9 research outputs found

    Improving the Performance of the SYND Stream Cipher

    No full text
    International audience. In 2007, Gaborit et al. proposed the stream cipher SYND as an improvement of the pseudo random number generator due to Fischer and Stern. This work shows how to improve considerably the e ciency the SYND cipher without using the so-called regular encoding and without compromising the security of the modi ed SYND stream cipher. Our proposal, called XSYND, uses a generic state transformation which is reducible to the Regular Syndrome Decoding problem (RSD), but has better computational characteristics than the regular encoding. A rst implementation shows that XSYND runs much faster than SYND for a comparative security level (being more than three times faster for a security level of 128 bits, and more than 6 times faster for 400-bit security), though it is still only half as fast as AES in counter mode. Parallel computation may yet improve the speed of our proposal, and we leave it as future research to improve the e ciency of our implementation

    Short Signatures from Regular Syndrome Decoding, Revisited

    Get PDF
    We revisit the construction of signature scheme using the MPC-in-the-head paradigm, and focus in particular on constructions from the regular syndrome decoding assumption, a well-known variant of the syndrome decoding assumption. We obtain two main contributions: – We observe that previous signatures in the MPC-in-the-head paradigm must rely on a salted version of the GGM puncturable pseudorandom function (PPRF) to avoid collision attacks. We design a new efficient PPRF construction provably secure in the multi-instance setting. The security analysis of our PPRF, in the ideal cipher model, is quite involved and forms a core technical contribution of our work. While previous constructions had to rely on a hash function, our construction uses only a fixed-key block cipher and is considerably more efficient as a result. Our improved PPRF can be used to speed up many MPC-in-the-head signatures, and illustrate it on two signatures: the recent SDitH (submitted to the NIST), and a new signature scheme that we introduce. – We introduce a new signature scheme from the regular syndrome decoding assumption, based on a new protocol for the MPC-in-the-head paradigm, which significantly reduces communication compared to previous works. Our scheme is conceptually simple, though its security analysis requires a delicate and nontrivial combinatorial analysis

    Short Signatures from Regular Syndrome Decoding in the Head

    Get PDF
    We introduce a new candidate post-quantum digital signature scheme from the regular syndrome decoding (RSD) assumption, an established variant of the syndrome decoding assumption which asserts that it is hard to find ww-regular solutions to systems of linear equations over F2\mathbb{F}_2 (a vector is regular if it is a concatenation of ww unit vectors). Our signature is obtained by introducing and compiling a new 5-round zero-knowledge proof system constructed using the MPC-in-the-head paradigm. At the heart of our result is an efficient MPC protocol in the preprocessing model that checks the correctness of a regular syndrome decoding instance by using a share ring-conversion mechanism. The analysis of our construction is non-trivial and forms a core technical contribution of our work. It requires careful combinatorial analysis and combines several new ideas, such as analyzing soundness in a relaxed setting where a cheating prover is allowed to use any witness sufficiently close to a regular vector. We complement our analysis with an in-depth overview of existing attacks against RSD. Our signatures are competitive with the best-known code-based signatures, ranging from 12.5212.52 KB (fast setting, with a signing time of the order of a few milliseconds on a single core of a standard laptop) to about 99 KB (short setting, with estimated signing time of the order of 15ms)

    Cryptographic Hash Functions in Groups and Provable Properties

    Get PDF
    We consider several "provably secure" hash functions that compute simple sums in a well chosen group (G,*). Security properties of such functions provably translate in a natural way to computational problems in G that are simple to define and possibly also hard to solve. Given k disjoint lists Li of group elements, the k-sum problem asks for gi ∊ Li such that g1 * g2 *...* gk = 1G. Hardness of the problem in the respective groups follows from some "standard" assumptions used in public-key cryptology such as hardness of integer factoring, discrete logarithms, lattice reduction and syndrome decoding. We point out evidence that the k-sum problem may even be harder than the above problems. Two hash functions based on the group k-sum problem, SWIFFTX and FSB, were submitted to NIST as candidates for the future SHA-3 standard. Both submissions were supported by some sort of a security proof. We show that the assessment of security levels provided in the proposals is not related to the proofs included. The main claims on security are supported exclusively by considerations about available attacks. By introducing "second-order" bounds on bounds on security, we expose the limits of such an approach to provable security. A problem with the way security is quantified does not necessarily mean a problem with security itself. Although FSB does have a history of failures, recent versions of the two above functions have resisted cryptanalytic efforts well. This evidence, as well as the several connections to more standard problems, suggests that the k-sum problem in some groups may be considered hard on its own, and possibly lead to provable bounds on security. Complexity of the non-trivial tree algorithm is becoming a standard tool for measuring the associated hardness. We propose modifications to the multiplicative Very Smooth Hash and derive security from multiplicative k-sums in contrast to the original reductions that related to factoring or discrete logarithms. Although the original reductions remain valid, we measure security in a new, more aggressive way. This allows us to relax the parameters and hash faster. We obtain a function that is only three times slower compared to SHA-256 and is estimated to offer at least equivalent collision resistance. The speed can be doubled by the use of a special modulus, such a modified function is supported exclusively by the hardness of multiplicative k-sums modulo a power of two. Our efforts culminate in a new multiplicative k-sum function in finite fields that further generalizes the design of Very Smooth Hash. In contrast to the previous variants, the memory requirements of the new function are negligible. The fastest instance of the function expected to offer 128-bit collision resistance runs at 24 cycles per byte on an Intel Core i7 processor and approaches the 17.4 figure of SHA-256. The new functions proposed in this thesis do not provably achieve a usual security property such as preimage or collision resistance from a well-established assumption. They do however enjoy unconditional provable separation of inputs that collide. Changes in input that are small with respect to a well defined measure never lead to identical output in the compression function

    Integrated-Key Cryptographic Hash Functions

    Get PDF
    Cryptographic hash functions have always played a major role in most cryptographic applications. Traditionally, hash functions were designed in the keyless setting, where a hash function accepts a variable-length message and returns a fixed-length fingerprint. Unfortunately, over the years, significant weaknesses were reported on instances of some popular ``keyless" hash functions. This has motivated the research community to start considering the dedicated-key setting, where a hash function is publicly keyed. In this approach, families of hash functions are constructed such that the individual members are indexed by different publicly-known keys. This has, evidently, also allowed for more rigorous security arguments. However, it turns out that converting an existing keyless hash function into a dedicated-key one is usually non-trivial since the underlying keyless compression function of the keyless hash function does not normally accommodate the extra key input. In this thesis we define and formalise a flexible approach to solve this problem. Hash functions adopting our approach are said to be constructed in the integrated-key setting, where keyless hash functions are seamlessly and transparently transformed into keyed variants by introducing an extra component accompanying the (still keyless) compression function to handle the key input separately outside the compression function. We also propose several integrated-key constructions and prove that they are collision resistant, pre-image resistant, 2nd pre-image resistant, indifferentiable from Random Oracle (RO), indistinguishable from Pseudorandom Functions (PRFs) and Unforgeable when instantiated as Message Authentication Codes (MACs) in the private key setting. We further prove that hash functions constructed in the integrated-key setting are indistinguishable from their variants in the conventional dedicated-key setting, which implies that proofs from the dedicated-key setting can be naturally reduced to the integrated-key setting.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Really fast syndrome-based hashing

    No full text
    The FSB (fast syndrome-based) hash function was submitted to the SHA-3 competition by Augot, Finiasz, Gaborit, Manuel, and Sendrier in 2008, after preliminary designs proposed in 2003, 2005, and 2007. Many FSB parameter choices were broken by Coron and Joux in 2004, Saarinen in 2007, and Fouque and Leurent in 2008, but the basic FSB idea appears to be secure, and the FSB submission remains unbroken. On the other hand, the FSB submission is also quite slow, and was not selected for the second round of the competition. This paper introduces RFSB, an enhancement to FSB. In particular, this paper introduces the RFSB-509 compression function, RFSB with a particular set of parameters. RFSB-509, like the FSB-256 compression function, is designed to be used inside a 256-bit collision-resistant hash function: all known attack strategies cost more than 2128 to find collisions in RFSB-509. However, RFSB-509 is an order of magnitude faster than FSB-256. On a single core of a Core 2 Quad CPU, RFSB-509 runs at 13.62 cycles/byte: faster than SHA-256, faster than 6 of the 14 secondround SHA-3 candidates, and faster than 2 of the 5 SHA-3 finalists

    Really fast syndrome-based hashing

    Get PDF
    Abstract. The FSB (fast syndrome-based) hash function was submitted to the SHA-3 competition by Augot, Finiasz, Gaborit, Manuel, and Sendrier in 2008, after preliminary designs proposed in 2003, 2005, and 2007. Many FSB parameter choices were broken by Coron and Joux in 2004, Saarinen in 2007, and Fouque and Leurent in 2008, but the basic FSB idea appears to be secure, and the FSB submission remains unbroken. On the other hand, the FSB submission is also quite slow, and was not selected for the second round of the competition. This paper introduces RFSB, an enhancement to FSB. In particular, this paper introduces the RFSB-509 compression function, RFSB with a particular set of parameters. RFSB-509, like the FSB-256 compression function, is designed to be used inside a 256-bit collision-resistant hash function: all known attack strategies cost more than 2 128 to find collisions in RFSB-509. However, RFSB-509 is an order of magnitude faster than FSB-256. On a single core of a Core 2 Quad Q9550 CPU, RFSB-509 runs at 10.67 cycles/byte: faster than SHA-256, faster than 7 of the 14 secondround SHA-3 candidates, and faster than 3 of the 5 SHA-3 finalists. Key words: compression functions, collision resistance, linearization, generalized birthday attacks, information-set decoding, tight reduction to L1 cache.

    Really fast syndrome-based hashing

    No full text
    The FSB (fast syndrome-based) hash function was submitted to the SHA-3 competition by Augot, Finiasz, Gaborit, Manuel, and Sendrier in 2008, after preliminary designs proposed in 2003, 2005, and 2007. Many FSB parameter choices were broken by Coron and Joux in 2004, Saarinen in 2007, and Fouque and Leurent in 2008, but the basic FSB idea appears to be secure, and the FSB submission remains unbroken. On the other hand, the FSB submission is also quite slow, and was not selected for the second round of the competition. This paper introduces RFSB, an enhancement to FSB. In particular, this paper introduces the RFSB-509 compression function, RFSB with a particular set of parameters. RFSB-509, like the FSB-256 compression function, is designed to be used inside a 256-bit collision-resistant hash function: all known attack strategies cost more than 2^128 to find collisions in RFSB-509. However, RFSB-509 is an order of magnitude faster than FSB-256. On a single core of a Core 2 Quad CPU, RFSB-509 runs at 13.62 cycles/byte: faster than SHA-256, faster than 6 of the 14 secondround SHA-3 candidates, and faster than 2 of the 5 SHA-3 finalists

    Really fast syndrome-based hashing

    No full text
    The FSB (fast syndrome-based) hash function was submitted to the SHA-3 competition by Augot, Finiasz, Gaborit, Manuel, and Sendrier in 2008, after preliminary designs proposed in 2003, 2005, and 2007. Many FSB parameter choices were broken by Coron and Joux in 2004, Saarinen in 2007, and Fouque and Leurent in 2008, but the basic FSB idea appears to be secure, and the FSB submission remains unbroken. On the other hand, the FSB submission is also quite slow, and was not selected for the second round of the competition. This paper introduces RFSB, an enhancement to FSB. In particular, this paper introduces the RFSB-509 compression function, RFSB with a particular set of parameters. RFSB-509, like the FSB-256 compression function, is designed to be used inside a 256-bit collision-resistant hash function: all known attack strategies cost more than 2128 to find collisions in RFSB-509. However, RFSB-509 is an order of magnitude faster than FSB-256. On a single core of a Core 2 Quad CPU, RFSB-509 runs at 13.62 cycles/byte: faster than SHA-256, faster than 6 of the 14 secondround SHA-3 candidates, and faster than 2 of the 5 SHA-3 finalists
    corecore