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Abstract Amodifiedmemory-space-memory (MSM)Clos-
network switch, calledMCNS,with amodule-levelmatching
packet dispatching scheme, is presented in the paper. The
MCNS is a modification of the MSM Clos-network switch
proposed to simplify the packet dispatching scheme. In
this paper, we evaluate the combinatorial properties of the
MCNS, as well as a new module-level matching packet dis-
patching algorithm. We also show how this algorithm can
be implemented in an field-programmable gate array chip.
Selected simulation results obtained for the MCNS are com-
pared with the results obtained for the MSM Clos-network
switch using other module-level matching algorithms.

Keywords Clos network · Dispatching algorithm · Packet
switching · Packet scheduling

1 Introduction

Research on the architecture of large-capacity packet switch-
ing nodes for the future Internet is still in progress. The
performance of very fast switches/routers may be limited by
switching fabrics that are not fast enough to switch incom-
ing packets with a speed equal to the line rate. Low-end or
middle-size switches/routers may employ a crossbar switch
(a one-stage switching fabric), but high-end routers need
more sophisticated multi-stage switching fabrics. The most
popular multi-stage switching fabric was proposed by Clos
and is known as the Clos network or the Clos switching fabric
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[1]. Clos networks are scalable and can be composed accord-
ing to required combinatorial properties.

In general, non-blocking switching networks, where every
combination of connections between inputs and outputs
may be established, can be divided into four categories [2]:
strict-sense non-blocking (SSNB), wide-sense non-blocking
(WSNB), rearrangeable (RRNB) and repackable (RPNB)
non-blocking. In SSNB networks, no call is blocked at any
time. WSNB networks are able to connect any idle input
and any idle output, but a special path searching algorithm
must be used. RRNB networks can also establish required
connections, but a rearrangement of some existing connec-
tions to other connecting paths may be needed to change
the network state in order to unblock a blocked call. In this
case, rearrangements are used when a new request arrives
and is blocked. In RPNB networks, it is also possible to
connect an idle input-output pair, but a suitable control algo-
rithm must be used to assign connecting paths for new calls,
and a repacking algorithm to re-route some of the connec-
tions in progress. Call repackings are executed immediately
after one of the existing calls is terminated and are intended
to reach a network state where no blocking can occur. So,
repacking process is executed in order to pack the existing
calls more efficiently and prevent a switching network from
entering blocking states before a new call arrives, in con-
trast to rearrangements which are started after a new call
is blocked. A basic investigation of the properties of SSNB
and RRNB networks was performed by Clos [1] and Beneš
[3] respectively. WSNB networks were analyzed by Beneš
[3,4]. Repackings, as well as the first repacking algorithms,
have been proposed by Ackroyd [5]. The class of repackable
networks was defined by Jajszczyk and Jekel [6]. Generally
speaking, RPNB networks contain less hardware than SSNB
andWSNB, but more hardware than RRNB networks, which
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can be built using a theoretical minimum number of cross-
points [3].

The RRNB fabrics may be used in carrier routing systems,
wherefixed-length packets called cells are transmitted in time
slots from the ingress to the egress side of the switching fabric
[7]. Since a new set of connecting pathsmaybe set up for each
time slot, the RRNB fabric is enough to satisfy all connection
requests. To alleviate the complexity of packet dispatching
algorithms, switching fabrics use buffers.

Among different architectures of packet switching fabrics,
the MSM Clos-network switch is well investigated. The first
and the third stages of this switching fabric may be com-
posed of shared memory modules or cross-point queuing
(CQ) crossbars [8]. To avoid the head-of-line (HOL)blocking
phenomenon, virtual output queuing (VOQ) [7] is imple-
mented. The problems of internal blocking and output port
contention are solvedby arbiters andpacket dispatching algo-
rithms. Switching fabrics with fast arbitration schemes for
large-capacity packet switching nodes are still under inves-
tigation and seem to be a serious research challenge.

This paper is devoted to the MCNS, which is a modifica-
tion of the MSM Clos-network switch and seems to be an
interesting solution for future packet switching nodes. The
remaining part of the paper is organized as follows. In Sect. 2
we discuss related works and explain our motivation for the
research. We introduce the MCNS in Sect. 3. The following
sections deal with the evaluation of the combinatorial proper-
ties of the investigated switching fabric (Sect. 4), the packet
dispatching scheme (Sect. 5), hardware implementation of
the module matching algorithm (Sect. 6), and performance
evaluation (Sect. 7). Section 8 concludes the work.

2 Related works and motivation

Most of the packet dispatching schemes developed for
the three-stage Clos-network switches insist on using the
request-grant-accept handshaking routine, basedon the effect
of the desynchronization of arbitration pointers [9,10]. In this
routine, if cells are waiting for transmission in queues, input
arbiters send requests to corresponding output port arbiters.
Next, output port arbiters send grants to selected input port
arbiters, and finally, after the selection process, input port
arbiters send accept signals to output port arbiters. This
mechanism, with many iterations, is used to match VOQs
to output ports in input modules, and then to match central
module output ports to input module output ports. A lot of
request-grant-accept messages may cause congestion among
thesemessages, and extra on-chip memory is needed to solve
this problem.

Module-levelmatching algorithms forMSMClos-network
switches were proposed and evaluated in [11–13]. The algo-
rithms proposed in [11] and [12] employ two phases: input

and output module matching, and then port matching. The
request-grant-accept scheme with many iterations is used to
select cells to be transmitted to output modules. We focus
mainly on the algorithms presented in [13], where a central
arbiter maintains cell counters, and we intend to compare
selected results obtained for the MCNS with the results pub-
lished in this paper.

The main goal of our work is to propose a switching
fabric architecture with a packet dispatching algorithm that
performs very well under uniform, as well as non-uniform
traffic distribution patterns, and avoids the request-grant-
accept routine with many iterations. In this paper, we suggest
using the MCNS with a central arbiter and a module-level
matching scheme. Central arbiters were not proposed for
multi-stage switching fabrics due to the scalability problem
and considerable processing power needed to solve con-
tention problems. The arbitration process proposed by us is
very simple and can be implemented using logic gates. The
implementation of the proposed module matching algorithm
in an FPGA chip is described in Sect. 6.

3 The modified MSM Clos-network switch
(MCNS)

The three-stage Clos switching fabric is denoted by
C(n,m, r), where n represents the number of input ports in
each ingress switch, and the number of output ports in each
egress switch, r represents the number of ingress and egress
switches of capacity n × m and m × n, respectively, and m
represents the number of second stage switches of capacity
r × r . The total capacity of this switching fabric is N × N ,
where N = nr . This fabric is SSNB if m ≥ 2n − 1 and
RRNB if m ≥ n.

The MCNS is shown in Fig. 1 [14]. In this paper we focus
on the architecture with n input modules (IMs), n−1 central
modules (CMs) and n output modules (OMs). Each IM has
n inputs and each OM has n outputs. The total capacity of
this switching fabric is N × N , where N = n2. Similarly to
the Clos networks we denote the MCNS as CM (n, n− 1, n).

The CM (n, n − 1, n) is created by connecting bufferless
CMs to a two-stage buffered switching fabric, i.e., buffers are
placed in IMs andOMs. Buffers in IMs are organized accord-
ing to the requirements of the virtual output module queues
(VOMQs) technique. It means that incoming cells are sorted
by the OM numbers and stored in V OMQ(i, j), where i is
the number of I M(i), 1 ≤ i ≤ n, and j is the number of
OM( j), 1 ≤ j ≤ n. The shared memory modules, used in
the first stage, require a memory speed up. This problemmay
be alleviated in the future byCQswitches,where it is possible
to organize VOQs or VOMQs in cross-point buffers. These
kinds of chips are not on the market yet, but the switches are
considered in [15,16]. Currently, the speed up problem may
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Fig. 1 The modified Clos-network switch (MCNS); the same infor-
mation is sent from the arbiter to each CM

be definitely avoided using CQ switches in the third stage,
where output queues (OQs) are located.

TheMCNS allows one cell to be sent from each IM to any
OM using a direct link, and no arbitration process is needed.
These direct connections are almost sufficient to serve uni-
formly distributed traffic. However, for non-uniform traffic
distribution patterns, CMs are necessary to rapidly unload
VOMQs during one time slot. The module-level matching
scheme for the MCNS is described in Sect. 5. The architec-
ture of the MCNS is very flexible and the number of needed
CMs may be adjusted to the traffic distribution patterns - it
may vary between 1 and n− 1. This means that it is possible
to switch off some CMs if the latency of cells is acceptable,
and switch them on if cells are waiting too long in the input
buffers. This approach takes into account the requirements
of a new research area called energy aware or green energy
networks.

4 Combinatorial properties of MCNS

The combinatorial properties of theMCNS are given by The-
orems 1 and 2. In Theorem 1, we show that for n = 2,
the CM (n, n − 1, n) is SSNB, however, for n ≥ 3, it is
RRNB (Theorem 2), like the MSM Clos-network switch
C(n, n, n) used as the reference network for comparison
of obtained results. We use the MSM Clos-network switch
as the reference model because both networks can have the
same organization of buffers located in the first and the third
stages, and both areRRNB.Moreover, contrary to otherClos-
network switches like space-memory-memory (SMM) or
memory-memory-memory (MMM), where buffers are used
in the second and the third stages or in all stages respectively,
cell sequence is preserved due to a bufferless second stage.

IM(1)

IM(2) OM(2)

OM(1)

CM(1)

Fig. 2 The MCNS of capacity 4 × 4

Out-of-sequence forwarding requires a special re-sequencing
mechanism at the outputs, which needs additional memory
and may influence packet processing time.

Theorem 1 The CM (n, n − 1, n) is SSNB for n = 2.

Proof To proof the strict sense nonblocking property of the
MCNS for n = 2, we consider the worst case state, simi-
larly to the evaluation of space division Clos’ networks. The
MCNS for n = 2 (N = 4) is shown in Fig. 2.

Let us consider connections from I M(1). Assume that
only the direct link from I M(1) to OM(1) is busy. It means
that I M(1) still has one idle input port. If a new connection
is destined for OM(2), it may be established using the direct
link between I M(1) and OM(2). If a new connection is
destined for OM(1), the only connecting path leads through
CM(1). The link between CM(1) and OM(1) is not busy,
because one output port of OM(1) is still idle, so there is
no connection between I M(2) and OM(1). Therefore, it is
possible to establish the requested connection from I M(1) to
OM(1). Analogically, it is possible to show that it is always
possible to set up connections from I M(2) to OM(1) and
OM(2) using direct links, or two connections from I M(2)
to OM(1) or OM(2) using one direct link and a second one
leading through CM(1). ��

It is necessary to emphasize that proposed MCNS for
n = 2 is SSNB and has two switches fewer than the SSNB
Clos network. The latter one uses three 2× 2 switches in the
second stage to be SSNB, and has 36 cross-points, whereas
theMCNSuses onlyone switch in the second stage andhas 28
cross-points. Generally speaking, the number of cross-points
in the MCNS is higher than in the RRNB Clos network, but
lower than in the SSNB Clos network.

Theorem 2 The CM (n, n − 1, n) is RRNB for n ≥ 3.

Proof Necessity is obvious. To set up connections from n
inputs in any IM, we need at least n switches in the second
stage. In the MCNS, the functionality of one CM is replaced
with direct connections from IMs to OMs. Actually, these
direct connections substitute one CM, so in the second stage,
the MCNS has n − 1 switches, i.e., one switch less than
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the RRNB Clos network. The expansion ratio in IMs and
OMs is the same as in the SSNB Clos networks, because in
each IM there are n outputs connected directly to OMs, and
n − 1 outputs connected to CMs. In each OM, n inputs are
connected to IMs, and additionally n−1 inputs are connected
to n − 1 CMs.

Sufficiency can be proved analogically to the RRNB Clos
network, using Hall’s theorem on distinct representatives. ��

5 Packet dispatching scheme for the MCNS

Within the MCNS, in each time slot, one cell may be sent
from any IM to any OM using direct connections. The CMs
are used when in I M(i) the queue of cells destined for
OM( j) increases and it is necessary to decrease the num-
ber of cells waiting for transmission. To resolve contention
problems related to matching I M(i) − OM( j) pairs, we
propose to use a central arbiter. Two types of requests may
be sent to the central arbiter: high or low priority. The high
priority request is sent only if the number of cells waiting
to be sent to OM( j) is equal or greater than kn, where the
value of k may be adjusted to particular needs. The low pri-
ority request is sent when the number of cells is equal or
greater than n and smaller than kn. It is obvious that the
high priority requests are processed by the central arbiter
before the low priority requests. To establish the sequence of
requests to be processed, the round-robin selection is used
separately among the high and low priority requests. Each
request consists of n + 1 bits, where the least significant bit
(LSB) is the priority bit, and successive bits are used to point
out the requested OMs. For example, for n = 8, the request
[000010100] means that it is the low priority request, and the
IMhasmore than n and less than kn cells waiting to be sent to
OM(2) and OM(4). Since the packet dispatching algorithm
employs module-level matching, the connection pattern in
each CM will be the same. To match IMs and OMs the cen-
tral arbiter uses a binary buffers load matrix as the main
component. The rows and columns of the matrix represent
IMs and OMs, respectively. If the value of matrix element
x[i, j] is 1, it means that I M(i) can send n cells to OM( j),
one through the direct connection and n − 1 through CMs.
The central arbiter resolves contention problems by accept-
ing the only 1 in column i and in row j . The requests that
lose the competition are rejected.

In detail, the packet dispatching algorithm works as fol-
lows:

– Step 1 (each IM) If there is any V OMQ(i, j) having at
least n cells for OM( j), the high or low priority request
is sent to the central arbiter.

– Step 2 Using round-robin selection, the central arbiter
loads the high priority requests at first, and next, the low

priority requests into the buffers load matrix. The prior-
ity bits are not loaded into thematrix, so now the LSB of
each request points out OM(1) and the most significant
bit (MSB) points out OM(n). Then, the central arbiter
goes through the matrix from the LSB to the MSB and
from the top to the bottom, and chooses the first not
masked 1 in each row. When this 1 is selected, succes-
sive bits in the row (till the MSB) and in the column
(till the bottom) are masked, and they are not consid-
ered when the rows below are examined. As a result, the
only 1 is selected in each row and each column, and it
is clear which IM–OM pairs are allowed to use CMs to
move cells. Next, the round-robin pointers for the high
and low priority requests are set to new values.

– Step 3 The central arbiter sends the matching decisions
to IMs, and the IM–OM matching patterns to CMs for
connecting path assignment.

– Step 4 (each IM) Cells are selected to be sent to OMs
through direct connections between IMs andOMs. If the
request is accepted by the central arbiter, n−1 cells are
sent through CMs according to the arbiter’s decision.

TheOMwith the lowest number, pointed out in the request
loaded into the top row of the matrix, will definitely be
granted. In the request loaded into the second row another
OM will be granted, and so on.

The proposed module matching scheme is more sophis-
ticated and produces better performance results than the
SDRUB algorithm published in [14], where only one OM
is pointed out in the request. The new module matching
algorithm was prepared, with special attention to its imple-
mentation on logic gates in an FPGA chip. Contrary to
the SDRUB scheme, in the new algorithm, it is possible
to point out all OMs to which the number of waiting cells
is higher than n. Moreover, high priority requests are used
to point out OMs for which the VOMQs are the longest,
and these requests are processed firstly. It should be also
emphasized that it is possible to redefine the high and low
priority requests, so that, e.g., the low level requests may
be sent when IM has fewer than n cells waiting for trans-
mission to OM( j). This redefinition does not influence the
operation of the central arbiter. A comparison of the average
cell delay, obtained for both algorithms under Hot-spot traf-
fic, is shown in Sect. 7. In the same chart, selected results
obtained for theMSMClos-network switch and published in
[13] are also shown. The MSM Clos-network switch inves-
tigated in [13] uses a centralized scheduler to maintain n
cell counters for each IM, one for each VOMQ. Module-
level matching is performed using the following schemes:
maximumweightmatching (MWM),APSARAorDISQUO.
Additionally, after the module-level matching phase, static
dispatching or dynamic cell dispatching schemes are used
in [13] to improve the delay performance of the module-
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level matching scheme. To reduce the wiring complexity, a
grouped dynamic cell dispatching scheme is used.

The MWM, APSARA and DISQUO algorithms adopted
the idea of bipartite graph matching algorithms to solve the
problem of module-level matching. It is well known that in
traditional input-queued (IQ) switches (crossbar switches)
the switch scheduling problem is similar to a matching prob-
lem in an N × N weighted bipartite graph. The weight of
the edge connecting input i to output j may be, e.g., queue-
lengths or the age of cells. To adopt these kinds of schemes
to theMSMClos-network switch, it is necessary to map each
IM and OM to input and output ports, respectively, whereas
each VOMQ represents a VOQ in traditional IQ switches.
The MWM algorithm finds the matching with the highest
weight out of all N ! possible matchings [21]. The complex-
ity of this algorithm adopted to module-level matching is
reduced to N 1.5, and is still high for large-scale switches.
The APSARA algorithm [17] tries to speed up the schedul-
ing process by searching in parallel for the highest weight
from reduced space matchings. For example, by swapping
any two connections from the matching used in the pre-
vious time slot, the APSARA algorithm can find a new
matching. It chooses the matching with the highest weight
among these swappedmatchings. TheDISQUO(DIStributed
QUeue input-Output) algorithmwas proposed for combined-
input-output-queued (CIOQ) switches [18]. It was adjusted
to work with IQ switches in [19]. The basic DISQUO algo-
rithm uses the Hamiltonian Walk to find a matching; next, it
compares it with the existing matching, and decides either to
release the current connection or to establish a new one. The
modified version of DISQUO uses time-division multiplex-
ing instead of the Hamiltonian Walk and a simple heuristic
matching algorithm to improve the delay performance. The

hybrid approach is called StablePlus. In [13] it is adopted to
the module-level matching scheme.

6 Hardware implementation of the module
matching algorithm

The proposed algorithm employs only mechanisms that can
be easily implemented on logic gates in an FPGA chip. The
general idea of this implementation is shown in Fig. 3.

The main component of the central arbiter is the buffers
load matrix. The implementation of this matrix in an FPGA
chip is similar to the implementation of matrices for the
controller of log2(N , 0, p) networks described in [20]. The
requests sent by IMs are reordered according to the priority
status and round-robin selection, and then they are processed
by a combinational function implemented on logic gates in
an FPGA chip. The combinational function starts to work
from the LSB of the first request in the buffers load matrix.
When the first not masked 1 in the row is found, other 1s in
this row and the related column will be masked and changed
into 0 (hatched elements of the matrix shown in Fig. 3). The
high priority requests are processed firstly. The low priority
requests are processed in the second place. In each set of
requests the processing order depends on round-robin selec-
tion. As a result, the buffers load matrix with the only 1 in
each row and column is obtained.

The operation of the buffers load matrix was tested using
the Xilinx-Kintex-7 FPGA module with -3 speed grade (the
highest performance). The experiments show that only 4 ns
and 4.8 ns is needed for a matrix of size 32×32 (N = 1024),
and 64 × 64 (N = 4096), respectively, to obtain the final
results. After this time, the decisions may be sent to IMs and
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CMs. For the speed of 10 Gb/s and 64 B of cell size the time
slot is 50 ns. These experiments show that the buffers load
matrix is not a bottleneck of this solution. Other limitations
of the scalability of the MCNS, like the number of I/O pins
and transmission speed at one pin, depend on the type of
FPGA chip available on the market. For example, the Xilinx-
Virtex-7 FPGA chip (XC7V2000T) provides 1200 I/O pins
with data rates up to 1.866 Gb/s, and 96 transceiver circuits
may be used with a speed up to 28.05 Gb/s. This number of
I/O pins is sufficient even to serve the MCNS of a very big
size, e.g., n = 128 (N = 16384). Let us evaluate the time
that is needed to collect requests from IMs. For n = 128 it is
necessary to transmit 128 sets of 129 bits as IM requests. We
may use 1024 I/O pins with the data rate of 1.866 Gb/s - 8
I/O pins for parallel transmission from each IM. Less than 10
ns is needed to collect all requests. Because the connection
pattern is the same in each CM, it is possible to send it to all
CMs simultaneously using a bus. The connection pattern is
a set of CM output port numbers (OM numbers in the binary
system) to which consecutive input ports of CM should be
connected. The first number means that the first input port of
CM should be connected to this output port of CM, e.g., if
the first number is 5, it means that the first input port should
be connected to the fifth output port. For n = 128, it will be
only 896 bits (128 × 7 bits = 896 bits). Using 128 I/O pins
with the data rate of 1.866 Gb/s for parallel transmission, we
need less than 1 ns to transfer the OM numbers to CMs.

7 Performance evaluation

The performance of the MCNS was evaluated using event-
driven computer simulation. To conduct the simulation
experiments, we have used self-developed software. The
MCNS of size 64 × 64 with n = 8, and k = 2, was tested
under uniform and non-uniform traffic distribution patterns.
In each simulation experiment, we considered a wide range
of traffic loads per input port, from p = 0.05 to p = 1,
with the step 0.05. To reach a stable state of the MCNS, we
used the starting phase comprised 50,000 time slots. The 95
confidence intervals calculated after t-student distribution for
five series with 200,000 cycles are not shown in the figures
because they are at least one order lower than the mean value
of the simulation results.

Two packet arrival models were considered in the simula-
tion experiments: the Bernoulli arrival process and the bursty
traffic model. The following traffic distribution models were
used in simulation: (1) uniform: pi j = p/N ; (2) Chang’s
traffic: pi j = 0 for i = j , and pi j = p/(N − 1) otherwise;
(3) diagonal: pi j = 2p/3 for i = j and pi j = p/3 for
j = (i + 1) mod N ; (4) Hot-spot: pi j = p/2 for i = j , and
p/2(N −1) for i �= j , where pi j is the probability that a cell
arriving at input i is directed to output j . In our simulation
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Fig. 4 Average cell delay behind the third stage of the MCNS

experiments, we used the same or similar traffic distribution
patterns as other authors, in order to compare our results with
other published results.We assume that the size of the buffers
is unlimited.

Different kinds of performance measures were evaluated,
mainly: throughput (as was defined in [21]), average cell
delay, the VOMQs and output buffers size. Selected results
obtained under 100% throughput for the average cell delay
are shown in Fig. 4. In this figure, we also show the results
obtained for uniform traffic and only one and two CMs, in
order to show that, if the input traffic is close to uniform, it
is possible to reduce the number of CMs by switching them
off, and to achieve good results. We can see that for heavy
input loads (p > 0.6), the average cell delay is almost the
same for all kinds of investigated traffic distribution patterns
and the Bernoulli arrival model. Moreover, the average cell
delay is shorter than 10 for p < 0.95 regardless of the traffic
distribution pattern. We can observe differences in average
cell delay for p < 0.6. The best results were obtained for
uniform trafficwhen only oneCMwas used.When n−1CMs
are used, cells have to wait longer for transmission through
the CMs to the OMs, and the average delay is a little longer.
Due to this mechanism, the average cell delay for diagonal
traffic increases for p < 0.2 to the value of 2, and then
is reduced to 1. For bursty traffic, the average cell delay is
longer than for the Bernoulli traffic, but it is less than 100
when p < 0.95.

In Fig. 5, the average delay of cells behind the first stage
of the MCNS is shown. The average cell delay for uniform
as well as non-uniform traffic distribution patterns is below
1 for a wide range of input loads and the greatest value of
the average cell delay is less than 2. Compared to Fig. 4,
we can state that cell delay is caused mainly by the out-
put buffers located in OMs. The module matching scheme
unloads VOMQs, and moves cells from IMs to OMs faster
than the output links can transmit cells outside the system.
This observation is confirmed in Fig. 6, where a compari-
son between the average VOMQs size and the output queues
size is shown. For heavy input loads (p > 0.75), the aver-
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obtained for the MSM Clos-network switch and MCNS using selected
matching algorithms

age size of the output queues increases and the average size
of VOMQs decreases. For the bursty traffic the average size
of the output queues is greater than the average size of the
VOMQs for the whole range of p.

Figure 7 presents a comparison of the results obtained
under Hot-spot traffic for module-level matching schemes
ML MWM DD, ML APSARA DD, and ML DISQUO DD

with grouped IM output links (gr. 2 and gr. 4), published
in [13], with the results obtained for the MCNS, SDRUB,
pure ML MWM DD, and CRRD (concurrent round-robin
dispatching) [9]. It is possible to see that the ML DISQUO
DD algorithm performs poorly, but the MCNS produces the
shortest average cell delay using a simpler packet dispatch-
ing scheme. Slightly better performance than that provided
by the MCNS for Hot-Spot traffic and input load p < 0.55
can be achieved under the ML MWM DD scheme, but for
p > 0.55, better performance is offered by the MCNS. The
MLMWMDD scheme seems to be unfeasible in real equip-
ment due to time and wiring complexity. It may be used for
reference purposes. Figure 7 also shows the results received
for the CRRD with 4 iterations. The CRRD is the basic
packet dispatching algorithm proposed for the MSM Clos-
network switch and performs well under uniform traffic.
This algorithm uses the request-grant-accept handshaking
routine, and the idea of its operation is completely differ-
ent than that of module-level matching schemes. It performs
quite well for input load lower than (p < 0.7), but for a
higher input load, the average cell delay rises very fast. This
means that theMSMClos-network switch under this scheme
can achieve only about 70% throughput for Hot-Spot traf-
fic.

8 Conclusions

In this paper, we evaluated the combinatorial properties of
the MCNS, presented a module matching packet dispatching
scheme based on central arbitration, discussed basic issues
related to hardware implementation of the central arbiter,
and showed selected simulation results. The MCNS can
efficiently handle both uniform and non-uniform traffic dis-
tribution patterns. According to our experience, the proposed
central arbitration scheme is not a bottleneck in scaling up
the MCNS to a larger switching capacity.

The matching algorithm was implemented in hardware,
using theXilings-Kintex-7 FPGA chip, to check the response
time of the central arbiter. The implementation proved that
the IM–OM matching can be completed during 4 ns and 4.8
ns for amatrix of size 32×32 (N = 1024), and 64×64 (N =
4096), respectively. The time needed to collect all requests
from IMs and distribute matching decisions to OMs is also
relatively short—about 11 ns. The obtained results encourage
us to state that the proposed solution can serve a switching
fabric of high-capacity. Moreover, the algorithm is simple in
comparison to other module-level matching schemes, based
on bipartite graphmatching algorithms and/or request-grant-
accept handshaking routine, and can be implemented using
logic gates. The simplicity of the scheme does not worsen the
algorithm performance. On the contrary, this performance, in
terms of the average cell delay, is even better than for other
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scheduling algorithms proposed for traditional MSM Clos-
network switches. The proposed algorithm is very flexible;
e.g., it is possible to send requests for any number of waiting
cells if necessary. Without any changes in the operation of
the central arbiter, we may redefine the high and low priority
requests and also switch selected CMs off and on. The latter
featuremay be very useful for green networking in the future.

TheMCNS needs more investigation concerning scalabil-
ity problems. To decrease the delay, caused by collecting n
cells to be sent using CMs when n is large, we propose to
redefine the high and lowpriority requests. For example, high
priority requests may be sent when the IM has more than n
cells to be sent to OM( j), and low priority requests—when
the IM has fewer than n but more than 1 cells. It is also
possible to employ multi-plane architectures to scale up the
MCNS, but it needs a new arbitration scheme. The next very
important problem is a control algorithm that can switchCMs
off and on, to save energy without any degradation of per-
formance for transported packets. We also plan to employ
CQ switches in the first and the third stages of the MCNS to
completely eliminate the speed-up issue.
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