combination of space-division and timedivision multiplexing-promise huge throughput with rather little hardware. As yet, though, such systems are only in the concept stage. One proposal, from AT\&T Bell Laboratories, calls for a 512 -by-512 time-space-time photonic switch with an internal bit rate of $4.8 \mathrm{~Gb} / \mathrm{s}$. The 512 input lines, each at $150 \mathrm{Mb} / \mathrm{s}$, are partitioned into 16 sections of 32 lines. Each section is time multiplexed into a single space channel, and all channels are fed to a 32 -by- 32 TSI, through a 16 -by-16 space-division switch and then a 32 -by- 32 TSI, and finally demultiplexed into 512 channels, each at $150 \mathrm{Mb} / \mathrm{s}$.

[2] In wavelength interchanger, a multiwavelength input is divided among many coherent detectors. Heterodyned by a tunable laser, each coherent detector extracts an electrical modulation signal representing a discrete input wavelength and uses it to modulate a laser operating at a different wavelength. Any input wavelength can be switched to any output wavelength.

[3) Light entering a symmetric self-etectro-optic-effect device (S-SEED) is either reflected or absorbed, depending on the ratio of power in the separate beams illuminating it and its neighbor. The multiple quan-tum-well structures are alternating layers of gallium arsenide and aluminum gallium arsenide, each layer about 10 nm thick.
buffer, then used to modulate a laser tuned to the wavelength of the designated output port. A star coupler eventually transports all channels to receivers at the output ports.

Control circuitry first checks the desired output port to see if it is busy, and, as soon as it is not, turns on and tunes the input laser to the wavelength of the receiver at the output port, finally commanding the FIFO buffer to send its stored information to the laser

Free-space switching, although not as well-developed as guided-wave switching, is perhaps even more promising. Several laboratories are working on free-space systems based on two-dimensional optoelectronic ICs such as self-electro-optic-effect devices (SEEDs), double heterostructure optoelectronic switches, and vertical surface transmission electrophotonic device arrays. QUANTUM WELLS. Of these devices, a symmetric SEED (S-SEED) is particularly useful. Its structure lends itself to fabrication in large arrays by batch-processing. An SSEED is a pair of $\mathrm{p}-\mathrm{i}-\mathrm{n}$ diodes with multiple quantum wells in the intrinsic region [Fig. 3]. The diodes are electrically connected in series and reverse biased. One of the diodes is on (reflects light) while the other is off (absorbs light). Which diode is on is determined by the ratio of the powers of the light beams directed at each diode. The reflected differential light beams may then be processed through a lens or hologram to subsequent S SEED arrays until they arrive at the required output channel.

The strength of S-SEEDs is that large arrays of small devices can be built. Using a gallium arsen-ide-aluminum gallium arsenide heterostructure for multiple quantum wells, workers at AT\&T Bell Laboratories have fabricated, by molecular beam epitaxy, 128-by256 arrays of S-SEED pairs. The weakness of the devices is that they require too much energy; at present they need about 1 picojoule to change state. Much more work also remains to be done on packaging.

Nevertheless, AT\&T Bell Laboratories has built a 16 -channelinput, 32-channel-output S-SEED-based fabric, an applica-tion-specific version of its 32-by64 array. Operating at about only $100 \mathrm{~kb} / \mathrm{s}$, the fabric does not take advantage of the speed of S SEEDs, but does demonstrate the feasibility of free-space optical interconnection and packaging. An incoming signal is routed to an output channel through six switching stages. At each stage, the signal is split in two and directed to an S-SEED pair. A control computer determines which of the pair accepts the signal. The S-SEED

Photonic switching technologies and players

Switching method	Photonic devices	Developers	Current status (devices and systems)		Advantages/disadvantages
Spaca duilion					
Guided-wave	Directional couplers	AT\&T Co.; LM Ericsson, Stockholm, Sweden; Fujitsu Ltd., NEC Corp., and NTT Corp., Tokyo	4-by-4, 8-by-8 prototype devices available; research lab prototype systems		Bandwidth transpar-ent/small-scale integration; difficult synchronization and control
	Digital switches	Ericsson			
	On-off shutters	Optivision Inc., Davis, Calif.	16-by-16 product available		
Free-space	SEED technology	AT\&T; University College, London	Products available; system demonstrators		Digital devices/high switching energy; difficult optomechanical packaging technology
	Pnpn technology (DOES, VSTEP, EARS, LAOS)	AT\&T; Colorado State University, Fort Collins; NEC; NTT; University of New Mexico, Albuquerque; University of Southern California, Los Angeles	Research prototype devices; research lab experimental systems		
	Smart pixels	AT\&T; NEC; NTT; University College, London; University of Southern California	Simple research prototype devices; research lab experimental systems		Digital devices/difficult optomechanical packaging technology
Tune division					
Time-slot interchange	Directional couplers, tiber delay lines	AT\&T, NEC, University of Colorado, Boulder	Prototype devices available; research lab experimental systems		Bandwidth-transparent/ small-scale integration; difficult synchronization and control
Multiple-access	Star couplers, tunable lasers, tunable receivers	AT\&T; Princeton University, New Jersey			
Wevelength thrilion					
Wavelength interchanger	Star couplers, tunable lasers, tunable receivers	NEC	Prototype devices available; research lab experimental systems		Bandwidth-transparent/ small-scale integration; difficult synchronization and control
Multiple-access	Star couplers, tunable lasers, tunable recelvers	AT\&T; Belicore, Livingston, N.J.; NEC; NTT; CSELT; Columbia University, New York City			
Mutiple duiston.					
Time-space-time	Directional couplers, fiber delay lines	AT\&T	Prototype devices available; research lab experimental systems		Bandwidth-transparent/ small-scale integration; difficult synchronization and control
Wavelength-spacewavelength	Star couplers, tunable lasers, tunable receivers	NEC			
Packet switching	Star couplers, tunable lasers, tunable receivers	AT\&T, Bellcore			
	Smart pixels	AT\&T; University College, London; University of Southern California	Research devices; research lab experimental systems		Digital devices/difficult optomechanical packaging technology
SEED $=$ self-electro-optic-effect device. EARS $=$ exciton-absorptive reflection switch. DOES $=$ double heterostructure optoelectronic switch. LAOS $=$ light-amplifying optical switch. VSTEP $=$ vertical surface transmission electrophotonic. CSELT $=$ Centro Studi e Laboratori Telecomunicazioni SpA (Telecommunications Research and Study Center), Turin, Italy.					
output from one stage becomes the input to the next stage. Still in the future are fabrics composed of smart pixels-chips with optical detectors on their input channels, electronic logic in the middle, and either microlasers or modulators on their output channels. The signal-processing ability of electronics plus the communication ability of optics will yield complex, high-speed switching. Finally, free-space optical interconnection can be used to link either multichip modules (MCMs) or printed-circuit boards. One proposal, from Bell Laboratories, for 2-D optoelectronic ICs envisions a 1024-by-1024 network in which each of three stages is an electronic MCM with more than 3000 opti-		cal inputs and outputschallenge for package des for each input/output greater than $150 \mathrm{Mb} / \mathrm{s}$. ABOUT THE AUTHOR. H. is head of the photonic ment at AT\&T Bell Labor Ill. TO PROBE FURTHER. Au Joseph W. Goodman, John Peter W. Smith, present nar via Satellite, "Pho Communications and Com 22, 1988. The three-hou able on videotape from Center, Customer Servic Hoes Lane, Piscataway	an unprecedented gners. The bit rate hannel would be Scott Hinton [M] switching departtories, Naperville, hor Hinton, with E. Midwinter, and d an IEEE Seminic Switching in puters," on Sept. program is availhe IEEE Service Department, 445 N.J. 08855-1331;	800-678-IEEE 908-981-0060. The Optical So a topical meetin every two years, 1991, in Salt Lake are available from sachusetts Ave., 20036; 202-416-1 Photonic Switch Hinton and John papers on switchi as well as on dev Press, New York The IEEE Jou Communications ic switching in A	tside the United States, ety of America sponsors on photonic switching most recently March 6-8, City, Utah. Proceedings the society, 2010 MasN.W., Washington, D.C. 80. ing, edited by H. Scott E. Midwinter, includes g network architectures ces and systems (IEEE 1990). nal on Selected Areas in blished issues on photongust 1988 and 1990.

