
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J.-P. Hubaux, président du jury
Prof. A. Lenstra, directeur de thèse

Prof. A. May, rapporteur
Dr M. Stam, rapporteur

Prof. S. Vaudenay, rapporteur

Cryptographic Hash Functions in Groups and Provable
Properties

THÈSE NO 5250 (2011)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 16 DÉCEMBRE 2011

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE CRYPTOLOGIE ALGORITHMIQUE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2011

PAR

Juraj Šarinay

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147975164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Svetlane

Résumé

Nous considérons plusieurs fonctions de hachage “prouvablement sûres” cal-
culant de simples sommes dans un groupe bien choisi (G, ∗). Les propriétés
de sécurité de telles fonctions se traduisent prouvablement et de manière
naturelle en des problèmes calculatoires sur G, qui sont simples à définir
et également potentiellement difficiles à résoudre. Étant donnés k listes dis-
jointes Li d’éléments du groupe, le problème de la k-somme consiste à trou-
ver un gi ∈ Li tel que g1 ∗ g2 ∗ . . . ∗ gk = 1G. La difficulté de ce problème
dans divers groupes respectifs découle de certaines suppositions “standard”
en cryptologie à clef publique, telles que la difficulté de la factorisation des
entiers, du logarithme discret, de la réduction de réseaux, ou du décodage
par syndrome. Nous exposons des indices montrant que le problème de la
k-somme puisse être encore plus difficile que ceux susmentionnés.

Deux fonctions de hachage basées sur le problème de la k-somme, FSB et
SWIFFTX, ont été soumises au NIST comme candidates pour le futur stan-
dard SHA-3. Les deux candidatures étaient appuyées par une quelconque
preuve de sécurité. Nous montrons que l’estimation des niveaux de sécurité
dans ces candidatures est sans rapport avec les preuves fournies. Les reven-
dications en matière de sécurité ne sont soutenues que par des considérations
sur des attaques existantes. En introduisant des bornes de “second ordre“
sur les bornes de sécurité, nous montrons les limites d’une telle approche de
la sécurité prouvable.

Un problème dans la manière de quantifier la sécurité n’implique pas
nécessairement un problème avec la sécurité elle-même. Bien que FSB trâıne
une histoire d’échecs, des versions récentes des deux fonctions susmentionnées
se sont montrées bien résistantes aux efforts de cryptanalyse. Ceci, ainsi que
les multiples connexions avec d’autres problèmes standard, indiquent que
le problème de la k-somme dans certains groupes pourrait être considéré
comme difficile en lui-même, et peut-être conduire à des bornes de sécurité
prouvables. La complexité de l’algorithme de l’arbre non-trivial est en train

v

vi

de devenir un outil standard pour en mesurer la difficulté associée.
Nous proposons des modifications du Very Smooth Hash multiplica-

tif, et dérivons la sécurité des k-sommes multiplicatives, contrairement aux
réductions originales apparentées à la factorisation ou au logarithme dis-
cret. Bien que les réductions originales demeurent valides, nous mesurons la
sécurité d’une manière nouvelle et plus agressive. Ceci nous permet d’assou-
plir les paramètres et de hacher plus vite. Nous obtenons une fonction qui
n’est que trois fois plus lente que SHA-256, et que nous estimons offrir au
moins une résistance équivalente aux collisions. La vitesse peut être doublée
par l’usage d’un module spécial, la sécurité de la fonction modifiée est jus-
tifiée uniquement par la difficulté des k-sommes multiplicatives modulo une
puissance de deux.

Nos efforts culminent en une nouvelle fonction de k-sommes multiplica-
tives, qui généralise encore plus loin le design de Very Smooth Hash. Contrai-
rement aux variantes antérieures, la consommation mémoire de la nouvelle
fonction est négligeable. L’instance la plus rapide de la fonction est sup-
posée offrir une résistance à la collision sur 128 bits en 24 cycles par byte
sur un processeur Intel Core i7, et s’approche de la valeur de 17.4 offerte par
SHA-256.

Les nouvelles fonctions proposées dans cette thèse n’atteignent pas de
propriétés de sécurité habituelles telles la résistance à la pré-image ou à
la collision, prouvables à partir d’une supposition largement établie. Elles
bénéficient cependant d’une séparation inconditionnelle et prouvable des
entrées en collision. Des changements dans l’entrée, de petite taille par rap-
port à une mesure bien définie, sont garantis de ne jamais produire le même
résultat à travers la fonction de compression.

Mots-clés : cryptographie, fonctions de hachage, sécurité prouvable, pro-
blème des anniversaires généralisé, cryptosystèmes du sac à dos

Abstract

We consider several “provably secure” hash functions that compute sim-
ple sums in a well chosen group (G, ∗). Security properties of such func-
tions provably translate in a natural way to computational problems in G
that are simple to define and possibly also hard to solve. Given k disjoint
lists Li of group elements, the k-sum problem asks for gi ∈ Li such that
g1 ∗ g2 ∗ . . . ∗ gk = 1G. Hardness of the problem in the respective groups fol-
lows from some “standard” assumptions used in public-key cryptology such
as hardness of integer factoring, discrete logarithms, lattice reduction and
syndrome decoding. We point out evidence that the k-sum problem may
even be harder than the above problems.

Two hash functions based on the group k-sum problem, SWIFFTX and
FSB, were submitted to NIST as candidates for the future SHA-3 standard.
Both submissions were supported by some sort of a security proof. We show
that the assessment of security levels provided in the proposals is not related
to the proofs included. The main claims on security are supported exclusively
by considerations about available attacks. By introducing “second-order”
bounds on bounds on security, we expose the limits of such an approach to
provable security.

A problem with the way security is quantified does not necessarily mean
a problem with security itself. Although FSB does have a history of failures,
recent versions of the two above functions have resisted cryptanalytic efforts
well. This evidence, as well as the several connections to more standard
problems, suggests that the k-sum problem in some groups may be con-
sidered hard on its own and possibly lead to provable bounds on security.
Complexity of the non-trivial tree algorithm is becoming a standard tool for
measuring the associated hardness.

We propose modifications to the multiplicative Very Smooth Hash and
derive security from multiplicative k-sums in contrast to the original reduc-
tions that related to factoring or discrete logarithms. Although the original

vii

viii

reductions remain valid, we measure security in a new, more aggressive way.
This allows us to relax the parameters and hash faster. We obtain a function
that is only three times slower compared to SHA-256 and is estimated to of-
fer at least equivalent collision resistance. The speed can be doubled by the
use of a special modulus, such a modified function is supported exclusively
by the hardness of multiplicative k-sums modulo a power of two.

Our efforts culminate in a new multiplicative k-sum function in finite
fields that further generalizes the design of Very Smooth Hash. In contrast
to the previous variants, the memory requirements of the new function are
negligible. The fastest instance of the function expected to offer 128-bit
collision resistance runs at 24 cycles per byte on an Intel Core i7 processor
and approaches the 17.4 figure of SHA-256.

The new functions proposed in this thesis do not provably achieve a
usual security property such as preimage or collision resistance from a well-
established assumption. They do however enjoy unconditional provable sep-
aration of inputs that collide. Changes in input that are small with respect
to a well defined measure never lead to identical output in the compression
function.

Keywords: cryptography, hash functions, provable security, generalized
birthday problem, knapsack cryptosystems

Acknowledgements

First and foremost I wish to thank Arjen Lenstra for the supervision during
the four years I spent working in his laboratory. Thank you for all the
invaluable advice and support, for the freedom and for the ideal working
conditions I found here. It was the most pleasant experience imaginable.

I appreciate the many insightful comments on this thesis provided by the
members of the jury. Thank you very much for all the work involved.

Several people provided me with useful feedback at various stages of my
research. Special thanks in particular to Joppe Bos, Scott Contini, Dimitar
Jetchev, Thorsten Kleinjung, Onur Özen, Kenny Paterson, Martijn Stam
and Ron Steinfeld.

I would like to thank all my friends and colleagues from LACAL and
beyond for the help I received during my stay and for the usual pleasant
atmosphere I especially enjoyed at EPFL. I am happy to have worked in
this community. I appreciate the help Maxime Augier provided with the
French text within this thesis. Many thanks to Monique Amhof for all the
administrative work as well as for the help in matters unrelated to EPFL.

I am grateful to my family for the continuous support and encourage-
ment. This thesis is dedicated to my wife. I would not have succeeded
without you.

This work was supported by a grant of the Swiss National Science Founda-
tion number 200021-116712.

ix

Contents

1 Introduction 1

1.1 Hash Functions and Applications 1

1.2 Classical Hash Functions . 2

1.3 The Future Standard . 3

1.4 Hash Functions and Provable Security 3

1.5 Outline of the Thesis . 4

2 Hash Function Basics 5

2.1 Definitions . 5

2.1.1 Random Oracle Methodology 5

2.1.2 Hash Function Security Properties 6

2.1.3 Modeling cost . 7

2.1.4 Examples . 10

2.2 Towards Proofs of Security 11

2.3 Generic Attacks . 12

2.4 MQ-HASH - An Example . 12

2.5 Domain Extenders . 15

3 Hard Computational Problems 17

3.1 Integer Factorization . 17

3.1.1 Algorithms . 18

3.1.2 Related Problems . 19

3.1.3 Related Cryptosystems 20

3.2 Discrete Logarithm . 20

3.2.1 Algorithms . 20

3.2.2 Related Cryptosystems 22

3.3 Integer Lattices . 22

3.3.1 Lower Bounds . 22

3.3.2 Algorithms . 23

xi

xii CONTENTS

3.3.3 Related Problems . 23
3.3.4 Related Cryptosystems 23

3.4 Subset Sum . 23
3.4.1 Related Problems . 24
3.4.2 Algorithms . 24
3.4.3 Related Cryptosystems 25

3.5 Syndrome Decoding . 25
3.5.1 Algorithms . 26
3.5.2 Related Cryptosystems 26

3.6 Generalized Birthday Problem 26
3.6.1 Algorithms . 27
3.6.2 Lower Bounds . 31

4 Early Hash Functions in Groups 33
4.1 Matrix Multiplication by Bosset 34

4.1.1 Cryptanalysis . 35
4.2 Two Schemes by Godlewski and Camion 36

4.2.1 Integer Addition . 36
4.2.2 Error Correcting Codes 36
4.2.3 Cryptanalysis . 37

4.3 Matrix Multiplication by Tillich and Zémor 38
4.3.1 Cryptanalysis . 40

4.4 Group Subset Sums by Impagliazzo and Naor 40
4.5 Integer Addition by Damg̊ard 41

4.5.1 Cryptanalysis . 41
4.6 Vector Addition by Goldreich et al. 42
4.7 Fast Syndrome Based Hash 43

4.7.1 Security . 43
4.7.2 Cryptanalysis . 44

4.8 Incremental Functions by Bellare and Micciancio 45
4.8.1 Cryptanalysis . 46

5 Knapsacks Revisited 47
5.1 New Variants of FSB . 47

5.1.1 SHA-3 Candidate . 48
5.1.2 Really Fast Syndrome Based Hash 51

5.2 Hash Functions from Expander Graphs 51
5.2.1 Provable Security . 52
5.2.2 Cryptanalysis . 53

5.3 Generalized Compact Knapsacks 53

CONTENTS xiii

5.3.1 SWIFFT . 53
5.3.2 SHA-3 Candidate . 56

5.4 Very Smooth Hash . 57
5.4.1 Basic VSH . 57
5.4.2 Discrete Logarithm Variant 62
5.4.3 Preimage Resistance 64
5.4.4 The Role of Small Primes 64
5.4.5 Extensions to Other Groups 65

6 New VSH Variants 67
6.1 A Variant Without Modular Squaring 67

6.1.1 The Extended Tree Algorithm 69
6.1.2 Security of Faster VSH 72

6.2 A Variant Without Modular Reduction 73
6.3 Experimental Results . 74

6.3.1 Implementation . 75
6.3.2 Speed Measurements 76

6.4 Separation of Colliding Inputs 78
6.5 Summary . 79

7 Field Smooth Hash 81
7.1 Chor-Rivest Cryptosystem . 81

7.1.1 Cryptanalysis . 83
7.2 Powerline System . 83
7.3 A New Compression Function 85
7.4 Security . 87
7.5 Choosing the Base Field . 88
7.6 Implementation . 90

7.6.1 From Bits to Field Elements 90
7.6.2 The FSH Iteration . 91
7.6.3 Field Arithmetic . 91

7.7 Experimental results . 92
7.7.1 Binary Fields . 93
7.7.2 Prime Fields . 93

7.8 Summary . 93

Conclusions 97

List of Figures

3.1 The 4-tree Algorithm . 28
3.2 The k-tree Algorithm . 30

6.1 Relative Security of k-sum Functions 72

xv

List of Tables

4.1 FSB and the Tree Algorithm 44

5.1 FSB Parameters for SHA-3 48
5.2 Cost of Decoding Problems for FSB 49
5.3 Original VSH Variants and Security Levels 61

6.1 Security Estimates for Variants of Faster VSH 73
6.2 Faster VSH Variants . 77
6.3 Smoother VSH Variants . 77
6.4 Minimum Distance of Collisions in New VSH Variants 79

7.1 Available Extensions of Binary Fields 89
7.2 Available Extensions of Fields Modulo Special Primes 90
7.3 Variants of FSH in Binary Fields 94
7.4 Variants of FSH in Prime Fields for General q 94
7.5 Variants of FSH in Prime Fields for Special q 95

xvii

Chapter 1

Introduction

Over the past few decades, modern cryptology has become a standard se-
curity tool in the evolving digital world. It is no longer a secret military
technology or an exotic academic discipline. Though often silent and invis-
ible, cryptographic methods protect out physical and intellectual property,
money and a fair share of our on-line communication. Cryptography has
evolved into a broad field that can be applied in a variety of scenarios.

A cryptographic protocol is a method designed to achieve security in
a well defined “high-level” communication scenario, such as electronic mail,
payments or voting. Protocols normally correspond to our ordinary human
needs. This thesis is devoted to cryptographic hash functions. Such objects,
whatever they are, have little direct connection with everyday life. This
chapter summarizes the current state of the art and provides motivation for
our research.

1.1 Hash Functions and Applications

Cryptographic hash functions are one of the most basic building blocks
of cryptographic schemes and protocols. Informally, such a function trans-
forms any input message m to a short fixed-size digest H(m) such that the
following three properties are satisfied:

• Given a digest y, it is hard to compute a message m such that H(m) =
y.

• Given a message m, it is hard to compute another message m′ 6= m
such that H(m) = H(m′).

1

2 CHAPTER 1. INTRODUCTION

• It is hard to find two messages m 6= m′ such that H(m) = H(m′).

Let us mention two “standard” and widespread applications of cryptographic
hash functions.

Password Authentication Virtually all computer systems use passwords
to authenticate users. A computer user selects his very own secret string and
shares it with the system administrator. The secret needs to be reproduced
for a login attempt to be successful. Computer systems typically do not
store the actual passwords, but keep a list of digests instead. On a login
attempt, the password provided is hashed and the result is compared to the
stored value. An attacker who obtains the list of hash values does not learn
the passwords and does not gain the ability to impersonate users.

Digital Signatures Public key cryptography provides methods to sign
digital messages to prove their authenticity. A valid signature should con-
vince the recipient that the message as it was received originates from a par-
ticular source. It is standard practice that messages are hashed first and
only the digest is signed. This has several advantages. The size of a signa-
ture is independent of the size of the message itself even though all the data
is signed. Because real-world signing algorithms are typically much slower
than hash functions, the approach allows messages to be signed faster.

1.2 Classical Hash Functions

About a decade ago, the functions MD5 and SHA-1 dominated the world
of cryptographic hashing as far as deployment is concerned. The former is
due to Rivest [115]. The SHA family of functions, similar in design, was
established as a standard by NIST [99]. A superficial look at the internal
design of the functions reveals dozens of rounds performing a varied mix
of simple operations on binary words and magic constants. An attacker is
likely to be lost in the web of computations performed on message pieces.
The functions are complex in design.

This is one of the features that kept them secure. Security was assessed
exclusively by means of attacks. Both functions fared reasonably well in this
respect and suffered a few non-critical drops in security. The breakthrough
results of Wang et al. led to powerful attacks on both the functions [149, 148].

As a result of the developments, collisions in MD5 can now be computed
almost instantly on an ordinary workstation. Stevens et al. used optimized

1.3. THE FUTURE STANDARD 3

collision-finding methods to create a rogue Certificate Authority [137]. Such
an attack, had it been executed by a team with malicious intent, could have
severely compromised then-existing security infrastructure of the Internet.

As of October 2011, an actual pair of colliding inputs to SHA-1 is yet
to appear, the complexity of collision search is estimated to be roughly 260

steps.

1.3 The Future Standard

The SHA family includes more recent functions1 that appear to be secure for
the time being. Because they are built on similar principles as SHA-1, NIST
had identified the need to establish a new standard to be called SHA-3. It
will be selected in a public competition that opened in late 2008 and is now
underway [100]. Over sixty proposals were originally submitted. The process
is now in its third and final round with five finalists. The winner shall be
announced in 2012. Two now eliminated submissions to the competition are
included in this thesis.

1.4 Hash Functions and Provable Security

The cryptanalytic results by Wang motivated more research in the area of
hashing and the efforts have not been limited to the competition run by
NIST. The wide-spread functions such as MD5 are sometimes called ad-hoc
or dedicated hash functions, they are built directly from scratch without
using an established lower-level cryptographic primitive or method.

“Provable security” is a principle that governs cryptographic design in
order to identify, define and finally prove security properties. It promotes
the use of established simple primitives to build more sophisticated construc-
tions. If the simple primitive is known or believed to be secure, it can be
used to show security of the higher-level construction. It appears to be im-
possible to prove security of all cryptographic primitives from the security
of other cryptographic primitives without making some assumptions. One
has to start somewhere and lay out the foundations first.

Hash Functions from Block Ciphers A natural ingredient to look at is
a block cipher, a symmetric primitive designed for encrypting data in blocks

1SHA-2

4 CHAPTER 1. INTRODUCTION

under a single (secret) key. Hash functions based on block ciphers are stud-
ied extensively and often enjoy well established provable security properties
[113, 25, 133]. Secure block ciphers lead to secure hash functions. The
arguments why the modern block ciphers are fit for this purpose may be
considered reminiscent of the arguments why the SHA family was thought
to be secure only a few years ago. On the positive side, the approach benefits
from the speed of block ciphers and delivers functions able to meet the usual
requirements on performance. Hash function design is simplified consider-
ably by outsourcing some of the design effort. One ends up with a simple
hash function secure under a rather complex assumption.

Hash Functions and Public-Key Cryptology Public-key cryptology
is a fascinating branch of cryptology that builds encryption and signature
schemes from assumptions on hard problems formulated as simple mathe-
matical statements. It was known since the beginning of modern cryptology
that the very same problems can be used to build hash functions. These
were unfortunately terribly slow in comparison to dedicated functions and
were mainly of academic interest. The fall of MD5 and SHA has brought
motivation to re-consider them. This thesis is devoted to hash functions
from assumption related to public-key schemes. We shall argue such func-
tions are worth looking at, for they are reasonably fast, simple in design and
often can be proved secure under a simple assumption.

1.5 Outline of the Thesis

Chapter 2 provides the basic definitions of hash functions and our expecta-
tions on security. A selection of more or less common computational prob-
lems useful in public-key cryptology appears in Chapter 3 along with the
perceived hardness and their applications. We also sketch the relevant al-
gorithms for solving the problems. Chapters 4 and 5 survey several existing
functions with surprisingly similar structure and stress their common fea-
tures. This systematic study provides context and justification for main
contributions of this thesis in the final two chapters. There we propose new
families of hash functions that operate in multiplicative finite groups. Our
designs achieve performance comparable to the current standards and their
security is related to a computational problem that has been around for
decades.

Chapter 2

Hash Function Basics

This chapter is devoted to definitions of the basic properties and security of
cryptographic hash functions. There appears to be no single ideal way to
do so. Design goals, security definitions and expectations evolve. Proposals
of the functions considered in this thesis stretch over a time span no shorter
than 30 years. In order to be able to interpret all the variety within a single
coherent picture, we will develop a general approach to security assessment.
Parts of this chapter were published in the article Interpreting Hash Function
Security Proofs [122].

2.1 Definitions

A hash function is a mapping of the form

H : {0, 1}∗ → {0, 1}n

for an integer n. Such a function takes an arbitrary string of bits as input and
produces a string of bits of fixed length n. If the domain of H is restricted
to {0, 1}l for an integer l > n, then H is called a compression function.

We require H to be efficiently computable. We shall look for properties
that can make such functions useful in the cryptographic context.

2.1.1 Random Oracle Methodology

Protocol designers may use a hash function as a real-life replacement of
a fixed-length random oracle. Such an oracle can be queried with any string
from {0, 1}∗ and outputs n random bits. Outputs for different queries are in-
dependent, but whenever a query is repeated the value returned is the same.

5

6 CHAPTER 2. HASH FUNCTION BASICS

If a protocol is proved secure provided access to a true random oracle, it may
be considered secure if the oracle is replaced by a hash function computa-
tion in reality. The paradigm was suggested by Bellare and Rogaway [18] as
a justification for the use of hash functions in protocol design. Canetti et al.
later showed that one can craft schemes and prove them secure if a random
oracle is used, yet the schemes are insecure with any real-world replacement
thereof [32]. Bellare et al. also exposed a scheme that becomes insecure if
random oracles are replaced by a real implementation [16]. The random or-
acle methodology was defended by Koblitz and Menezes who described the
counterexamples as contrived [75]. If we stick to the methodology, we need
a reasonable real-world instantiation of the oracle. Bellare and Rogaway pro-
posed schemes that used then available hash functions MD5 and SHA. The
limitations of such constructions were shown by Leurent and Nguyen [82].
Following the attacks on the hash functions, we may want to update the
arguments and use current improved successors of MD5 and SHA that are
better suited as replacements of random oracles. A reasonable successor has
not been established yet. We may decide not to follow the random oracle
methodology and build cryptographic schemes on objects that are, hopefully,
easier to obtain.

2.1.2 Hash Function Security Properties

The “standard” security properties are the three we listed in Section 1.1,
called preimage resistance, second preimage resistance and collision resis-
tance, respectively [89].

Rogaway and Shrimpton studied several formal definitions of these prop-
erties and their relationship [118]. We adapt the formalism to better suit
our needs. In particular, we separate the task of the adversary from the cost
involved.

The goal is to find a single fixed hash function H for a particular length
of interest n. For technical reasons it may be more appropriate to work
with larger families of functions and then select H as a single member of the
family. Many constructions, in particular within this thesis, do inherently
come with parameters that can be varied. Consider H to be a member of
a family of functions HK for a set K. An element of K shall be called a key,
every K ∈ K corresponds to a single function HK . When a single function
H is selected from the family HK, the particular choice of K is made public.
This generalization includes unkeyed functions, simply consider |K| = 1.

Let HK be a family of hash or compression functions. Consider adver-
saries facing one of the following tasks:

2.1. DEFINITIONS 7

Preimage search Given a random key K ∈ K and a random element y
from the range of HK find m such that HK(m) = y.

Second Preimage search Given a random key K ∈ K and a random mes-
sage m find m′ 6= m such that HK(m) = HK(m′).

Collision search Given a random key K ∈ K find two messages m and m′

such that m 6= m′ and HK(m) = HK(m′).

For a family HK to be considered “secure” we expect the above problems
to be hard. In other words, there shall be no adversary that would have an
easy job with one of the three tasks. To be able to reason about hardness,
we need a way to assign cost to adversaries. There are several ways to do
so. For the moment we shall work with a general abstract framework that
stresses our main requirement on a cost, that is the ability to compare.

2.1.3 Modeling cost

Let a hash function family HK be fixed. Let levels of computational cost be
represented by elements of a non-empty set S. The precise nature of S will
vary between families of functions. In order to allow different approaches
to cost, we only require S to be a partially ordered set, i.e. equipped with
a reflexive, antisymmetric and transitive relation ’≤’. While it might appear
natural to require the ordering on S to be linear as well, it is not necessary
for our purposes. This extra freedom may even be desirable. Let the set S
contain a least element s0 and a greatest element s∞.

So far we can compare cost levels. Our second expectation is the ability
to scale by a positive constant. Allow multiplication of s ∈ S by a positive
real number c such that s ≤ cs for c ≥ 1. We require c(ds) = (cd)s and that
s ≤ t implies cs ≤ ct for constant c, d. Multiplication of cost levels then also
satisfies 1s = s for all s ∈ S, i.e. it is an action of the multiplicative group
R∗+ on S.

Cost functions

Let HK be a fixed family of hash functions, define APre to be the set of
all probabilistic algorithms that read the description of a preimage search
problem and possibly output a solution. Define the sets ASec and ACol

to represent adversaries solving the second preimage and collision search
problems, respectively. Define a cost function c : APre∪ASec∪ACol → S that
assigns cost to adversaries. Although adversaries as well as the corresponding

8 CHAPTER 2. HASH FUNCTION BASICS

challenges are in general probabilistic, we require the cost of an adversary
A to be represented by a single object c(A) = s ∈ S. This is only a matter of
notation, the abstract nature of cost permits s itself to be a random variable
or a more sophisticated object.

Our approach to cost is very general. For example, the set S can only
contain a single element s, i.e. there is only a single level of cost. In such
a case all multiplication by a positive constant collapses to the identity map-
ping, cs = s for all c > 0. All attacks in this setting cost the same.

As the other extreme, the cost of any two algorithms can be incompa-
rable. This happens if c is an injective mapping into a subset of isolated
points of S. Multiplication can be defined such that cs 6= s for c 6= 1, yet no
multiple of c(A) can be compared to any multiple of c(B) for A 6= B.

We propose a lazy approach to defining S, c and in particular the ordering
≤. Only define the elements and relations when needed. The use of scaling
allows this to be done in a cautious way. Given two levels s, t ∈ S, we may
suspect the two are close to each other, yet be unable to determine whether
s ≤ t or t ≤ s. It is possible to have e.g. s ≤ 100t and t ≤ 100s independent
of the relationship of s vs t.

To Attack or to Prove? Intuitively, security of a scheme would be equal
to the cost of the most efficient attack imaginable. There are two principal
ways to approach such a quantity. One can certainly imagine attacks one
at a time and relax the security claims when a faster attack is discovered.
Essentially, a scheme is presumed secure until proven otherwise.

On the other hand, the provable security approach tries to deal with all
the attacks at once and provide an argument why no attack can succeed.

The two approaches should be viewed as complementary rather than
opposing. We shall consider security to be an a priori unknown estimate on
the cost of attacks.

Bound Types

Let A represent either of APre, ASec or ACol. Define the following two main
types of bounds on security:

• p ∈ S is a type L bound if for every adversary A ∈ A the cost c(A) is
greater than or equal to p.

• q ∈ S is a type U bound if every type L bound p ∈ S is less than or
equal to q.

2.1. DEFINITIONS 9

A type L bound s by definition provides a lower bound on the cost of
all attacks. We intend to define security as a measure of hardness, we shall
therefore call s a lower bound on security.

A type U bound is defined as an upper bound on all type L bounds.
By definition, the cost level c(A) is a type U bound for all adversaries A.
Call any type U bound q an upper bound on security. This corresponds with
the intuition that hardness of a problem can never exceed the cost of an
algorithm solving it.

Observe that our definitions allow q ∈ S to be a type U bound even if
there is no A ∈ A such that q = c(A). It is also possible that p ∈ S has type
L and there is no A ∈ A such that p = c(A). If p is has type L and q has
type U, then p ≤ q.

We shall call a family HK provably secure with respect to A if we prove
that p ∈ S is of type L. The value p will then be the provable security level.
In the context of hash function preimages and collisions, we will also use the
term resistance.

Our approach to provable security does not explicitly prescribe the num-
ber of possible keys |K|. However, if |K| = 1 and the family only contains
a single function, there exists a trivial collision-finding adversary A. The
adversary simply outputs two hard-coded messages m and m′. The cost as-
sociated to this adversary has type U, therefore any L bound is less than or
equal to c(A). Instead of trying to design a cost model where the level c(A)
provides enough confidence, use large K to increase cost of such adversaries.
In practice the key K will eventually be fixed and attacks specific to the fixed
function may exist. A security proof valid for random HK no longer rules
out all the attacks imaginable. We heuristically expect that it prevents most
of them, provided the parametrization of a family was not put in place only
as a work-around to provide “provable security” for an otherwise fixed hash
function. The scenario as well as ways to build provable security arguments
on un-keyed hash functions were discussed by Rogaway [117].

A statement on the cost of a single attack needs to provide no information
on the relative cost of any other attack. For a type U bound q, there may
exist any combination of attacks that cost strictly more or strictly less than q.
On the other hand, an L bound is a statement on the cost of all attacks.
We assume that whenever a provable security claim is made, a sufficiently
rich ordering of cost levels is already in place.

Bounds on Bounds Because type U bounds are tied to attacks, they
are quite common. Designers do not often establish bounds of type L. To

10 CHAPTER 2. HASH FUNCTION BASICS

interpret certain results, we will need the two following auxiliary bound
types:

• r ∈ S is a type lU bound if r ≤ t for t of type U. This means r is
a lower bound on some upper bound on security.

• s ∈ S is a type uL bound if s ≥ t for t of type L, i. e. s is an upper
bound on some lower bound on security.

Elementary Properties of Bounds Every L bound is an lU bound and
every U bound is an uL bound. Such implications are trivial, as any element
of S has type lU and uL simultaneously relative to s0 and s∞. The “weak”
types uL and lU apparently provide no direct useful information on provable
security. Both are related to a bound t of one of the “useful” types U and
L. The types uL and lU can nevertheless carry valuable partial information
about the bound t if it is not quantified otherwise. For example, an uL
bound tied to a particular reduction limits how good the reduction is and
an lU bound tied to a particular attack algorithm limits how much damage
the attack causes. We will see such examples later.

2.1.4 Examples

There are several ways to measure cost of attacks on a cryptographic primi-
tive. Practical examples include hardware cost, processor cycle count, mem-
ory or simply real time taken. On the more theoretical side, one can measure
success probability as a function of runtime, expected runtime, circuit size,
etc. The choices of S are typically tailored to match a particular hardness
assumption or a proof method. Sometimes the elements of S will turn out
to be numbers counting some basic operation, such as a bit operation or
evaluation of HK .

Asymptotic Security In complexity theory, polynomial time algorithms
are understood to be efficient and problems that cannot be solved in polyno-
mial time are considered hard. The same classification may be used to define
security of cryptographic schemes. An infinite family of hash functions in-
dexed by a parameter n would be called secure if no adversary bounded by
a polynomial in n can succeed in violating the desired security property for
n → ∞. This can be reflected in our framework by a set S containing only
two elements: s0 ≤ s∞. The former represents polynomial-time algorithms
and the latter represents the rest. Multiplication by a constant leaves both

2.2. TOWARDS PROOFS OF SECURITY 11

elements of S unchanged. If s∞ is shown to be a type L bound, then the
family is provably secure. Security in this setting is not quantified otherwise.
It is a yes/no property rather than a measure. There is no room for a finer
scale in the two-valued cost model. The language of such provable security
arguments is incompatible with the view of a practitioner. Many asymptotic
security arguments can be adapted to quantify security also for finite values
of n where needed. Koblitz and Menezes pointed out several schemes that
are provably secure in the asymptotic sense but fail to provide any security
guarantee for instances of practical interest [74].

Concrete Security Cryptanalysts normally speak of rather precise time
estimates for programs running on real world hardware. In order to allow
proofs and attack to complement one another, both should use similar lan-
guage. In other words, proofs need to provide lower bounds on the effort
needed to break a function in the same units. In this setting, security is not
a property, but a measure. It needs to be quantified and made as exact as
possible. The concrete approach was advocated by Bellare [15].

2.2 Towards Proofs of Security

A security proof sets a lower bound on all attacks on a particular security
property. It is usually a conditional statement relying on some hardness
assumption. Confidence is transferred from the hard problem to the hash
function by means of a reduction. It shows that any algorithm that succeeds
in breaking our cryptographic scheme can be adapted for solving an instance
of a problem P that is presumed hard. Such an argument will connect the
hardness of the problem P to the cost of attacks.

Any hash function family can be made provably secure in the above
sense for an appropriate choice of the hardness assumption. In order for
a reduction to be of any use at all, there has to be some confidence in the
assumption to begin with. We will list some “standard” assumptions in
Chapter 3 and point out a few unfortunate choices in Chapter 5.

The importance of relativity in provable security arguments cannot be
overstated. Strictly speaking, the term provable security is misleading. Bel-
lare made a suggestion to use reductionist security instead [15], followed by
Koblitz and Menezes [75].

12 CHAPTER 2. HASH FUNCTION BASICS

2.3 Generic Attacks

Given the value y one can mount a brute-force preimage attack by hashing
random messages m until H(m) = y. The expected number of trials needed
is 2n. This straightforward attack requires little memory and can easily be
parallelized. It provides a generic U bound on preimage and second preimage
resistance of hash functions.

The same approach can be used to find collisions by searching for two
preimages of a randomly selected value, but due to the well-known birthday
paradox one can do significantly better. Start hashing random messages
m and keep track of all the candidates until two of them collide under H.
The expected number of trials until a collision is found is approximately√
π/2 · 2n/2. The high memory requirements of the attack can be avoided

with the use of appropriate cycle-finding techniques. Van Oorschot and
Wiener described a variant that can be parallelized efficiently [142]. In all
cases, the number of evaluations of H needed is approximately 2n/2.

The two generic attacks have traditionally served as benchmarks of hash
function security. Some definitions require the associated type U bounds to
be achieved, it is in particular expected of the future SHA-3 [100]. We view
this as quite an ambitious goal. Functions with less-than-ideal security need
not be immediately discarded. It may turn out that reasonable L bounds
are achievable.

2.4 MQ-HASH - An Example

We apply the classification of bound types to interpret various provable
security results throughout this thesis. As an example, we take a detailed
look on the security arguments behind a compression function proposal MQ-
HASH. It is a function introduced by Billet et al. built on the hardness of
solving systems of multivariate quadratic equations over F2 [24]. The func-
tion was claimed to establish provable preimage resistance. It is inspired
by the stream cipher QUAD by Berbain et al. [19]. Provable security argu-
ments supporting QUAD were questioned by Yang et al. [150]. Aumasson
and Meier cryptanalyzed MQ-HASH, but did not attack the provable prop-
erty [10].

Definition

The compression function maps n + k bit input to n bits. Let r ≥ n + k,
and f be an r-tuple of quadratic polynomials in n + k variables over F2.

2.4. MQ-HASH - AN EXAMPLE 13

Let g be an n-tuple of quadratic polynomials in r variables over the same
field. The precise values proposed are k = 32, n = 160 and r = 464. This
means f maps 192 bits to 464 bits and g maps 464 bits to 160 bits. Both f
and g are to be selected uniformly at random. The compression function of
MQ-HASH is the composition of f and g mapping 192 bits to 160 bits.

Hardness Assumption

The designers derive the security from the hardness of solving random sys-
tems of multivariate quadratic equations over the binary field. This is a spe-
cial case of the NP-Complete MQ problem [53].

It is assumed that solving systems of the type of f and g is hard. For
f the hardness is quantified at lf = 2103.88 binary operations. The bound
follows from the analysis of a particular solving algorithm performed by
Bardet et al. [11]. Billet et al. assume no faster attack exists, the quantity
lf is therefore a lower bound on the cost of inverting systems such as f . The
implicitly present lower bound on the cost of inverting g is not quantified.
Denote it by lg.

Security Claims

The designers claim the function is preimage resistant by proving the follow-
ing Theorem.

Theorem 2.1. Let Tf and Tg denote the time required to evaluate f , resp. g.
Let A be an algorithm inverting (a random) g◦f in time T with probability ε.
Then A can be either converted to an algorithm inverting g in time T+Tf+Tg
with probability ε or to an algorithm that can invert randomly chosen tuples
of 464 quadratic polynomials in 192 variables that runs in time

T ′ =
128× 1922

ε2

(
T + Tf + 3Tg + log

(
128× 192

ε2

)
+ 464× 192 + 2

)
(2.1)

and succeeds with probability ε/2.

The theorem does indeed establish a lower bound on cost of any algorithm
inverting g ◦ f under the hardness assumption. It is not immediate from the
statement how security can be quantified.

Suppose that A is an algorithm that can invert a MQ-HASH instance
g ◦ f in time T . If A can be converted to an algorithm that inverts g, then
T + Tf + Tg ≥ lg. This implies a lower bound l1 = lg − Tf − Tg on T .

14 CHAPTER 2. HASH FUNCTION BASICS

On the other hand, if A can be converted to an algorithm that inverts
random systems f , then T ′ ≥ lf by the assumption on the cost of solving
such systems. By Equation (2.1) and because ε ≤ 1, conclude that

T ≤ T ′

128× 1922
. (2.2)

If Equation (2.1) translates the lower bound lf on T ′ to a lower bound l2 ≤ T ,
then inequality (2.2) implies

l2 ≤
lf

128× 1922
.

Substitute the known value lf = 2103.88 in the above inequality to obtain
l2 ≤ 282. In other words, the lower bound l2 is less than or equal to 282.

Both the alternatives in Theorem 2.1 lead to lower bounds on T , either
T ≥ l1 or T ≥ l2. These in turn result in a type L bound l on preimage
resistance that satisfies l ≤ l1 and l ≤ l2. Because lg is not quantified, neither
is l1. We can nevertheless conclude that l ≤ l2.

Although the theorem does imply a type L bound l, Billet et al. do not
quantify it. The available information allows us to find an upper bound
on l. Theorem 2.1 establishes that 282 is a bound of type uL on preimage
resistance.

The designers of MQ-HASH aim at “80-bit security” and claim the level
is consistent with the implications of the Theorem. Although the inequality
280 ≤ 282 certainly holds, the latter quantity is merely an upper bound on
l2. The actual value of l2 may even be less than 280. A cleaner connection
of T and T ′ may improve the present 282 bound. In order to derive an L
bound, a quantified lg needs to be filled in. Without the value, the original
security assumption is incomplete.

The quantity 282 counts bit operations. If we want to translate this to
the equivalent of hash function computations, divide by the cost of such an
evaluation, estimated to be 224 bit operations. The authors do not comment
on how the compression function is to be computed, but their 3 MB mem-
ory requirement is consistent with our estimate. The uL bound on preimage
resistance then becomes 282/224 = 258 evaluations of the compression func-
tion.

Conclusion The security proof does not rule out preimage attacks that
cost the equivalent of 258 evaluations of MQ-HASH. We do not claim such an
attack exists, our statement only exposes the limits of the security guarantees
the proof can provide. Improved proofs may be possible.

2.5. DOMAIN EXTENDERS 15

2.5 Domain Extenders

Merkle and Damg̊ard independently described a method that allows to turn
a compression function h : {0, 1}l → {0, 1}n to a hash function H processing
long messages [91, 44]. The construction is commonly referred to as the
Merkle-Damg̊ard mode. Fix an n-bit constant initialization vector IV , let
the integer b = l − n represent block length and select a positive integer
c < b. To hash an L-bit message m for L < c proceed as follows:

1. Initialize x1 = IV .

2. Append a single 1 bit to the message, then pad with zero bits until the
total length is c bits short of an integral multiple of b.

3. Append a c-bit binary representation of the length L, let k bet the
number of b-bit blocks in the string obtained.

4. For i = 1, . . . , k compute xi+1 = h(xi||m[i]).

5. Return xk+1.

The operator || denotes concatenation of binary strings and m[i] is the i-
th b-bit block of the bk-bit pre-processed message obtained in Step 3. The
above construction extends the input domain of h from l bits to 2c − 1 bits,
this can be made big enough for all practical purposes. Finding collisions in
H is no easier than in h, any collision in the compression function trivially
extends to H.

Theorem 2.2 (Merkle, Damg̊ard). If m 6= m′ collide under H, then a col-
lision in h must also have occurred in the course of the above algorithm.

Proof. If m and m′ differ in length, the representations of length appended
to the messages differ, i.e. m[k] 6= m′[k′]. We immediately obtain a collision
in the last call to h with the inputs xk||m[k] and x′k′ ||m′[k′]. It remains to
prove the theorem for |m| = |m′|. If there exists an index 2 ≤ i ≤ k − 1
such that xi 6= x′i and xi+1 = x′i+1, then h(xi||m[i]) collides with h(x′i||m′[i]).
Otherwise xi = x′i for all 1 ≤ i ≤ k. Let 1 ≤ j ≤ k be an index such that
m[j] 6= m′[j], it exists because the inputs differ. The string xj ||m[j] collides
with x′j ||m′[j].

Drawbacks of Iterated Constructions A hash function H that uses the
Merkle-Damg̊ard iteration is as secure with respect to collision search as h.
Joux showed how to create multicollisions by combining a small number of
collisions in h. Due to the iterative structure used, t appropriately chosen
pairs of colliding blocks lead to 2t messages t-block long all with the same

16 CHAPTER 2. HASH FUNCTION BASICS

digest [65]. Kelsey and Schneier applied the ideas to find second preimages
in much less than 2n evaluations of h [72]. Kelsey and Kohno extended the
results of Joux and developed a preimage attack as well [71]. All the above
attacks are generic in the sense that they allow substantially faster preimage
search in the iteration even if the building block h achieves maximum possible
security.

There are new modes of operation designed to prevent the attacks, for
example HAIFA by Biham and Dunkelman [23]. For the purposes of this
thesis, whenever a compression function is considered, we assume a suitable
iterated mode of operation is available to turn it to a hash function.

Chapter 3

Hard Computational
Problems

This chapter lists some of the best known computational problems used in
modern public-key cryptology that we will refer to in the later chapters.
Several of the problems listed are today considered “standard” and support
schemes widely deployed in practice. For every problem considered we list
the relevant theoretical lower bounds and solving algorithms. We include the
related public-key cryptographic schemes. There is a compression function
based on every problem considered, these are postponed to the later chapters.

3.1 Integer Factorization

Problem 3.1 (Integer Factorization). Given a positive integer M , find the
unique integer u > 0, prime numbers pi and positive integers βi for i =
1, . . . , u such that

M =
u∏
i=1

pi
βi .

Assume that the integer M is composite. Although we are interested in
a complete factorization, it is sufficient to look for algorithms that express
M as a product of two smaller positive integers. The task can then be
completed recursively.

17

18 CHAPTER 3. HARD COMPUTATIONAL PROBLEMS

3.1.1 Algorithms

To express the cost of factoring algorithms, we shall use the notation

Lx[α, c] = e(c+o(1))(log x)α(log log x)1−α ,

for 0 < α < 1 and x→∞, the logarithms are natural. Algorithms with such
complexity are called subexponential in log x. The dominant parameter is α,
the smaller the better.

Many instances of the integer factoring problem are easy. It can be
solved efficiently for example if M is divisible by no more than a single
“large” prime. There are algorithms with runtime that depends on the
smallest of the prime divisors of M , even trial division will find some factor
quickly for most random M . The ECM method by Lenstra runs in time
Lp[1/2,

√
2] · O

(
(logM)2

)
for p the smallest prime dividing M [81]. It is

common to call a number hard to factor if it is a product of two prime
numbers of roughly the same size.

The most efficient general-purpose factoring algorithms are sophisticated
extensions of an old method by Fermat. If M = X2 − Y 2 for positive
integers X,Y, then M = (X +Y)(X −Y) is a non-trivial factorization of M
provided |X −Y | 6= 1. The task can be relaxed to finding integers such that
X2 − Y 2 = 0 mod M . One can then efficiently check for common divisors
of M and X + Y . This will split M with at least 50% chance for random
X,Y . We will briefly sketch the modern methods for finding useful X,Y . In
order to describe the inner workings of modern factoring algorithms, we will
need the notion of smoothness.

Definition 3.1. An integer is called B-smooth if it has no prime divisors
greater than B.

Denote the i-th prime number by pi and let p0 = −1. Let u be the index
of the largest prime number not exceeding B. We will sketch two well-known
modern methods for factoring integers.

Quadratic Sieve

The following two-stage approach originates in the work of Morrison and
Brillhart [98]. First collect expressions of the form

u∏
i=0

peii = v2 mod M (3.1)

3.1. INTEGER FACTORIZATION 19

for integer v such that not all ei are even. Such an expression is called
a relation and (e0, . . . , eu) an exponent vector. The set of primes p0 to pu is
a smoothness basis. A relation corresponds to an integer v with a square that
factors over the basis. After collecting at least u+2 relations, proceed to the
second stage to find a linear dependence modulo 2 among the corresponding
exponent vectors. This is done by linear algebra on a 0 − 1 matrix of the
reduced exponent vectors. Given a solution, multiply the relations accord-
ingly to obtain X,Y such that X2 ≡ Y 2 mod M . The optimal choice of B
depends on several factors, in particular on the distribution of B-smooth in-
tegers. For small B, relations are scarce. For increasing B, a single relation
gets easier to find, but the number of relations needed grows. With optimal
parameters, the algorithm runs in expected heuristic time LM [1/2, 1].

Number Field Sieve

Currently the fastest known general purpose factoring algorithm originates
in the work of Pollard improving the Morrison-Brillhart approach [112]. The
smoothness basis is extended by prime ideals of a suitable algebraic number
field. The right hand side of relations collected is formed by products of alge-
braic primes. The extra freedom allows to use significantly lower smoothness
bounds and leads to complexity LM [1/3, (64/9)1/3] [77].

Computational Experiments As of 2011, the largest general number
publicly reported as factored by NFS was a 768-bit product of two primes.
This was achieved in 2009 by Kleinjung et al. in a coordinated effort equiv-
alent to some 2000 years of computation on a single core of a then-common
CPU [73]. The next challenge, a 1024-bit modulus was estimated to be about
a thousand times harder.

3.1.2 Related Problems

The following two problems are closely linked to the factorization problem.
The ability to solve any of them efficiently allows to factor M and vice versa.

Modular Square Root To factor M , generate a random X and obtain
a modular square root Y of X2. This leads to a congruence of squares
X2 = Y 2 that is useful at least half of the time.

Computing the Order of Z∗M The multiplicative group of integers mod-
ulo M has precisely ϕ(M) elements, where ϕ stands for Euler’s function.

20 CHAPTER 3. HARD COMPUTATIONAL PROBLEMS

The quantity can easily be computed from the factors of M . There exists an
efficient probabilistic algorithm that splits M given ϕ(M). If M is a product
of two primes, the factors can be recovered from ϕ(M) by solving a simple
quadratic equation.

3.1.3 Related Cryptosystems

A public-key cryptosystem proposed by Rabin encrypts messages by squaring
them modulo a product of two primes [114] and is therefore secure if factoring
is hard.

RSA by Rivest et al. is probably the most widely deployed public-key
system [116]. Messages are encrypted by raising to a fixed power e modulo
a product of two primes. It can be broken by computing e-th modular roots.
It is believed that the fastest method to do so for general e is by factoring
M . The knowledge of ϕ(M) then allows to compute a decryption exponent
d such that ed = 1 mod ϕ(M).

3.2 Discrete Logarithm

Every element of a cyclic group is an integral power of the group generator.
We are concerned with the problem of recovering the exponent given the
power.

Problem 3.2 (Discrete Logarithm (DL)). Let G be a finite group generated
by g. Given an element y ∈ G, find the unique exponent 0 ≤ x ≤ |G| − 1
such that

gx = y .

3.2.1 Algorithms

It is easy to find groups where the problem is trivial, such as (ZM ,+).
Discrete logarithm is a very general problem, a proper choice of G is crucial.

Generic Algorithms

If the order of |G| is composite and the factors are known, the logarithm
of y can be recovered from logarithms in prime-order subgroups by means
of an algorithm by Pohlig and Hellman [109]. The Rho method by Pollard
recovers x in approximately

√
|G| steps of computation [111]. In order to

3.2. DISCRETE LOGARITHM 21

make the discrete logarithm hard, one often selects G of prime order, or an
order divisible by a large prime.

By combining the two algorithms one obtains a generic solving algorithm
with complexity O(

√
p) for p the greatest divisor of |G|. Shoup showed

that Ω(
√
p) group operations are needed in any generic group [131]. Much

faster algorithms are available for several choices of G, in particular for
multiplicative groups of finite fields.

Index Calculus in Finite Fields

Logarithms in multiplicative groups of finite fields can be computed by
a three stage approach that shares certain features with fast factoring meth-
ods from the previous section. First select an appropriate smoothness basis
P and collect multiplicative relations among the elements. Such relations
translate to additive relations of logarithms.

After collecting enough relations, compute logarithms of all the elements
of P using linear algebra. Computations are performed modulo the group
order or a divisor thereof.

The third stage allows computation of logarithms for individual field
elements. Given an arbitrary y ∈ F, find a multiplicative relation in g, y
and the elements of P . Then recover logg y from the additive relation of the
corresponding logarithms.

There are several index calculus algorithms each suited for a different
class of finite fields. Gordon considered a variant of Number Field Sieve in
prime fields [58]. Adleman and Huang developed the Function Field Sieve
to solve logarithms efficiently in fields of small characteristic and large ex-
tension degree [1]. Various versions of the two approaches were recently
considered by Joux et al. [67, 68]. As a result of the many developments,
there are Lq[1/3, c] algorithms for computing discrete logarithms in any q-
element finite field.

Computational Experiments The scale of experiments computing log-
arithms in multiplicative groups of finite fields does not compare to the
efforts in the integer factoring area. Real-world hardness estimates need to
be extrapolated from data on much smaller instances. By the similarity of
the solving algorithms, reasonable estimates can be made from experiments
factoring integers with NFS.

22 CHAPTER 3. HARD COMPUTATIONAL PROBLEMS

Elliptic Curve Groups

The fastest known algorithm to compute discrete logarithms in a group of
points on an appropriately selected elliptic curve over a finite field is the
generic Ω(

√
|G|) Pollard Rho method. In other words, such groups are at

the moment believed to behave like generic groups [39].

3.2.2 Related Cryptosystems

Public-key schemes with security connected to the hardness of discrete loga-
rithms include ElGamal encryption and signature schemes [52] and the key
establishment protocol by Diffie and Hellman [45]. These are related to
the problem of computing gab given ga and gb known as the Diffie-Hellman
problem. Variants of both systems are widely deployed.

3.3 Integer Lattices

Let d > 1 be an integer, let B ⊆ Zd be a set of d linearly independent vectors
b1, . . . , bd. The set

L = {c1b1 + . . .+ cdbd}

for integer ci is a full rank d-dimensional lattice. Let || · || be a norm in Zd
assumed to be the l2 norm if not specified otherwise. Consider the following
two computational problems:

Problem 3.3 (Shortest Vector Problem, SVP). Given a lattice basis B, find
a vector x ∈ L, x 6= 0 such that ||x|| is minimal.

Problem 3.4 (Closest Vector Problem, CVP). Given a lattice basis B and
a vector y ∈ Rd find a vector x ∈ L such that ||y − x|| is minimal.

Both problems can be considered in approximate versions, where the
solution is required to be within γ(d) from the minimum.

3.3.1 Lower Bounds

Ajtai showed that exact SVP is NP-hard in the l2 norm under randomized
reductions [3]. Micciancio extended the result to the approximate SVP for
γ ≤ p

√
d in the lp norm for all p ≥ 1 [92]. Van Emde Boas proved the exact

CVP problem NP-hard in lp for all p ≥ 1 [141].

3.4. SUBSET SUM 23

3.3.2 Algorithms

The LLL basis reduction algorithm by Lenstra et al. is a polynomial-time
algorithm that solves SVP within exponential approximation factors [78].
Schnorr proposed a family of algorithms with smaller, but ultimately expo-
nential, approximation factors [124]. Practical improved variants appeared
in [126, 125].

Computational Experiments Nguyen and Gama analyzed performance
of various lattice reduction algorithms on a range of random lattices [51].
Variants of SVP were reported to be easy to solve exactly in dimensions
below 70. Only approximation had a chance beyond dimension 100, general
lattices with d = 500 can be considered out of reach.

3.3.3 Related Problems

The NP-hardness arguments provide evidence that the two problems are
likely to be hard in the worst case. Ajtai showed how to construct a class
of lattice problems that are hard to solve on average if SVP is hard to
approximate in the worst case [2, 4]. The definition of the class of lattices
depends on two absolute constants C1 and C2 and parameters k, q such that
k = [C1d log d] and q = [dC2]. Let A be a d × k matrix over Zq. The
set of vectors x ∈ Zk such that Ax = 0 mod q is a lattice, denote it by
Λ. If there is an algorithm that can find a short vector ||x|| < d in Λ for
random A in polynomial time, there is a polynomial time algorithm that
solves approximate SVP in all d-dimensional lattices.

3.3.4 Related Cryptosystems

Goldreich et al. proposed an encryption and signature schemes with security
linked to lattice reduction [57], the system was broken for most proposed
parameter choices by Nguyen [101]. Ajtai and Dwork proposed a public-key
encryption scheme with worst case / average case equivalence [5].

3.4 Subset Sum

Problem 3.5 (Subset Sum). Let a1, . . . , ak be positive integers. Given an
integer y, find I ⊆ {1, . . . , k} such that∑

i∈I
ai = y .

24 CHAPTER 3. HARD COMPUTATIONAL PROBLEMS

A solution corresponds to a vector m ∈ {0, 1}k such that
∑k

i=1miai = y.
We sometimes use the term knapsack to describe the problem. Subset sum
was shown NP-Complete by Karp [70].

3.4.1 Related Problems

The problem can be generalized to operations other than integer addition.
Impagliazzo and Naor considered the hardness of subset sum problem in
finite commutative groups [63, 64].

If ψ : X → G is a surjective group homomorphism, then an algorithm
that solves the subset G-sum function can be used to invert ψ.

Theorem 3.1 (Impagliazzo and Naor). A single call to an algorithm A that
solves G-sum problems for fixed (G,+) and k with random ai can be used
to invert any surjective group homomorphism ψ : X → G on a single point
with probability at least 1/k.

Proof. Let y ∈ G be the point where we want to invert ψ. Construct a G-
sum instance as follows. First select a random index 1 ≤ i ≤ k and let
ai = y. To define the remaining k − 1 weights select random xj ∈ X for
j 6= i and compute aj = ψ(xj). Select a random z ∈ X and obtain a solution
m1, . . . ,mk to the G-subset sum instance

k∑
i=1

miai = ψ(z) .

With probability at least 1/k the solution returned satisfies mi = 1. If this
is the case, compute

ψ−1(y) = z +
∑

1≤j≤k
j 6=i

(−mjxj).

It follows that one expects to need k solutions to random G-sum instances
to invert ψ on a single point.

3.4.2 Algorithms

The following applies to additive knapsacks, unless specified otherwise. Com-
plexity of subset sum problems depends on density of the instance, defined

3.5. SYNDROME DECODING 25

as k/ log2 maxi ai. The quantity is related to the amount of solutions one
expects. Lagarias and Odlyzko described an efficient reduction to lattice
SVP for instances with density below 0.645 [76]. The bound was improved
to 0.9408 by Coster et al. [42].

Instances with density close to one are considered hard. Shamir and
Schroeppel developed an algorithm that solves such instances in time O(2k/2)
and memory O(2k/4) [128]. A new algorithm for high density instances
was proposed recently by Howgrave-Graham and Joux [62] followed by an
improvement by Becker et al. that runs in time Õ(20.291k) [14].

High density modular subset sums with many solutions were considered
by Lyubashevsky [84] and Shallue [129]. The central technique applied is
the tree algorithm that we discuss in Section 3.6.1.

3.4.3 Related Cryptosystems

Knapsacks were introduced to cryptography by Merkle and Hellman [90].
The powerful attacks by lattice reduction wiped out most systems of this
type. An additive modular knapsack cryptosystem by Chor and Rivest re-
sisted attacks for several years [38]. We will discuss it in more detail in
Chapter 7.

3.5 Syndrome Decoding

The problem discussed in this Section is a variant of the subset sum con-
sidered in the additive group of binary vectors. Let C be a binary code of
length k and dimension k − n with a parity check matrix A. The product
Ax for a k-bit x is called the syndrome of x. The vector x is a codeword if
Ax = 0. If a codeword x is received with an error as x′ = x + e, the syn-
drome is entirely determined by the error vector e. Decoding is the search
for an error pattern e with low Hamming weight. The following problem
was shown NP-Complete by Berlekamp et al. [20].

Problem 3.6 (Computational Syndrome Decoding (CSD)). Given an n×k
binary matrix A, an n-bit s and integer w ≤ k, find x ∈ {0, 1}k such that x
has Hamming weight at most w and Ax = s.

In a related problem one asks for a low-weight codeword.

Problem 3.7 (Codeword Finding (CF)). Given an n × k binary matrix
A and integer w ≤ k, find a non-zero word x ∈ {0, 1}k such that x has
Hamming weight at most w and Ax = 0.

26 CHAPTER 3. HARD COMPUTATIONAL PROBLEMS

3.5.1 Algorithms

For w large enough, both the above problems are easily solvable by linear
algebra. The fastest known algorithms for solving the hard cases are collec-
tively called Information Set Decoding and follow an idea by Stern [136]. An
algorithm due to Canteaut and Chabaud [33] was reported to be the fastest
by Overbeck and Sendrier [104]. Efficient decoding algorithms were recently
evaluated by Finiasz and Sendrier [48].

3.5.2 Related Cryptosystems

The first public-key encryption scheme based on linear codes was introduced
by McEliece [88]. An equivalent construction was described by Niederre-
iter [103]. Both schemes rely on the hardness of the CSD problem. Neither
is known to be widely deployed.

3.6 Generalized Birthday Problem

The problem discussed in this section arises naturally in several areas of
computing. It was studied several times along with variants of the elegant
solving algorithm. Here we follow the popular exposition by Wagner [147,
146] and recent updates by Minder and Sinclair [95, 96]. We consider the
following problem:

Problem 3.8 (Generalized Birthday). Given a finite group (G,+), an el-
ement y ∈ G and disjoint lists of group elements L1, . . . , Lk find ai ∈ Li
such that

a1 + a2 + . . .+ ak = y .

Assume that the elements in the lists Li were selected at random. With-
out loss of generality we can work with y = 0. An instance with general
y can be transformed by adding −y to all the elements in one of the lists.
Let |G| ≈ 2n and assume that all the lists are equal in length such that
log2 |Li| = b. Depending on the context, we will refer to the problem as
k-sum or k-product. For appropriate G and Li the k-sum problem includes
several of the specific problems considered in this chapter so far. For exam-
ple, any subset-sum instance can be seen as a k-sum problem on lists with
two elements.

3.6. GENERALIZED BIRTHDAY PROBLEM 27

3.6.1 Algorithms

The modern algorithms for solving k-sum problems perform join operations
on pairs of lists. The approach was used by Schnorr and Vaudenay to analyze
a more general class of related problems [127]. Earlier applications of similar
algorithms are discussed in Chapter 4.

We will follow Wagner in developing an algorithm for the problem in
several steps. First consider the simple case k = 2. Two lists of group
elements are given and we are asked to find a1 ∈ L1 and a2 ∈ L2 such that
a1 + a2 = 0. Assume that the lists are long enough to achieve |L1||L2| > |G|
or equivalently, 2b > n. A naive approach would be to start computing all
the 22b sums a1 + a2 for a1 ∈ L1, a2 ∈ L2 and check whether the result
equals 0. We can do significantly better thanks to the group structure and
meet in the middle. Check whether any a1 ∈ L1 equals −a2 for a2 ∈ L2. As
the first step, invert all elements in L2. Then search for a match between
L1 and −L2. This can be achieved by sorting the lists first, faster methods
using hash tables are available. This algorithm finds a solution a1, a2 in
O(2b) steps.

The above approach looks for pairs a1, a2 such that a1 = −a2. This is
equivalent to a1 = −a2 mod K0 or a1 + a2 ∈ K0 where K0 is the trivial
subgroup of G. This is done by checking whether ρ(a1) = ρ(−a2) where
ρ is the canonical homomorphism G → G/K0. Generalize this by letting
K be any invariant subgroup of G with the appropriate homomorphism
ρ : G → G/K. Define an operator ./K on two lists Li,Lj that returns the
list Lij of all ai + aj for ai ∈ Li and aj ∈ Lj such that ai + aj ∈ K. The
operator applies ρ to all ai ∈ Li and computes ρ(−aj) for all aj ∈ Lj . Then
it returns ai + aj such that ρ(ai) = ρ(−aj). If Li and Lj contain random
elements of G, the expected length of Lij is |Li| × |Lj | × |K|/|G|.

4-list Algorithm

We proceed to describe a tree algorithm for k = 4. Assume that b = n/3,
i.e. the input lists contain 2n/3 elements each. Suppose there is an invariant
subgroup K such that

K0 ⊆ K ⊆ G ,

|K| ≈ 22n/3 and |G|/|K| ≈ 2n/3. Compute L1 ./K L2 and L3 ./K L4

to form L12 and L34. Each of the two new lists is expected to contain
22n/3×|K|/|G| ≈ 2n/3 elements. Then compute L12 ./K0 L34 to form a single
list L1234. The expected length of this last list is 22n/3 × |K0|/|K| = 1. The
algorithm performs three merging steps on lists of length 2n/3 that need at

28 CHAPTER 3. HARD COMPUTATIONAL PROBLEMS

L1234

./K0

L12 L34

./K ./K

L1 L2 L3 L4

Figure 3.1: The 4-tree Algorithm

most 3× 2n/3 group operations in total. The process is illustrated in Figure
3.1.

k-tree Algorithm

To generalize the above approach further, let k ≥ 4 be a power of two.
Assume that every input list contains 2b elements for b = n/(1 + log2 k).
Let there be a chain of normal subgroups

{0} = K0 ⊆ K1 ⊆ . . . ⊆ K1+log2 k = G

with the corresponding homomorphisms ρj : G→ G/Kj . Assume the groups
satisfy |Kj | ≈ 2bj for 1 ≤ j ≤ 1 + log2 k. The algorithm proceeds in rounds
indexed by j starting with j = log2 k. Every value of j corresponds to a level
in the binary tree sketched in Figure 3.2. In the beginning of a round, there
are 2j lists of elements of the group Kj+1. Every list contains approximately
2b elements. Combine pairs of adjacent lists using the operator ./Kj to
obtain 2j−1 new lists of elements all confined to Kj . The expected lengths
are 22b × |Kj−1|/|Kj | = 2b. Decrement j and repeat the process until j

3.6. GENERALIZED BIRTHDAY PROBLEM 29

reaches 0. At that moment, there is a single list of 2b elements all in K1.
Because |K1|/|K0| ≈ 2b, expect one of the elements to match 0 modulo K0.

The algorithm runs in O
(
k × 2

n
1+log2 k

)
time and space. The number of

group operations performed is at most k × 2
n

1+log2 k .

Runtime for Large k

The length of lists involved in the tree algorithm decreases with growing k.
For given |G|, the total cost is minimized for k = 2

√
n. The total runtime

O
(

22
√
n
)

is subexponential in n = log2 |G|.

Extended k-tree Algorithm

Wagner’s analysis assumes that the lists are long enough, i.e. b(1+log2 k) ≥
n. The tree algorithm is likely to fail otherwise. Minder and Sinclair analyzed
instances with shorter initial lists under the condition that a solution is
expected to exist [95, 96]. Generalize the problem to ask for 2c solutions
instead of a single one for c < 2b. To expect this many solutions, require
that bk ≥ n + c. In order to solve the k-sum problem for instances where
b(1 + log2 k) ≤ n+ c, keep all the sums ai + aj on the t bottom levels of the
tree. This causes the lists to grow rapidly. Each list contains approximately
2b2

t
elements after t such rounds. In the remaining log2 k − t rounds apply

Wagner’s original algorithm that filters partial sums modulo subgroups of
G. Minder and Sinclair prove that the runtime of such a modified algorithm
is optimal if t is the least integer that satisfies

n+ c ≤ (log2 k − t+ 1)b2t (3.2)

and the lists are allowed to grow up to the maximum length of 2u elements
where

u =
n+ c− b2t

log2 k − t
. (3.3)

As before, the complexity is proportional to the number of lists k multiplied
by the maximum list length 2u. The extended k-tree algorithm runs in time
O(k × 2u).

30 CHAPTER 3. HARD COMPUTATIONAL PROBLEMS

j = 0

./K1

j = 1

./K2 ./K2

L1 L2 L3 L4

· · ·

· · ·

Lk−1 Lk

j = log2 k

./Klog2 k
./Klog2 k

./Klog2 k

./K3 ./K3 ./K3 ./K3

Figure 3.2: The k-tree Algorithm

3.6. GENERALIZED BIRTHDAY PROBLEM 31

Structure of G

The k-sum algorithms for k ≥ 2 depend on the availability of the subgroups
Kj and the corresponding homomorphisms ρj . The group ({0, 1}n,⊕) origi-
nally considered by Wagner is an example where many subgroups are avail-
able. There is a subgroup of order 2l for all integers 0 ≤ l ≤ n. On the other
hand, there are groups that have no non-trivial subgroups. An example of
such a group Zp for p prime. Wagner shows that the tree algorithm can be
adapted to run in this group if the subgroups Kj are replaced by the chain

of intervals Uj = [−uj , uj − 1] such that |Uj | ≈ |G|
j

1+log2 k and Uj ⊆ Uj+1.
The join operators ./Uj compute the pairs a1 + a2 such that a1 + a2 ∈ Uj .
The same construction can be extended to any additive Abelian group rep-
resented as Zn1 × Zn2 × . . .× Znl .

Wagner relaxed the requirement on G itself to be a group and considers
the k-sum problem for several non-group operations. Such generalizations
appear not to be relevant for this thesis.

The Case of XOR

The k-sum problem in an additive group of n-bit binary strings can easily
be solved by linear algebra if k is large compared to n. In order to do so,
select two elements αi and βi per list, ignore all remaining elements in Li.
Compute the n-bit vectors γi = αi + βi and y =

∑k
i=1 βi. Solve the linear

system v1γ1 + . . . + vkγk = y over the binary field. A solution is likely to
exist if n ≤ k. The elements xi = βi + viγi then solve the corresponding
k-sum problem.

Wagner suggests to use linear algebra even in cases k ≤ n in a hybrid
approach by transforming the instance to a smaller group. An instance on k
lists of n-bit strings can be transformed to an instance on k′ lists of n−k+k′

bit strings for 0 < k′ < k. Such a transformation appears not to be worth
the effort for k significantly smaller than n.

3.6.2 Lower Bounds

In contrast to the problems in the previous sections, the k-sum problem itself
has not served as an assumption supporting the security of any public-key
scheme. It is nevertheless possible to connect it to many of the “standard”
hard problems.

Wagner points out that hardness of the DL problem in G implies that
the k-product is hard in a Theorem attributed to Wei Dai.

32 CHAPTER 3. HARD COMPUTATIONAL PROBLEMS

Theorem 3.2. If the k-sum problem over a cyclic group G = 〈g〉 can be
solved in time t, then the discrete logarithm with respect to g can be found
in O(t) time as well.

Proof. Let y ∈ G be arbitrary. We will describe how to find logg y given
an algorithm that solves k-products in G. Fix k and generate lists Li that
contain gu for random exponents u. A solution to the k-product instance
of the form

∏k
i=1 xi = y corresponds to an additive relation

∑k
i=1 logg xi =

logg y. Compute logg y from the logs on the left hand side that are known
by construction.

The lower bound on the cost of discrete logarithms implies that any
algorithm that solves the k-sum problem generically runs in Ω(

√
p) for p the

greatest divisor of |G|.
Theorem 3.1 can be extended to the k-sum setting. A solution to the

k-sum problem in G is by definition a solution to the corresponding G-sum.
The complexity of k-sum problem in Z∗M is connected to the hardness of
factoring M .

An efficient algorithm for solving k-sum problems in a broader spectrum
of groups would likely be able to solve all the hard problems considered in
this chapter so far.

Upper Bounds

According to Wagner, the connection to discrete logarithms goes both ways.
If G is a cyclic group where the DL problem is easy, the tree algorithm can
solve k-product instances over G as fast as in the corresponding additive
group (ZM ,+) for M = |G|.

For well chosen parameters this can still involve a considerable effort. For
most groups there appear to be no known algorithms that would solve k-
sum problems faster than the tree algorithm. The case of the XOR operation
with k big relative to n is a clear warning, but as far as available attacks are
concerned, the general k-sum problem looks promising.

Chapter 4

Early Hash Functions in
Groups

A group is probably one of the simplest and most abundant of all mathe-
matical structures. Integer addition or multiplication are group operations
on appropriately defined sets. The two very natural operations on numbers
to perform are supported by virtually every computer. So is the binary
XOR operation, i.e. component-wise vector addition modulo 2. A look at
“ordinary” hash functions suggests that all of them are built on finite group
operations in one way or another. What makes the functions considered in
this thesis special? It is the simplicity, the fact that they are based almost
exclusively on a single group operation. Their security properties are equiv-
alent to problems that are very simple to formulate and possibly also easy
to comprehend.

This chapter surveys early proposals of hash functions in finite groups,
in particular those that preceded cryptanalysis of MD5 and SHA by Wang
et al. [149]. The concept of group knapsacks was reinvented several times in
the past few decades. We emphasize the structure and common features over
details on implementations or speed. After all, none of the functions has sur-
vived to become used in practice and most of them are broken. This chapter
is intended to provide a partial historical account of the developments to set
our new compression functions into proper context.

The notation used in this chapter may differ considerably from the no-
tation used in the original proposals we refer to. Several functions were
deliberately rewritten in order to improve consistency of presentation within
the thesis and to stress the features present across several functions.

33

34 CHAPTER 4. EARLY HASH FUNCTIONS IN GROUPS

4.1 Matrix Multiplication by Bosset

Probably the first proposal to build a cryptographic hash function in a finite
group was that of Bosset [27]. The scheme was actually called a signature
rather than a hash function.

Let (G, ∗) be a non-Abelian group, define a fixed set A = {a1, . . . , ak} ⊆
G. Select the ai at random under the condition that ai ∗ aj 6= aj ∗ ai for
i 6= j. This condition also implies that no aj is an inverse of ai for i 6= j. For
simplicity let k = 2b and let φ : {0, 1}b → A be a fixed injective function.
Assume further that the length of the input message m is divisible by b,
denote the i-th b-bit block of m by m[i]. To hash an l-bit message proceed
as follows:

1. Initialize x1 = 1G.

2. Let L = l
b .

3. For i = 1, . . . ,L compute xi+1 = xi ∗ φ(m[i]) .

4. Return xL+1.

There is no limit on the length and l does not even need to be known in
advance. The digest can be computed “on-the-fly” in a single pass through
the input data. The mapping φ only encodes the message in a new alphabet
A. The hash computation then amounts to a ∗-product of message characters
in (G, ∗). Note that for messages long enough some of the ai will repeat
potentially many times.

Choice of G In a concrete instance, Bosset selected the multiplicative
group GL(2,Fp) of 2 × 2 non-singular matrices over a finite field Fp for p
prime. Concrete parameters proposed were p = 997, k = 64 and b = 6.
Size of the output is approximately 4 log2 p ≈ 40 bits. Every 6-bit string is
assigned an element of A, one needs a single matrix multiplication per 6 bits
of input.

The following three simple consequences of the group structure are inde-
pendent of the choice of G:

Associativity For any triple of messages m1, m2, m3 it holds that

H(m1||m2) ∗H(m3) = H(m1||m2||m3) = H(m1) ∗H(m2||m3) .

Incrementality Given two messages m1 and m2, the digest of their con-
catenation m1||m2 can be computed from H(m1) and H(m2) as

H(m1||m2) = H(m1) ∗H(m2) .

4.1. MATRIX MULTIPLICATION BY BOSSET 35

If a message is extended, we only need to hash the “fresh” bits and multiply
with the original digest. In an analogy, if a message is truncated, we can
divide the digest by the hash of the removed part.

Non-Commutativity If the messages m1 and m2 are not identical, then
H(m1||m2) in general differs from H(m2||m1). By a simple counting argu-
ment there are plenty of exceptions. The odds of finding one at random
should be minimal. Note that if the group G was commutative, collisions in
H would be trivial to find.

Security properties

The security properties considered were first and second preimage resistance.
Cost of exhaustive search was measured and the function was concluded se-
cure against the generic attacks. Collision resistance was not considered.
The generic collision search algorithm would have needed hashing about
a million messages, likely to be within the limits of computing power avail-
able.

Given y ∈ G, preimage search is equivalent to finding an factorization
of y in terms of elements of A. Pairs of colliding messages correspond to
non-trivial factorizations of the unit in G. Several such factorizations are
easy to describe, for example a

|G|
i = 1G for all i. Such messages are very

long and should not be considered a threat to security. After all, it is much
faster to complete a birthday collision search than it is to print a pair of
colliding messages that are |G|b bits long combined.

Separation of Colliding Inputs If an input message is modified such
that a single ai is replaced by aj 6= ai then the digest necessarily changes.
Such a change happens when precisely one of the b-bit message blocks is
replaced. If two different consecutive b-bit blocks are swapped, the digest
changes as well. Minor changes of the above types always change the result-
ing hash value. The property follows from group cancellation laws.

4.1.1 Cryptanalysis

The function was broken by Paul Camion in a preimage attack that was
probably the earliest instance of the tree algorithm described in Section
3.6.1 [30]. Camion kept k = 64 and raised p to 10007 to make the problem
harder. The chain of subgroups

{I} = K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ K4 = G

36 CHAPTER 4. EARLY HASH FUNCTIONS IN GROUPS

needed by the tree algorithm is defined as follows:

• K1 is the group of matrices

(
1 0
b 1

)
for b ∈ Fp.

• K2 is the group of matrices

(
a 0
b 1

)
for a, b ∈ Fp.

• K3 is the group of matrices

(
a 0
b d

)
for a, b, d ∈ Fp and ad 6= 0.

Observe that Ki−1 ⊆ Ki and |Ki|/|Ki−1| ≈ 4
√
|G|, the logarithms of |Ki| are

equally spaced between 0 and log |G|.
The attack starts with 16 lists of approximately 12000 elements each and

performs four merging steps to find a single solution to the 16-sum problem
with an arbitrary target y ∈ G. Elements of the lists are constructed from
products of random triples of generators from A. There are 643 candidate
list elements in correspondence with 18-bit input blocks. A solution to the
16-sum problem then leads to an 288-bit input message.

4.2 Two Schemes by Godlewski and Camion

4.2.1 Integer Addition

An additive knapsack compression function was considered by Godlewski and
Camion [55]. Fix an integer k and a bound M . Select k random integral
weights ai < M . To hash a message m composed of k input bits m1 to mk

compute

H(m) =
k∑
i=1

miai.

In order for the function to compress it is necessary that log2M+log2 k < k.
Godlewski and Camion proceed to shown the scheme is insecure if 4 log2M <
(log2 k)2, i.e. when the density of the knapsack is too high. A determinis-
tic algorithm finds second preimages in about 4k log2 k additions of M -bit
integers.

4.2.2 Error Correcting Codes

Another related construction is based on an error correcting code over a finite
field F. Let C be a [k + t, k, d] code defined by the generating matrix E =

4.2. TWO SCHEMES BY GODLEWSKI AND CAMION 37

(
Ik|A

)
such that Ik is the k × k identity matrix over F and the size of A is

k × t. Fix a collection of injective one way functions φi : {0, 1}b → F for
i = 1 to k. To compute the digest of a bk-bit message m, proceed as follows:

1. Compute γi = φi(m[i]) for i = 1 to k and let γ = (γ1, . . . , γk).

2. Encode the vector γ under C as γE = (γ1, . . . , γk, γ
′
k+1, . . . , γ

′
k+t).

3. Output the t redundancy symbols γ′k+1, . . . , γ
′
k+t.

The resulting t-dimensional vector is equal to the matrix product γA. Given
an y ∈ F t, a preimage under A can be found easily by linear algebra. For
this reason the one-way injections φi were used.

Separation of Colliding Inputs By the properties of the code, any two
codewords must differ in at least d entries. If two non-identical codewords
collide on the last t positions, they necessary differ in at least d from among
the first k positions. If two different messages have identical digests, the
message vectors over F differ in at least d entries. By injectivity of φi, the
messages need to differ in at least d corresponding b-bit blocks. The authors
consider MDS codes that achieve d = t+ 1. It is suggested that |F | > 2100,
k + t < 232 and 2 ≤ t ≤ 10. This allows potentially more separation of
colliding inputs than in the case of Bosset’s function.

4.2.3 Cryptanalysis

We can rewrite the function in the following more familiar form:

1. Initialize x1 = 0 ∈ F t.
2. For i = 1 to k compute xi+1 = xi + γiAi.

3. Output xk+1.

The expression Ai stands for the i-th row of A and the addition is performed
in the additive group (F t,+). If we define Li =

{
φi(x)Ai|x ∈ {0, 1}b

}
, then

the inversion of H is an instance of the k-sum problem. If the characteristic
of F is small, the problem can be solved efficiently by linear algebra. For high
characteristic, Godlewski and Camion adapt the tree algorithm from [30].
If the length of blocks is big enough, the function can be inverted in about
22
√
n steps by varying approximately 2

√
n input symbols for n ≈ log2 |G| (cf.

Section 3.6.1).

38 CHAPTER 4. EARLY HASH FUNCTIONS IN GROUPS

4.3 Matrix Multiplication by Tillich and Zémor

Zémor modified the scheme of Bosset by fixing b = 1 and k = 2 and working
in a subgroup of GL(2,Fp) [153, 152]. Let G = SL(2,Fp) ⊆ GL(2,Fp) be
the multiplicative group of 2× 2 matrices over Fp with determinant 1. The
set A of generators only contains the two elements

a1 =

(
1 1
0 1

)
, a2 =

(
1 0
1 1

)
such that φ(0) = a1 and φ(1) = a2. The algorithm is otherwise identical to
that of Bosset. The specific matrices allow faster hashing than a random
choice would. No field multiplications are needed, one only needs to perform
additions of integers modulo p. The group G has approximately p3 elements.
The suggested length of p is 150 bits, the output would be 3 log2 p ≈ 450
bits long.

Cayley Graph Interpretation Consider the directed 2-regular Cayley
graph associated to G and the generator set A. The hash function iteration
can be seen as a walk starting in the vertex representing the identity in G.
For every input bit mi follow the edge labeled φ(mi). Output the group
element represented by the final vertex reached.

Separation of Colliding Inputs

The separation property derived by Bosset is preserved. A bit flip as well as
a swap of two adjacent bits always change the result. The special choice of
A allows to prove more.

Proposition 4.1. If x1, . . . , xi and y1, . . . , yj are two different bit strings

colliding under H, then max(i, j) ≥ δ such that δ = logα
p
2 for α = 1+

√
5

2 .

Proof Sketch. Omit the modular reduction and compute the products

X = φ(x1)φ(x2) . . . φ(xi)

Y = φ(y1)φ(y2) . . . φ(yj)

over the ring of integers and show that X 6= Y when unreduced. On the
other hand, X − Y = 0 modulo p. Therefore at least one entry in X − Y is
an integral multiple of p. Taking norms it follows that ||X − Y || ≥ p and

max(||X||, ||Y ||) ≥ p

2
.

4.3. MATRIX MULTIPLICATION BY TILLICH AND ZÉMOR 39

The norm of a1 and a2 is equal to α. The result follows from sub-multipli-
cativity of matrix norms.

Corollary 4.2. If a message m′ is obtained from m by replacing i consec-
utive bits by a different string of j bits for i, j as in Proposition 4.1, then
H(m) 6= H(m′).

For a 150-bit p, the value of δ is slightly less than 215. In the case of
Bosset’s function, colliding inputs had to differ in at least two 6-bit blocks.
With the function by Zémor and Tillich, one is guaranteed to get distinct
results when hashing all the 2215 messages that are at most 214 bits long.

Security

The function was designed to offer collision resistance, but the original choice
of A turned out to be insecure. Tillich and Zémor devised a fast collision
finding algorithm [138]. Considering the computation over Z a short factor-
ization of the identity in terms of a1 and a2 can be found with the help of
Euclid’s algorithm. Such factorizations always lead to colliding messages.
The authors proposed to replace the generators in A by their small integral
powers to prevent the attack.

Camion’s attack applying on Bosset’s function was claimed to be no
threat, because the special form of generators allowed to choose big p and
consequently large |G|. The change in G itself would also require a new
chain of subgroups Ki.

Binary Fields

The field Fp was replaced by a binary field in [139]. Let p(t) be an irreducible
polynomial of degree d > 1 over F2 and define F = F2[t]/ (p(t)). The two
generators in A were replaced by the pair

a1 =

(
t 1
1 0

)
, a2 =

(
t t+ 1
1 1

)
.

Proposition 4.1 adapted to the new setting leads to δ = d + 1. To
obtain the result, one looks at the maximal degree of polynomials within the
matrices. The generators in A have degree one, Tillich and Zémor show that
in order to obtain equality mod p(t) one needs to reach at least degree d.

The suggested values for the degree d were 130− 170, the corresponding
output sizes would be 390-510 bits.

40 CHAPTER 4. EARLY HASH FUNCTIONS IN GROUPS

4.3.1 Cryptanalysis

The proposal did not restrict p(t) in any way. Charnes and Pieprzyk ex-
ploited this and showed how to construct p(t) such that one of the genera-
tors in A has low degree [36]. Collisions are trivial to construct for such an
instance.

Steinwandt et al. exhibited more choices of p(t) that were vulnera-
ble [135]. Collisions can easily be computed if a non-trivial decomposition
p = g(h(t)) is known. This requires d to be composite, the attack can be
avoided if d is prime.

In more recent paper, Grassl et al. described an efficient collision-finding
algorithm that is independent of the choice p(t) [59]. They lift the computa-
tion to the ring of matrices over the polynomial ring F2[t] and find colliding
messages only 2d + 2 bits long. The attack was generalized by Petit and
Quisquater to find preimages efficiently [108].

4.4 Group Subset Sums by Impagliazzo and Naor

Families of compression functions in general finite groups were also consid-
ered by Impagliazzo and Naor [63, 64].

Definition Let (G,+) be a finite group. Let k be an integer such that
|G| < 2k. Select k distinct elements of G at random, denote them by
a1, . . . , ak. Let m be a k-bit input message consisting of bits m1 to mk.
Define a compression function H : {0, 1}k → G as follows:

H(m) =

k∑
i=1

miai , (4.1)

where the sum is computed in (G,+).
If we substitute an additive group of integers forG, the function computes

“standard” subset sum and any hardness assumptions on such problems
transfer to statements on preimage resistance of H.

For some choices of G the authors proceed to prove security based on
number-theoretic problems using Theorem 3.1.

Integer Multiplication

Given a group G = 〈g〉 the mapping i 7→ gi is an onto homomorphism.
Inverting a subset sum function G is therefore at least as hard as a fraction
1/k of the cost of computing discrete logarithms.

4.5. INTEGER ADDITION BY DAMGÅRD 41

A preimage resistant function can therefore be built in any group where
logarithms are hard to compute, such as multiplicative groups of finite field
described in Section 3.2.

The function x 7→ x2 in the group of quadratic residues modulo M is an
onto homomorphism. Square roots modulo M are known to be as hard as
factoring. A subset product on k random quadratic residues mod M is at
least as hard as 1/k of the cost of factoring M .

Impagliazzo and Naor also showed that the subset product function mod-
ulo M = pq for p, q prime can be reduced to subset product in the group of
quadratic residues modulo M . One can therefore pick the ai from all of ZM ,
the choice is not limited to the quadratic residue subgroup. Removal of this
restriction introduces at most a k-fold drop in security.

No explicit parameter values were proposed. An instance of the above
function would need to store k group elements and performs a single group
operation per bit of input.

4.5 Integer Addition by Damg̊ard

In order to avoid the attack on the additive function from Section 4.2.1,
Damg̊ard proposed to limit the compression ratio and therefore the knap-
sack density [44]. The compression function would be turned to a full hash
function by the means of the new mode of operation (cf. Section 2.5). Con-
crete parameters proposed for the function were k = 256 and M = 2120 − 1.
The sum

H(m) =

k∑
i=1

miai

is then at most 128 bits long. Total size of the weights is under 4 kB, the
function performs a single 128-bit addition per input bit. With a 256-bit
input the function compresses by a factor of two.

4.5.1 Cryptanalysis

No explicit bounds on security of the compression function were proved by
the designer. Camion and Patarin described an inversion algorithm that is an
8-list instance of the tree algorithm from Section 3.6.1 [31]. Select a modulus
M ′ ≈ 2128 such that M ′ =

∏4
i=1Mi for Mi ≈ 232 that are pairwise coprime.

The modulus M ′ is greater than the maximum possible value of an output
of H, we can consider the function to operate in the additive group ZM ′ .

42 CHAPTER 4. EARLY HASH FUNCTIONS IN GROUPS

By the Chinese Remainder Theorem there is an efficient isomorphism to the
additive group

ZM1 × ZM2 × ZM3 × ZM4 .

This representation provides the chain of subgroups needed to run the tree
algorithm. The attack starts with 8 lists of 232 integers. Split the weights
ai in eight subsets of 32 and fill each list with all the sums over a subset of
weights. Three merging steps result in a single list of 232 ≈M4 elements all
equal to the target sum y modulo M1M2M3. One solution can be expected
to match modulo M4 as well. This solves the subset sum instance and leads
to a bit string that hashes to y.

The lists would occupy approximately 64 GB of space. The attack algo-
rithm was not implemented.

Lattice Attacks The underlying subset sum instance was beyond the
reach of lattice reduction algorithms available at the time it was proposed.
When improved algorithms appeared [125], Joux et al. described an ap-
proach to find collisions in the full hash function [66, 69]. To allow any value
in the chaining variable, only the subset-sum instance formed by the last 128
weights was attacked. The density of the instance is approximately 1.

A later reduction algorithm led to even more efficient collision search
attacking only 128 weights [126].

4.6 Vector Addition by Goldreich et al.

Security of the family of compression functions described in this section
is related to hardness of lattice problems and follows Ajtai’s construction
sketched in Section 3.3.3. Let q be a prime number, and k, d be integers such
that k > d log2 q, k <

q
2d4

and q = O(dc) for a constant c. Select a random
d× k matrix A with entries from Zq. Let m be a k-bit input message, here
interpreted as a k-dimensional vector over Zq. Define a compression function
as

H(m) = Am =
k∑
i=1

miai,

where ai is the i-th column of A and all the computations are performed
modulo q. The output is a d-dimensional vector over Zq. This function
matches the general definition (4.1) where G is the additive group (Zq)d.

Note that the function is linear, therefore given y ∈ (Zq)
d it is trivial to

find x ∈ (Zq)k such that Ax = y. Only the solutions with entries limited to

4.7. FAST SYNDROME BASED HASH 43

0, 1 are preimages of y under H. A non-zero x with entries {−1, 0, 1} such
that Ax = 0 corresponds to a collision in H. Construct messages m,m′ such
that mi = 1 if xi = 1 and m′i = 1 if xi = −1 and mi = m′i are identical on
bit positions where xi = 0.

By Ajtai’s result (Section 3.3.3), the function is hard to invert on average
if SVP is hard to approximate in the worst case. Goldreich et al. pointed
out that H is collision resistant as well [56]. No explicit parameter choices
or concrete security bounds were provided.

4.7 Fast Syndrome Based Hash

In this section we define the early variant of the Fast Syndrome Based com-
pression function proposed by Augot et al. [8]. Let G = ((Z2)n,⊕) be the
group of all n-bit binary strings with the XOR operation. Let b, k be pos-
itive integers such that bk > n. Select a random binary n × k2b matrix A.
Define functions φi : {0, 1}b → {0, 1}n for i = 1 to k that interpret the input
as a binary expansion of an integer and φi(x) returns the column number
(i− 1)2b + x+ 1 from the matrix A.

If the i-th b-bit chunk of m is denoted by m[i], the FSB Compression
function can be defined in the following familiar form:

1. Initialize x1 = 0 ∈ {0, 1}n.

2. For i = 1 to k compute xi+1 = xi ⊕ φi(m[i]).

3. Output xk+1.

The function involves k−1 XOR operations on n-bit strings, the total size
of the defining matrix is nk2b bits. If we first transform the input message
to a k2b-bit string s that has value 1 precisely on the bit positions numbered
(i−1)2b+m[i]+1 for i = 1 to k, the function can be seen as a simple matrix
multiplication

H(m) = As . (4.2)

This function computes the hash value as a sum of k group elements, but
the number of “weights” in the knapsack is increased. The function needs
only a single group operation per b message bits, but it stores k2b group
elements.

4.7.1 Security

Augot et al. proved the function secure under an assumption on the hardness
of syndrome decoding problems. We shall discuss the argument in more

44 CHAPTER 4. EARLY HASH FUNCTIONS IN GROUPS

Table 4.1: FSB and the Tree Algorithm

b k n list length # of lists cost

8 64 160 230 32 236

8 96 224 238 32 243

6 128 288 258 16 262

detail in Chapter 5.

The matrix product itself (4.2) is trivial to invert. However, only certain
k2b-bit vectors correspond to input messages. In order for such a vector to be
valid, its weight must be equal to k and precisely one bit has to be set in each
of the k consecutive 2b-bit windows. Such words are called regular. Augot
et al. considered the complexity of an Information Set Decoding algorithm
to derive secure values of the parameters b, k, n. The three parameter sets
proposed are captured in the first three columns of Table 4.1. Attacks were
claimed to cost more than 280 binary operations. In case of the first function
this applies to preimage search. For the two other proposals, it holds for
collision search as well.

4.7.2 Cryptanalysis

Coron and Joux applied the tree algorithm to find collisions in the three
FSB variants [41]. Originally there are k lists Li of 2b elements each. Size
of the target group is 2n. For each list Li form a new list L′i that contains
sums of precisely two distinct elements from Li. Every solution to the k-sum
instance over L′i with the target 0 corresponds to a pair of colliding messages.

Length of L′i is approximately 22b−1. The tree algorithm in this setting
has little chances of success, because 2b − 1 < n/(1 + log2 k) for all three
variants. Coron and Joux therefore first combine the lists L′i to reduce their
number and increase the length. This attack is an instance of the extended
tree algorithm described in Section 3.6.1. The number of lists, their length
and the total claimed complexity of the attack are captured in Table 4.1.
Note that the last attack modifies at most 576 bits out of the 768 bits of
input. The remaining 192 bits of the colliding messages must be equal, but
can be chosen freely.

4.8. INCREMENTAL FUNCTIONS BY BELLARE AND MICCIANCIO45

4.8 Incremental Functions by Bellare and Miccian-
cio

Bellare and Micciancio proposed a family of incremental hash functions in
finite groups [17]. Contrary to other proposals in this chapter, a secure
compression function is not only the goal of the construction, but also a point
of departure. The goal is to provide a mode of operation that allows fast
and simple updates of hash values.

Let (G, ∗) be a finite commutative group. Fix a block size b and assume
ϕ : N × {0, 1}b → G is a collision resistant compression function. To hash
a bk-bit message m proceed as follows:

1. Initialize x1 = 1G.

2. For i = 1, . . . , k compute xi+1 = xi ∗ φ(i,m[i]) .

3. Return xk+1.

The central feature of the construction is incrementality. If a block m[i]
in a message m is replaced by m′[i], the digest of the new message can be
easily computed from H(m) as

H(m) ∗ φ(i,m[i])−1 ∗ φ(i,m′[i]) .

If the function φ is modeled as a random oracle, the incremental con-
struction results in a collision resistant hash function provided the following
problem is hard:

Problem 4.1 (Balance Problem). Given random elements a1, . . . , al of a
group G find two disjoint sets I, J ⊆ {1, . . . , l} not both empty such that∏

i∈I
ai =

∏
j∈J

aj

where the product is computed in G.

Bellare and Micciancio proceed to investigate several choices of the un-
derlying group G and the resulting compression functions.

XHASH

If G is the group ((Z2)n,⊕) of n-bit binary strings with the XOR operation,
the function was shown to be insecure as soon as k exceeds n. Collisions can
easily be found using linear algebra in that case (cf. Section 3.6.1), therefore
this choice of G is not suitable for use in the construction.

46 CHAPTER 4. EARLY HASH FUNCTIONS IN GROUPS

MuHASH

If G is a multiplicative group such as Z∗p for p a suitable prime, the Balance
problem in G is hard if discrete logarithms are hard to compute. The setting
is analogous to that in Section 4.4. The authors point out that even if discrete
logarithms were easy, the function MuHASH would likely remain secure.

AdHASH

Bellare and Micciancio also considered the additive group of integers modulo
M in place of G. Such a function is one-way by the arguments from Section
4.4. The authors need to make a new assumption to prove the function
collision free. They relate the hardness of the underlying problem to lattice
SVP and argue that even if SVP were easy, the knapsack problem may
remain hard.

LtHASH

The group
(
(Zp)d,+

)
earlier proposed by Goldreich et al. was also consid-

ered. The security argument is similar as in Section 4.6. The compression
function of Goldreich et al. restricted the input length and required a single
group operation per input bit. The variant by Bellare and Micciancio allows
longer messages and can get much faster, because one only needs a single
operation per b input bits.

4.8.1 Cryptanalysis

For a message bk bits long the scheme computes a sum of precisely k group
elements, every single of them is selected from approximately 2b possible
outputs of φ. Inversion of the hash function is an instance of the k-sum
problem in G.

Wagner applied the tree algorithm to AdHash to find preimages in ap-

proximate time 22
√

log2M [147, 146]. In order to achieve 280 security, the
modulus M would have to be about 1600 bits long.

Note that if discrete logarithms are easy in G, the function MuHASH
can easily be transformed to an instance of AdHASH and the same subex-
ponential attack applies.

Chapter 5

Knapsacks Revisited

The cryptanalysis of MD5 and SHA-1 resulted in more intensive hash func-
tion research and led to renaissance of several constructions, including knap-
sack-type hash functions. Most of the proposed functions advertised some
sort of provable security. We summarize the recent developments and pay
special attention to any quantified security levels and their connection to
the proofs provided. In doing so, we always assume the implicit cost models
used by the designers and directly adopt any complexities computed. Parts
of this chapter were published in the article Interpreting Hash Function Se-
curity Proofs [122].

5.1 New Variants of FSB

Recall the basic FSB from Chapter 4 that hashes bk bits by computing
a XOR of precisely k binary vectors of length n. There are a total of 2b

choices for each vector in the sum. As a response to the generalized birth-
day attack by Coron and Joux described in Section 4.7, Augot et al. re-
considered the parameter choices for FSB and proposed new variants with
longer output [9]. The total size of the associated defining matrix is nk2b

bits, this update to FSB therefore leads to increased storage requirements.
For reasonable speed and security levels, the matrix A has prohibitive size
of several megabytes, in a few cases even hundreds. In a later improvement
to FSB, Finiasz et al. replace the random matrix A by a quasi-cyclic matrix
with compact description and argue that this change has no negative impact
on security [47]. To define such a matrix select the first row at random and
compute the remaining rows as cyclic shifts by multiples of a fixed integer
constant u. The update to the design reduces the space needed by a factor

47

48 CHAPTER 5. KNAPSACKS REVISITED

Table 5.1: FSB Parameters for SHA-3
b k n

FSB160 14 80 640

FSB224 14 112 896

FSB256 14 128 1024

FSB384 13 184 1472

FSB512 13 248 1984

of n. Some of the parameter sets satisfied n ≤ k and therefore allowed the
underlying k-sum problem to be solved fast using linear algebra. In order
to find collisions, it is sufficient that n ≤ 2k. The attack was (re-)discovered
and implemented by Saarinen [121]. Fouque and Leurent found a weakness
in the quasi-cyclic matrix for n composite [50]. The attacks were followed
by another update to the FSB design.

5.1.1 SHA-3 Candidate

A variant of FSB was submitted to the NIST SHA-3 competition by Augot
et al. [7]. The proposal was not selected for the second round. It consists
of an iterated compression function followed by a final transformation to
compress the output further. The operation of the compression function
is identical to FSB as it is described in Section 4.7. The parameters are
selected with respect to all the attacks we mentioned so far. The n × k2b

matrix A is generated from k2b/n vectors of p bits for prime p > n. Any
column of the matrix can be efficiently computed as a cyclic shift of one of
the vectors truncated to n bits. The FSB compression step is followed by
a single application of a compression function g to reach the desired output
length. The mapping g is instantiated by the hash function Whirlpool [12].
The five parameter sets proposed are listed in Table 5.1. The superscript l in
FSBl denotes the final desired output length that is achieved by compressing
the n bits by the function g in the final transformation.

Security Claims

The function is proved preimage resistant reducing to the Computational
Syndrome Decoding problem and collision resistant reducing to the Code-
word Finding problem. Both proofs are immediate. Preimage search is easily
seen to be a special case of CSD for the matrix A and weight k, collision

5.1. NEW VARIANTS OF FSB 49

Table 5.2: Cost of Decoding Problems for FSB
CSD CF

ISD Tree ISD Tree

FSB160 2211.1 2163.6 2100.3 2119.2

FSB224 2292.0 2229.0 2135.3 2166.9

FSB256 2330.8 2261.6 2153.0 2190.7

FSB384 2476.7 2391.5 2215.5 2281.0

FSB512 2687.8 2527.4 2285.6 2378.7

search is a special case of CF with w = 2k. If the two problems are assumed
hard for matrices such as A, this trivially implies the two security properties
for f . There are however no explicit lower bounds tied to the assumptions,
therefore no lower bounds on security are derived. The designers assessed
security further looking at possible attacks only.

A detailed analysis of algorithms solving the underlying CSD and CF
instances was performed. One of the algorithms is a variant of Information
Set Decoding (ISD), the other is Wagner’s tree algorithm. The cost levels
are displayed in Table 5.2.

The values above are reported as the best attacks against the compression
function of FSB. If they were attacks the quantities would become type
U bounds in our notation. However, the ISD and Tree algorithm attacks
considered only solve the more general underlying CSD and CF instances.
Any k2b-bit vector x with weight at most k such that Ax = y is good enough
for CSD. In order for x to be a preimage under H it also has to be regular.
That means precisely one bit set in each of the k consecutive windows of
2b bits. Similarly, pairs of colliding inputs only form a proper subset of
solutions to the corresponding CF problem. The quantities in Table 5.2 do
not necessarily correspond to cost of actual attacks and only constitute uL
bounds. Breaking the compression function can still be harder. Bernstein et
al. reported higher cost of the tree algorithm when the search is limited to
the vectors with proper form to break FSB [21].

In the submission to NIST, the security of FSB combined with the final
compression g was evaluated with respect to the uL bounds in Table 5.2. For
concreteness consider collision resistance of FSB256, the same argument can
be made for the remaining variants too. In this case the uL bound is 2153.
Output of f is 1024 bits long and this security is considered deep below the
trivial U bound 2512 due to generic attacks. This discrepancy is “fixed” by

50 CHAPTER 5. KNAPSACKS REVISITED

the final transformation g. The 1024 bits are compressed to yield a 256-bit
result using the hash function Whirlpool.

The authors remark that ”the complexities of the attacks on the FSB
compression function . . . can thus be transposed directly to the whole hash
function and are all above the complexities of generic attacks on the whole
FSB . . . ” Collisions in g◦f are no harder to find than collisions in f . The uL
bound 2153 thus transfers to g ◦ f . This is above the trivial U bound due to
a generic attack. We are therefore left with a U bound 2128, that is trivially
also a uL bound with respect to any L bound. Such a bound is independent
of the hardness assumption. So is the claim of the designers that FSB256

achieves 128-bit collision resistance. All the variants are claimed to achieve
the maximum security possible.

It might seem that the problem is that g compresses too much. What if
the cost of generic attacks on g ◦ f is above the cost of attacks on f? Can
the intermediate 1024 bits in FSB256 be compressed a little less to maintain
some of the provable security? With a 320-bit output from g, attacking f
might be faster. This would nevertheless only lead to a U bound, because
a collision in g ◦ f does not imply a collision in f .

Could lower bounds be preserved? A collision in g ◦ f implies a collision
in one of the two components. If there were L bounds lf and lg tied to f
and g respectively, the smaller of the two would then be a lower bound on
security of the composition. Such proof would be possible if g could be as-
sumed collision resistant in the first place. Because g is fixed, the assumption
is trivially false. Although composing the FSB compression function with
a provably collision resistant final transformation can preserve the lower
bound(s), it would resemble a circular argument where a provable collision
resistant function is designed given a provable collision resistant function.
Finiasz remarks that “. . . as far as provable security is concerned, choosing
a provably collision resistant function g is probably the only choice at the
moment“ [46]. The later submission to NIST leaves this simple observa-
tion out. The authors of FSB consider collision resistance of Whirlpool too
strong an assumption [7]. For eventual collisions in Whirlpool to extend to
the complete FSB one needs to invert the FSB primitive. This is also an
argument from an attack perspective, it does not lead to an L bound.

Summary

One claim of the designers in [7] reads as follows:

The most decisive advantage of FSB is that it comes with a proof

5.2. HASH FUNCTIONS FROM EXPANDER GRAPHS 51

of reduction to hard algorithmic problems. An algorithm able to
find collisions on FSB or to invert FSB is also able to solve hard
problems from coding theory.

No such statement is proved in the FSB proposals. The security level
claimed by designers is not supported by a type L bound. This is due to lack
of type L bounds in an assumption and in particular due to the presence of
the final compression by Whirlpool.

The complexity estimates in Table 5.2 were later slightly updated by
Finiasz and Sendrier [49]. There the quantities were interpreted as lower
bounds on the cost of algorithms solving CSD and CF. Extending our nota-
tion, the type of the bounds in that context would be luL (i.e. lower bound
on a particular uL bound). Finiasz and Sendrier suggested these quantities
be adopted as L bounds. Not considering the final transformation g, the L
bounds would then transfer to the compression function f .

5.1.2 Really Fast Syndrome Based Hash

Bernstein et al. designed a fast variant of FSB by optimizing the matrix A
and by hashing in a smaller group than any FSB variant proposed for SHA-
3 [22]. The parameters used are b = 8, k = 112, n = 509, there is no final
transformation. No provable security claims were made at all. Based on the
cost of attacks, the authors claim collision resistance of at least 2128.

5.2 Hash Functions from Expander Graphs

Charles et al. proposed a hash function similar to the multiplicative group
design by Zémor and Tillich. At the time, the latter was not considered
broken for well-chosen parameters. Messages are hashed by multiplying ma-
trices over a finite field [35]. The group used is G = PSL(2,Fp) for prime
p ≡ 1 mod 4. It consists of all the 2× 2 matrices over Fp with determinant
1, modulo the equivalence relation M ∼ −M .

Let l ≡ 1 mod 4 be a prime number smaller than p, such that l is
a quadratic residue modulo p. Let i be an integer such that i2 ≡ −1 (mod p).
Define the set of k = l + 1 generators A = {a1, . . . , al+1} where

aj =

(
g0 + ig1 g2 + ig3

−g2 + ig3 g0 − ig1

)
and (g0, g1, g2, g3) cycle through all the l+1 integer solutions to g2

0 +g2
1 +g2

2 +
g2

3 = l with odd g0 > 0 and even g1, g2, g3. The choice of G and A is inspired

52 CHAPTER 5. KNAPSACKS REVISITED

by an expander graph construction by Lubotzky, Phillips and Sarnak [83].
The function is therefore referred to as LPS Hash.

The construction follows along the lines of Bosset’s proposal (cf. Section
4.1). Messages are processed in blocks of b = blog2 (|A| − 1)c bits. A fixed
injective encoding φ : {0, 1}b → A would allow trivial collisions, because
A is closed under inversion. Charles et al. propose to encode input blocks
adaptively in order to avoid the element ai to be immediately followed by
a−1
i . Fix injective functions φj : {0, 1}b → A \ {aj} for j = 1 to l + 1. The

function φj leaves out the element aj . If the i-th block of input m[i] was
mapped to aj , apply the function φj to encode the block m[i + 1]. Use an
arbitrary (fixed) φj to encode the first block.

Morgenstern Hash Petit et al. generalized the above construction to
compute over any finite field and proposed to use binary fields for effi-
ciency [106].

Due to the increase in b, the new functions perform fewer matrix multi-
plications per input bit than the function by Zémor and Tillich. The families
also provide unconditional separation of colliding inputs. The property is
connected to a lower bound on the length of cycles in the corresponding
Cayley graph.

5.2.1 Provable Security

The LPS and Morgenstern hash functions had originally been claimed to be
provable collision resistant or provable, respectively. The underlying hard
computational problem is the search for a product

∑N
i=1 a

ei
σ(i) = 1G for σ :

{1, . . . , N} → {1, k} under the condition that aσ(i)aσ(i+1) 6= 1G and that∑
|ei| is within O(log p). The last condition rules out the useless “trivial”

solutions that raise an ai to very high powers such as |G|. Such messages
are too long to be relevant for security.

The implicit security proofs were not used to derive quantified type L
bounds on collision resistance. Neither were any U bounds provided, apart
from the trivial U bounds due to generic attacks. Provable security was
understood to be established simply by linking it to the group problem.
There was no quantified estimate on the hardness the underlying problem.

Parameters should be selected such that p is of “cryptographic size”. As
an example it was suggested that log2 p ≈ 1024 and l = 5.

5.3. GENERALIZED COMPACT KNAPSACKS 53

5.2.2 Cryptanalysis

Tillich and Zémor found an efficient collision attack on LPS by lifting the
computations to the group PSL(2, Z[i]) [140]. Collisions for a variant with
1024-bit p were computed on a single workstation within seconds. The
method was adapted to the Morgenstern hash and extended to find preim-
ages by Petit et al. [107]. The attacks exploit the special form of the gener-
ators and do not solve the group problem in general.

5.3 Generalized Compact Knapsacks

Micciancio proposed a family of compression functions that generalize group
knapsacks to finite commutative rings [93, 94]. Given a ring R, let A ⊆ R be
a set of weights. Extend the set of possible coefficients in a knapsack from
{0, 1} to a possibly larger set D ⊆ R. For fixed k = |A| let b = blog2 |D|c
and fix an injective encoding φ : {0, 1}b → D. To compress bk bits, compute
the function

H(m) =
k∑
i=1

φ(m[i])ai ,

where the additions and multiplications are performed in R. Such a function
performs a single ring multiplication and addition per b input bits and only
k ring elements are needed to specify a particular instance. It can be viewed
as a k-sum in the additive group of R.

For appropriate choices of R and D the above function was shown to
be asymptotically preimage and collision resistant on average under a worst
case assumption on special classes of lattices. Preimage resistance was shown
by Micciancio [93]. Collision resistance of related function families was es-
tablished independently by Peikert and Rosen [105] as well as by Micciancio
and Lyubashevsky [85]. The reductions are similar to the famous result of
Ajtai sketched in Section 3.3.3.

5.3.1 SWIFFT

A practical hash function following the above principles was proposed by
Lyubashevsky et al. [86, 87].

Definition

The SWIFFT compression function is defined in the ringR = Zq[α]/
(
αd + 1

)
for q = 257 and d = 64. Let A be a fixed set of k weights from the ring for

54 CHAPTER 5. KNAPSACKS REVISITED

k = 16. Restrict the set D to d-bit binary vectors interpreted as elements of
R. To hash a dk bit message compute the expression

H(m) =
k∑
i=1

m[i]ai , (5.1)

where each m[i] is interpreted as an element of D. The resulting ring element
is a d-dimensional vector over Zq and can be represented by about n =
d log2 q ≈ 512 bits.

Addition of elements of R corresponds to addition in (Zq)
d. The ring

products m[i]ai involve multiplication of two polynomials over Zq modulo
αd + 1. Lyubashevsky et al. significantly reduce the complexity of this step
by a series of tricks involving FFT multiplication. The polynomial m[i] is
evaluated on all the odd powers ω2j−1 of ω = 42 for j = 1 to d to obtain d
primitive Fourier coefficients of m[i]. Because the ai are constant, their FFT
representation can be precomputed once and for all. The FFT coefficients
of the product m[i]ai can then be computed in d multiplications in Zq. The
result can safely be left in the Fourier representation, it is not necessary
to compute the inverse FFT. A fixed linear bijection has no effect on the
security of H.

Security

As an instance of a generalized compact knapsack, the compression function
SWIFFT is proved preimage and collision resistant on average. The related
worst case assumption says that short vectors are hard to approximate in
the lattice

L = {g mod (αd + 1) : g ∈ I}

for an ideal I ⊆ Z[α]/
〈
αd + 1

〉
and d→∞. The security proof is asymptotic

and therefore does not directly lead to a quantified type L bound on security
for d fixed. Such reductions are commonplace in lattice-based cryptography.
We can nevertheless assume that for a particular choice of d the proof does
establish type L bounds on security that are not explicitly quantified.

The designers of SWIFFT are careful to interpret the security reduction
and make clear that they do not claim full security of 2n or 2n/2 against
preimage resp. collision attacks. Security of the instance should further be
assessed by considering attacks.

Connection to Subset Sum Because αd = −1 in the ring R the product
of polynomials aim[i] can be represented as a matrix-vector product Aim[i]

5.3. GENERALIZED COMPACT KNAPSACKS 55

over Zq. The matrix Ai is a d × d skew-circulant matrix built from the
coefficients of the polynomial ai. If M denotes the d×kd matrix A1|A2| . . . Ad
and m is a kd-bit message, then the SWIFFT compression function simply
computes the matrix product

H(m) = M ×m . (5.2)

In this above representation the SWIFFT function becomes an instance
of the compression function GGH (cf. Section 4.6) with a special defining
matrix.

Recall that FSB also had similar representation as a matrix product. Just
as it was the case for FSB, the linear system of SWIFFT is easy to invert. Not
every solution corresponds to an input message. For SWIFFT, coefficients of
preimages must be limited to {0, 1} and for collisions to {−1, 0, 1}. Another
similarity with FSB is the use of cyclic shifts to reduce the total size of the
matrix.

SWIFFT and the Tree Algorithm Another possible interpretation of
SWIFFT is as a k-sum. The d-bit chunk m[i] is mapped to one of the 2d

possible elements aim[i] ∈ (Zq)d. The compression function is then simply
a sum of precisely 16 elements of the additive group of d-dimensional vectors
modulo q. Lyubashevsky et al. analyze the cost of Wagner’s tree algorithm
involved in preimage and collision search. The smooth value of d = 64
allows enough freedom in finding the appropriate subgroups Ki needed. An
inversion attack can start with 8 lists and needs 2128 time and space. A
collision finding attack with 16 lists costs 2106. These are derived as lower
bounds on the cost of two particular attacks. In our language the type for
such bounds is lU. These quantities can actually be considered reasonable
upper bounds on security, in particular because the algorithm by Minder and
Sinclair is likely to run faster on the instances in question. We can therefore
safely consider the two quantities 2128 and 2106 to be type U bounds. This
trivially implies that even if the provable L bounds were quantified, preimage
resistance cannot exceed 2128 and collision resistance is below 2106. The type
U bounds associated to attacks provide concrete and valuable information
on provable security.

The security reduction links security of SWIFFT to worst case lattice
problems in dimension d = 64. Buchman and Lindner suggest that any
lower bounds on inversion should be considered “insignificant” [29]. This
reasoning is based on the results of Gama and Nguyen who claim that exact
SVP in dimension up to approx. 70 should be considered easy.

56 CHAPTER 5. KNAPSACKS REVISITED

SWIFFT and Lattice Reduction The designers of SWIFFT point out
that the space of solutions to the system (5.2) is a modular lattice with
dimension kd. A non-zero vector with entries limited to {−1, 0, 1} reveals
a pair of colliding messages for H. Such vectors are shortest in the l∞ norm.
The dimension kd = 1024 is well out of reach of modern lattice reduction
algorithms.

5.3.2 SHA-3 Candidate

A hash function SWIFFTX based on the SWIFFT primitive was submitted
as a SHA-3 candidate by Arbitman et al. [6]. The proposal was not selected
for the second round.

The SWIFFTX compression function maps 2048 bits to 520 bits by com-
bining four calls to SWIFFT, each with a different set of knapsack weights.
The four calls to SWIFFT are combined in a way that is believed to make
the known attacks inefficient. First the 2048-bit input is compressed using
three parallel instances of SWIFFT with k = 32 to compute 1560 bits. A
fixed invertible injection extends this intermediate result to 1600 bits. Then
a single SWIFFT instance with k = 25 is applied and 520 bits are output.

The designers are careful to preserve the provable collision and preimage
resistance of the building blocks. A collision in SWIFFTX implies a colli-
sion in at least one of the four SWIFFT components. The ability to find
preimages also implies inversion of a SWIFFT building block. Effectively,
the least of the lower bounds that applied to the building blocks is valid for
SWIFFTX.

For the internal SWIFFT instance with r = 25 the designers mention
a preimage finding attack that applies Wagner’s algorithm and requires 2100

operations. This is a U bound, hence also a uL bound on the unknown
type L bound tied to the proof. Therefore any type L bound on preimage
resistance transferred from SWIFFT to SWIFFTX is at most 2100. A col-
lision finding attack on the instance with r = 25 would probably be even
easier, in any case the same quantity 2100 is a uL bound on the L bound on
collision resistance inherited from SWIFFT. The three instances with r = 32
are likely to be strictly easier and may drag the uL bounds even lower.

The designers of SWIFFTX analyzed various sorts of attacks on the
complete compression function and concluded that none of them was faster
than the generic attacks. The construction thus “wipes out” the type U
bounds there were for SWIFFT. One ends up with the trivial U bounds due
to generic attacks.

In conclusion, Arbitman et al. do claim full n-bit preimage security and

5.4. VERY SMOOTH HASH 57

n/2-bit collision security. This may well be a reasonable conclusion, but it
is definitely not supported by a security proof.

The uL bound 2100 on the provable security inherited from SWIFFT
remains valid. This is not a complexity of an actual attack, improved proofs
may be possible.

5.4 Very Smooth Hash

Very Smooth Hash introduced by Contini et al. [40] offers provable collision
resistance under an assumption heuristically linked to the hardness of factor-
ing. It can be seen as a generalization of the function H(m) = am mod M
for fixed a and M a hard-to-factor integer. A pair of colliding inputs re-
veals a multiple of ϕ(M) that can be used to factor M fast. The mapping
was considered by Pointcheval [110] as well as Shamir and Tauman [130].
In VSH, the single element a is replaced by a larger set of weights and the
function computes a modular multi-exponentiation.

5.4.1 Basic VSH

Let M be an n-bit hard to factor modulus. Denote the i-th prime number
by pi and let p0 = −1. Let k be the largest integer such that

∏k
i=1 pi < M .

Let m be an l-bit message to be hashed, consisting of bits m1, . . . ,ml and
assume l < 2k. The basic VSH algorithm runs as follows:

1. Initialize x0 = 1.

2. Let L = d lke. Let mi = 0 for l < i ≤ Lk.

3. Let l =
∑k

i=1 li2
i−1 with li ∈ {0, 1} be the binary representation of l

and define mLk+i = li for 1 ≤ i ≤ k.

4. For j = 0, 1, . . . ,L in succession compute

xj+1 = x2
j ×

k∏
i=1

p
mjk+i
i mod M .

5. Return xL+1.

The function iteratively processes blocks of k bits in a mode similar to
the Merkle-Damg̊ard construction, the value xj serves as a chaining variable.

58 CHAPTER 5. KNAPSACKS REVISITED

Isolate the expression

k∏
i=1

p
mjk+i
i mod M (5.3)

from Step 4. It computes a subset product in the group Z∗M on the set of
weights A = {p1, . . . , pk}. The number of primes entering the product can
range from 0 to k. This operation mapping k bits of the message to a group
element is by construction injective.

Fast VSH

The number of multiplications performed can be reduced by increasing the
total number of primes. Fix a small integer b > 1 and use k′ = k2b small
prime numbers for an integer k. Denote b-bit blocks of the l-bit input mes-
sage m by m[i]. The Fast VSH algorithm proceeds as follows:

1. Initialize x0 = 1.

2. Let L = d lbke. Pad the message with zero bits up to an integral multiple
of bk.

3. Append a bk-bit binary representation of l to the message, denote the
new chunks m[Lk + 1] to m[(L+ 1)k].

4. For j = 0, 1, . . . ,L in succession compute

xj+1 = x2
j ×

k∏
i=1

p(i−1)2b+m[jk+i]+1 mod M .

5. Return xL+1.

One choice of k was the maximal integer such that
∏k
i=1 pi2b < M , larger val-

ues of k are also possible. The hash function processes bk bits per iteration,
the operation

k∏
i=1

p(i−1)2b+m[jk+i]+1 mod M (5.4)

in Step 4 can be seen as a group k-product. The number of primes forming
the product always equals k, the operation is injective by construction.

5.4. VERY SMOOTH HASH 59

Security Proof

Call an integer very smooth if all its prime factors are bounded by (logM)c

for a fixed constant c. Contini et al. prove VSH collision resistant if the
following problem is hard:

Problem 5.1 (VSSR: Very Smooth number nontrivial modular Square
Root). Let M be the product of two primes of approximately the same size

and let k′ ≤ (logM)c. Given M , find x such that x2 ≡
∏k′

i=0 p
ei
i mod M

and at least one of the e0, e1, . . . , ek′ is odd.

Theorem 5.1. Collision search for VSH is at least as hard as solving VSSR
with k′ = k.

We include the original proof by Contini et al. [40].

Proof. We show that different colliding messages m and m′ lead to a solution
of VSSR. Let x′... denote the x... values in the VSH algorithm applied to m′

and let l,L and l′,L′ be the bitlengths and number of blocks of m and m′,
respectively. Since m and m′ collide, m 6= m′ and xL+1 = x′L′+1.

First consider the case of l = l′. Let m[j] denote the m’s jth k-bit
block, m[j] = (mj·k+i)

k
i=1, and let t ≤ L be the largest index such that

(xt,m[t]) 6= (x′t,m
′[t]) but (xj ,m[j] = (x′j ,m

′[j]) for t < j ≤ L+ 1. Then,

(xt)
2 ×

k∏
i=1

p
mt·k+i
i ≡ (x′t)

2 ×
k∏
i=1

p
m′t·k+i
i mod M . (5.5)

Let ∆ = {i : mt·k+i 6= m′t·k+i, 1 ≤ i ≤ k} and ∆10 = {i ∈ {1, . . . , k} :
mt·k+i = 1 and m′t·k+i = 0}. Because all factors in Equation (5.5) are in-
vertible modulo M , it is equivalent to(xt/x

′
t)×

∏
i∈∆10

pi

2

≡
∏
i∈∆

pi mod M . (5.6)

If ∆ 6= 0, Equation (5.6) solves VSSR. If ∆ = 0, then (xt)
2 ≡ (x′t)

2 mod M
and t ≥ 1 (since m 6= m′ and using the definition of t). With xt 6≡ ±x′t
mod M VSSR can be solved by factoring M . If xt ≡ ±x′t mod M then
xt ≡ −x′t mod M leads to (xt−1/x

′
t−1)2 being congruent to −1 times a very

smooth number and thus solves VSSR.
Now consider the case l 6= l′. Since xL+1 = x′L′+1, we have (xL/x

′
L′)

2 ≡∏k
i=1 p

l′i−li
i mod M . Since |l′i − li| = 1 for at least one i, VSSR is solved

using a transformation as in Equation (5.6).

60 CHAPTER 5. KNAPSACKS REVISITED

The proof can be adapted to the Fast VSH setting to show that a collision
solves VSSR for k′ = k2b.

Computational VSSR Assumption Solving VSSR is as hard as factor-
ing a hard to factor n′-bit modulus, where n′ is the least positive integer
such that

L′[2n
′
] ≥ L′[M]

k′
, (5.7)

and the function

L′[M] = e1.923(logM)1/3(log logM)2/3 (5.8)

approximates the running time of Number Field Sieve factoring the integer
M . Here k′ stands for the total number of primes used by the hash function,
that is equal to k or k2b for Basic and Fast VSH, respectively.

To justify the assumption, observe that a solution to VSSR is precisely
the kind of relation collected in modern factoring algorithms (cf. Section
3.1, p. 17). Heuristically, given more than k′+ 1 solutions to VSSR, one can
use linear algebra to find X 6≡ ±Y mod M such that X2 ≡ Y 2 mod M
and expect to factor the modulus.

If NFS is assumed to be the fastest method for factoring integers of the
form of M , the VSSR problem can heuristically be assumed no easier than
a fraction 1/k′ of the cost of NFS. The above assumption can directly be
used to derive a provable lower bound on collision resistance for a particular
Fast VSH variant.

The requirement
∏k
i=1 pi < M resp.

∏k
i=1 pi2b < M on k can be relaxed

at the cost of increased k′ and in consequence a possible drop in security.
Although the k-sums (5.3) and (5.4) are no longer injective, Theorem 5.1
remains valid. Removal of the restriction on k allows to process more bits
per iteration, and speeds the function up. The drop in security can be
compensated for by selecting a longer modulus.

Table 5.3 lists the VSH variants proposed by Contini et al. as well as the
associated L bounds on collision resistance. The complexity is expressed in
units different from the usual “bit security” of traditional hash functions.
For example, a collision in Basic VSH with n = 1516, k = 152 and b = 8 is
at least as hard to find as it is to factor a 1024 bit RSA modulus.

5.4. VERY SMOOTH HASH 61

Table 5.3: Original VSH Variants and Security Levels

n′ Method n k b k′

1024 Basic 1234 152 – –

1024 Basic 1318 1024 – –

1024 Fast 1516 256 8 65536

2048 Basic 2398 272 – –

2048 Basic 2486 1024 – –

2048 Fast 2874 1024 8 262144

Generating Collisions

No attacks that would achieve the above lower bounds are known. We
describe the fastest known attack and the corresponding non-trivial type
U bound on collision resistance. Collisions turn out to be trivial to create
if ϕ(M) is known. Computing ϕ(M) from M is as hard as factoring the
modulus. Observe that the output of H equals

k′∏
α=1

peαα mod M , (5.9)

where the exponents eα are integers L+ 1 bits long derived from the input.
The product (5.9) does not change if an integral multiple of ϕ(M) is added to
any of the exponents. In Basic VSH k′ = k and the j-th most significant bit
of ei is equal to the bit m(j−1)k+i, i.e. ei =

∑L+1
j=1 m(j−1)k+i2

L+1−j . Every set
of non-negative exponents corresponds to some input message. Collisions as
well as second preimages are easy to create for basic VSH if ϕ(M) is known.

For Fast VSH, the b-bit input block m[jk+i] sets the j-th most significant
bit of the exponent e(i−1)2b+m[jk+i]+1 to 1. The k-product 5.4 is always
composed of precisely k primes, one from among p(i−1)2b+1, . . . , pi2b for each
1 ≤ i ≤ k. A change in any single of the exponents e(i−1)2b+1, . . . ei2b for
some i must be compensated for by appropriate changes in other exponents.
There is less freedom than in Basic VSH, but collisions are easy to find in
this setting, too.

The collisions created in this way are quite long, at least one of the
messages has nk or nkb bits for Basic and Fast VSH, respectively. Creating
short collisions appears to be a much harder problem, even if ϕ(M) is known.

The algorithm sketched above can find collisions in Basic or Fast VSH
in time L′[M]. This is a U bound on collision resistance. There is a gap

62 CHAPTER 5. KNAPSACKS REVISITED

between the proved type L bound and the least known type U bound, the
two quantities are a factor of k′ apart. So far, no result has appeared that
would get the (provable) lower bound closer to the complexity of factoring
the modulus M . Collision search may even be harder than solving VSSR,
Theorem 5.1 only proves that it is no easier. A single random VSSR solution
with x does not in general reveal colliding inputs for VSH. Only with some
k′ + 2 solutions to VSSR one can factor the modulus and form colliding
messages freely.

5.4.2 Discrete Logarithm Variant

The factorization of M is essentially a trapdoor in the function. Contini et
al. proposed a related compression function that has no such trapdoor. If
the modulus is replaced by an n-bit prime number p = 2q + 1 for prime q,
one obtains the function VSH-DL. The security is then related to hardness
of discrete logarithms modulo p. Select an integer block length k. The
compression function VSH-DL maps Lk bits to n bits for fixed L ≤ n − 2
such that Lk > n. It uses the same iteration as VSH. Because the length of
input is fixed, it is not necessary to append the encoding of the length. To
hash Lk bits proceed as follows:

1. Initialize x0 = 1.

2. For j = 0, 1, . . . ,L − 1 in succession compute

xj+1 = x2
j ×

k∏
i=1

p
m[jk+i]
i mod p .

3. Return xL.

The restriction L ≤ n− 2 prevents an analogy to the collision attack we
described for VSH. The exponents eα formed from the input are too short to
allow modification by a non-zero multiple of ϕ(p). The length of the latter
number is n− 1 bits.

Fast VSH-DL

For completeness, let us describe the Fast variant of VSH-DL. The function
maps Lbk bits to n bits for fixed L ≤ n− 2 such that Lbk > n as follows:

1. Initialize x0 = 1.

5.4. VERY SMOOTH HASH 63

2. For j = 0, 1, . . . ,L − 1 in succession compute

xj+1 = x2
j ×

k∏
i=1

p(i−1)2b+m[jk+i]+1 mod p .

3. Return xL.

Security Proof

Contini et al. reduce collision resistance of the above function to the follow-
ing computational problem:

Definition 5.1 (VSDL: Very Smooth number Discrete Log). Let p, q be
prime numbers with p = 2q + 1 and let k′ ≤ (log p)c. Given p, find inte-

gers e1, e2, . . . , ek′ such that 2e1 ≡
∏k′

i=2 p
ei
i mod p with |ei| < q for i =

1, 2, . . . , k′, and at least one of e1, e2, . . . , ek′ is non-zero.

Theorem 5.2. A collision in VSH-DL solves VSDL for k′ = k.

Proof. If ei =
∑L

j=1m(j−1)k+i2
L−j for 1 ≤ i ≤ k, then the function sim-

ply computes the product
∏k
i=1 p

ei
i . A collision m,m′ ∈ {0, 1}Lk such that

m 6= m′ leads to the congruence
∏k
i=1 p

ei
i ≡

∏k
i=1 p

e′i
i mod p where the

exponents e′i correspond to m′. Rearranging this congruence, a solution

2e1−e
′
1 ≡

∏k
i=2 p

ei−e′i
i mod p follows, because |e′i − ei| < 2L ≤ 2n−2 ≤ q for

all i and e′i − ei 6= 0 for some i since m 6= m′.

The theorem extends to Fast VSH-DL with k′ = k2b. No computational
VSDL assumption was made in the proposal by Contini et al. An easy
analogy with VSSR and factoring seems not to be available. Collecting k′

solutions to VSDL allows to recover the logarithms of the k′ small prime
numbers. The primes form too small a basis to allow computation of arbi-
trary logarithms in Z∗p. No computational lower bound on collision resistance
of VSH-DL can immediately be derived.

Generating Collisions

In contrast to Basic VSH, any single solution to VSDL immediately leads
to a pair of colliding messages in VSH-DL. The ability to compute discrete
logarithms modulo p leads to a straightforward way to create collisions and
even second preimages in VSH-DL if L reaches the maximal value n − 2.

64 CHAPTER 5. KNAPSACKS REVISITED

The case of Fast VSH-DL needs a little bit more care to balance the ex-
ponents, but collisions can be computed there as well. For these variants,
there is a type U bound on collision resistance with cost corresponding to
DL computation. The attacks appear to fail for L significantly smaller than
n − 2. The complexity of the problem is unclear, a non-trivial U bound is
not immediate.

5.4.3 Preimage Resistance

The designers of VSH made no claims on preimage resistance of any variant.
Saarinen pointed out that digests of messages with known length l bits can be
inverted with only 2l/2 effort thanks to the multiplicative structure [120]. His
attack is essentially an instance of the 2-list algorithm described in Section
3.6.1.

We can generalize this to an algorithm that can find preimages under
VSH in significantly less than 2n/2 operations. The (non-DL) VSH hash
function can be interpreted as a very special case of MuHASH. If we can
compute the additive representation of the k′ prime numbers in (Zp−1 ×
Zq−1,+), we can run the O(22

√
n) tree algorithm to find preimages as in

the case of AdHash. Given LM [1/3, c] algorithms for factoring and discrete
logarithms, the running time is asymptotically dominated by the cost of the
tree algorithm and becomes O(22

√
n). The attack involves more effort than

factoring the modulus M , it is therefore no threat to any of the functions
listed in Table 5.3.

5.4.4 The Role of Small Primes

Small prime numbers used in VSH have two major positive effects. Because
a particular function instance is defined by k2b group elements, if full n
bits were used for every single entry, the memory requirements would soon
become prohibitive.

Another advantage of the use of small primes is speed. Multiplication of
the n-bit modulus by a small prime is much easier an operation than a full
n× n bit multiplication. The small prime numbers are absolutely necessary
for VSH to remain practical.

The fastest variant of VSH proposed is Fast VSH with n = 1536, k = 256
and b = 8. Contini et al. reported that it ran at the speed 1.1 MB/s on
a 1GHz Pentium III, that is approx. 900 cycles/byte. This was at the time
about 25 times slower than SHA-1. Although VSH brought improved perfor-
mance compared to earlier collision resistant functions related to factoring,

5.4. VERY SMOOTH HASH 65

the speed was very slow compared to “classical” hash functions.

5.4.5 Extensions to Other Groups

Lenstra et al. generalized the concept of VSH-DL to other groups where dis-
crete logarithms are hard. The output of these variants can be made shorter
than in VSH based on modular multiplication. This is achieved by select-
ing groups where the DL problem is relatively harder. One such group is
a multiplicative cyclotomic subgroup in a degree six extension field. Another
example given was a group of points on an elliptic curve. A VSH variant
in the latter group was claimed to provably achieve 2n/2 collision resistance
for n-bit output. The compression functions in both group classes were re-
ported to be several times slower than multiplicative VSH with equivalent
security [79]. One of the reasons for this is the absence of an equivalent of the
small prime numbers in Z∗M , i.e. elements that allow both fast multiplication
and compact representation.

Chapter 6

New VSH Variants

This chapter is an extended version of the article Faster and Smoother –
VSH Revisited [123].

In the previous chapter we considered the tree algorithm in preimage
search for VSH. A similar approach can be used to find collisions. It had
never been considered before for VSH, most likely because the tree algo-
rithm cannot easily be applied without factoring the modulus first. It would
therefore pose absolutely no threat to collision resistance of original VSH,
that security property can be violated by factoring M anyway.

The collision attack on VSH sketched in the previous chapter depends
in a crucial way on the fact that the exponents in the expression

∏k′

α=1 p
eα
α

mod M computed within VSH can grow without limit. The VSH-DL design
adds a minor restriction by asking the exponents be at least one bit shorter
than the binary expansion of the group order. In this chapter we design
new variants of VSH that impose a much stricter restriction there and limit
all the exponents to one. We show that the change preserves the provable
connection to VSSR or VSDL for appropriate moduli.

6.1 A Variant Without Modular Squaring

Consider Fast VSH as described in Section 5.4.1. Observe that if kb > n,
the k-sum operation

k∏
i=1

p(i−1)2b+m[jk+i]+1 mod M

from Step 4 of Fast VSH compresses the input. It can therefore be extended
to a hash function in the usual ways, such as the Merkle-Damg̊ard mode.

67

68 CHAPTER 6. NEW VSH VARIANTS

Our new Fast VSH variant will impose the condition kb > n and build
a compression function.

Faster VSH

Have an n-bit modulus M , let k, b be integers such that kb > n and k2b <
log(M)c. Let M be coprime to all the prime numbers p1, . . . , pk2b . Define
a compression function H from kb bits to n bits that outputs

H(m) =

k∏
i=1

p(i−1)2b+m[i]+1 mod M . (6.1)

The function computes a modular product of precisely k out of the primes
p1, . . . , pk2b . Let φi : {0, 1}b → Z∗M for 1 ≤ i ≤ k be a function that on input
x returns the prime p(i−1)2b+x+1 where x is interpreted as an integer less than

2b. The computation of Faster VSH in (6.1) can equivalently be described
as the product

k∏
i=1

φi(m[i]) (6.2)

computed in the multiplicative group Z∗M .
Collision search in Faster VSH modulo a product of two primes can be

reduced to the same hard problem as the original VSH.

Theorem 6.1. A collision in Faster VSH with M = pq a hard to factor
integer solves VSSR for k′ = k2b.

Proof. Let m 6= m′ be two bk-bit messages such that H(m) = H(m′) and

H(m) =
k∏
i=1

φi(m[i]) mod M (6.3)

H(m′) =

k∏
i=1

φi(m
′[i]) mod M . (6.4)

Denote the computed hash value H(m) by x. From (6.3) and (6.4) it follows
that

x2 ≡
k∏
i=1

φi(m[i])×
k∏
i=1

φi(m
′[i]) mod M .

6.1. A VARIANT WITHOUT MODULAR SQUARING 69

Because m 6= m′, there exists an index 1 ≤ j ≤ k such that m′[i] 6= m[i].
The exponent of φi(m[i]) on the right hand side then equals one and the
above expression solves VSSR.

The modular squaring in VSH is no more necessary for the security proof.
In an analogy to the VSH-DL proof, collision search for Faster VSH modulo
M = 2q + 1 for prime q can be reduced to the VDSL Problem.

Theorem 6.2. A collision in Faster VSH-DL solves VSDL for k′ = k2b.

With appropriate moduli, the modified function is secure under the same
assumptions as original VSH, the type L bounds carry over. Observe that
our modification now limits all the exponents in the prime products to one.
The factoring attack on VSH and the discrete log attack on Fast VSH-DL
no longer apply. The non-trivial type U bounds are not necessarily valid in
the new setting.

Performance

The change to VSH proposed above slows the functions down. The original
Fast VSH could process bk “fresh” bits per iteration. The new function
requires a domain extender such as the Merkle-Damg̊ard mode and needs
to hash the chaining variable with every block. Only bk − n message bits
can therefore be processed per iteration. The performance of the modified
variant is approximately a fraction 1 − n

bk of the original. The greater the
compression ratio bk/n of the new function, the less significant the slowdown.

The proposed modification to Fast VSH does not appear to be useful
at all. The mere fact that the original collision-finding attacks do not work
might not be worth the performance loss. The type L bounds on collision
resistance implied by the security proofs are the same after all.

As we will show in the next section, the modification allows a radical
change in security assessment and in the end permits faster and/or more
secure hashing.

6.1.1 The Extended Tree Algorithm

To analyze security of the new function, consider it a group k-product as
in (6.2). Let Li for 1 ≤ i ≤ k be a list that contains the 2b primes
p(i−1)2b+1, . . . , pi2b . The function φi : {0, 1}b → Li then simply maps the
integer m[i] to the element on position m[i] + 1 in the list Li.

70 CHAPTER 6. NEW VSH VARIANTS

Preimage search Inversion of Faster VSH is a k-sum problem in the
multiplicative group G = Z∗M . Several other functions fit this description
with appropriate G, in particular FSB and SWIFFT. The attack method of
choice for such functions is the tree algorithm.

To assess preimage resistance of our new function, consider the complex-
ity of the extended k-tree algorithm by Minder and Sinclair. The algorithm
starts with k lists. If we aim for a single solution, then by the formulas on
p. 29 the maximum length of a list is

u =
n− b2t

log2 k − t
(6.5)

for t the least integer such that

n ≤ (log2 k − t+ 1)b2t . (6.6)

We are interested in a lower bound on the length of a list. Replace the
integer t by the exact solution to (6.6), i.e. let t ∈ R satisfy

n = (log2 k − t+ 1)b2t . (6.7)

An equivalent simplification of the cost was performed by Finiasz et al. in
the recent assessment of FSB security [48]. When such a t is substituted in
the expression (6.5), one obtains

2u = 2
n

log2 k−t+1 . (6.8)

If r = bk/n is the compression ratio of our function and v = log2 k− t+ 1 is
the denominator from (6.8), then the expression (6.7) simplifies to

2v−1

v
= r . (6.9)

Collision Search We will show that collision search also corresponds to
a k-sum problem. Given the k lists Li, form new lists L′i containing all
the elements gh−1 for g, h ∈ Li. Size of L′i is approximately 22b. A
collision in H corresponds to a solution to the k-sum problem with the
lists L′i and target value 1G. A solution to the new k-sum problem leads
in turn to a pair of colliding messages. A solution is necessarily of the
form g1h

−1
1 ∗ g2h

−1
2 ∗ . . . ∗ gkh

−1
k . If m[i] ∈ {0, 1}b is the unique value such

that φi(m[i]) = gi and m′[i] ∈ {0, 1}b is such that φi(m
′[i]) = hi, then the

6.1. A VARIANT WITHOUT MODULAR SQUARING 71

concatenation of m[i] collides with the concatenation of m′[i]. This leads to
a collision if m 6= m′, or equivalently if the solution to the k-list problem
does not select 1G in all of the lists. If looking for collisions this way, we
may simply remove the element 1G from all the lists and limit the search
to colliding messages that differ in all the b-bit blocks. For collision search,
there will be k initial list each with length 22b, in a direct analogy to the
analysis for preimages, the maximum list length in the course of the extended
tree algorithm will be at least

2u
′

= 2
n
v′ (6.10)

for v′ a solution to

2v
′−1

v′
= 2r . (6.11)

This suggests that when the tree algorithm is applied, collision search for
H is about as hard as preimage search for a similar function over the same
group that compresses twice as much as H.

Our analysis assumes the k lists Li contain random elements of the
group G. This is not at all the case. We deliberately ignore this and expect
the tree algorithm to behave as if the elements were random. Similar rea-
soning was used in most of the previous applications of the tree algorithm
to hash functions, notably in the cases of FSB and SWIFFT.

In most of the applications of the tree algorithm the cost is usually mea-
sured as the product of maximum list length 2u and the total number of lists
k. In our case the approximate cost would be k × 2u for preimage search,
resp. k×2u

′
for collision search. The quantity is a reasonable approximation

of the number of group operations performed by the tree algorithm. A single
evaluation of a k-sum function H needs precisely k−1 group operations. The
cost of preimage or collision search counted in equivalent of H evaluations
is then approximated simply by the list length 2u, resp. 2u

′
. This conserva-

tive estimate corresponds to our goal to bound the cost of the attacks from
below.

We make several other simplifications, in particular we assume that the
structure of G allows the extended tree algorithm to run with an optimal
number of lists. If this is not the case, the lower bound on cost of the tree al-
gorithm remains valid. In practice, to apply the attack in the multiplicative
groups used in Faster VSH, one would first need to map all the computation
to the isomorphic additive group. This may involve factoring and/or DL

72 CHAPTER 6. NEW VSH VARIANTS

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1 2 3 4 5 6 7 8

R
el

at
iv

e
R

es
is

ta
n

ce

Compression Ratio

Preimage
Collision

Figure 6.1: Relative Security of k-sum Functions

computations. For all the compression functions considered in this chap-
ter, such extra cost turns out to be negligible compared to that of the tree
algorithm and will be neglected.

Because u = 2n/v, the quantity 1/v corresponds to the relative drop in
bit-security of H. By (6.9) and (6.11) the denominator only depends on the
compression ratio r. All the simplifications above allow simple estimates of
the power of the tree algorithm. Figure 6.1 displays the relative bit security,
i.e. 1/v plotted against the compression ratio r.

The bounds derived in the preceding paragraphs measure the cost of
particular attacks from below and are therefore type lU bounds on security.

6.1.2 Security of Faster VSH

Two immediate parameter sets for Faster VSH are those originally proposed
by Contini et a., provided bk > n. Table 6.1 captures the collision resistance
level implied by the computational VSSR assumption (“factoring hardness”)
and the new security estimates based on the extended k-tree algorithm for

6.2. A VARIANT WITHOUT MODULAR REDUCTION 73

Table 6.1: Security Estimates for Variants of Faster VSH

k n b Factoring Coll Coll Pre

256 1516 8 1024 bits 2326 2499

1024 2874 8 2048 bits 2469 2603

two such variants of Faster VSH. The modulus is assumed to be a product
of two large primes. The factoring hardness measure is the complexity of
factoring a hard to factor integer of bit length n′ from the Computational
VSSR Assumption. Columns 5 and 6 are computed using (6.10) and (6.8).

Note that the two security measures are in somewhat incompatible units.
The exponent in column 5 means “bit security”, the number in column 4 is
“RSA security”.

Hardness of factoring a 1024-bit RSA modulus is considered equivalent
to roughly “80-bit” security. If Faster VSH with n = 1516 is assessed as
a k-sum problem, it provides collision resistance of at least 326 bits. For
these parameters, the removal of squarings and the use of Merkle-Damg̊ard
mode slows down the original Fast VSH by approximately 74%. This is only
a moderate slowdown given the potential increase in security.

The slowdown is only approx. 35% for the other variant with n = 2874,
while the gap between the hardness of factoring an 2048-bit modulus and
472-bit security is even more significant.

Collision resistance of 326 or 469 bits is more than enough for many
years to come. We can therefore aim for lower security levels and tweak the
parameters, in particular the digest length, to gain performance. Precise
parameters for practical instances of the functions as well as speed measure-
ments are given in Section 6.3.

6.2 A Variant Without Modular Reduction

The lU bounds on security due to the extended tree algorithm only depend
on the output length n and the compression ratio r. While the structure
of the particular group does affect the practicality of the algorithm to an
extent, it almost certainly makes the job harder than what our estimates
suggest.

Because we choose not to rely on the group structure, we propose to
replace the modulus in Faster VSH by a power of two. This means that no

74 CHAPTER 6. NEW VSH VARIANTS

costly modular reductions are needed in the computation of the compression
function. Reduction modulo a power of two can be done essentially for free.
This minor change will lead to a considerable speed-up while maintaining
the k-list security.

Note that the prime 2 = p1 cannot be used in this setting, because it
does not belong to the multiplicative group of integers modulo 2n. The lists
Li should be filled with small primes starting with p2 = 3. To compress bk
input bits, compute the following product:

H(m) =
k∏
i=1

p(i−1)2b+m[i]+2 mod 2n .

Any hash value will be an odd number, i.e. the least significant bit
of output is always 1. Therefore only the n − 1 leftmost bits of the n-bit
modular product should be output. We will call the function Smoother VSH
for it uses a smooth modulus in contrast to the original VSH.

Technically, the provable connection between the security of the function
and the VSSR assumption (or a variant of VSDL) is preserved. This pro-
vides little confidence in security, because factoring the number 2n is trivial.
Discrete logarithms in the large cyclic subgroup of Z∗2n are also trivial, be-
cause the order is a power of 2. The lU bounds derived in Section 6.1.1 do
however hold for Smoother VSH.

The original VSH as well as Faster VSH can be thought of as large
families of functions even once k, n and b are fixed. One still has to select
a modulus M . In the case of Smoother VSH, the modulus is fixed. Therefore
there is only one instance of the function for every choice of k, n, b. There
are however many ways to permute the k2b primes that lead to different
compression functions.

We leave the function fixed for the moment. There is no convenient well-
established hardness assumption to derive an L bound from. The lU bound
we have established so far makes perfect sense even for a fixed function.

6.3 Experimental Results

We propose seven parameter sets with varying security, speed, and memory
requirements. All the parameter choices were tailored to meet one of the
three collision resistance levels 2128, 2192 and 2256. The preimage and col-
lision resistance are measured as explained in Section 6.1.2. The length of
the modulus is selected slightly below or equal to an integral multiple of the

6.3. EXPERIMENTAL RESULTS 75

common word size 64 bits that is used in our test environment. Some vari-
ants, in particular Smoother VSH, may have slightly shorter output than n
bits. We deliberately neglect minor differences in output length for the ease
of presentation. All the variants with output length within a few bits from
n are considered equivalent for the purposes of comparisons and security
assessment based on the tree algorithm.

The constant b can have significant impact on performance. Small b
results in many multiplications, but keeps the memory requirements down.
With larger b one saves on multiplications, but needs much more memory.
The value b = 8 used in all our variants is the most convenient choice from
an implementation point of view.

6.3.1 Implementation

The modified functions are relatively efficient in software. They are also
conceptually simpler compared to VSH, as there are no modular squarings
to perform. All there is to do is modular multiplication. In this section we
sketch how the test implementation works.

The functions were implemented in C assuming a 64-bit PC architecture,
the GNU MP library is used to perform arithmetic on long integers. For
simplicity, the prime numbers needed were precomputed and hardcoded in
the program. All our variants are selected such that the largest prime ever
needed is at most 21 bits long. This allows to use 64-bit multiplier efficiently
by processing the small prime numbers in triples. Let l = dk/3e and d =
dn/64e. Compute the compression function as follows:

1. Determine the k primes to multiply from the input.

2. Transform the k primes to a list of l words ai such that each ai is the
product of three pj .

3. Initialize a d+ 1-word intermediate value x with a1.

4. For i = 2 to d− 1 multiply x by ai, no modular reductions are needed
here.

5. For i = d to l multiply x by ai modulo M .

6. Output x.

For Smoother VSH, modular reduction in Step 5 simply discards the most
significant word of the product x × ai, in practice the word will not be
computed at all.

76 CHAPTER 6. NEW VSH VARIANTS

The Faster VSH code needs to reduce modulo M . Instead of dividing
by M , perform a variant of Montgomery reduction to improve performance
[97]. Increase x by a multiple y of M such that x + y is divisible by 264.
Then perform a right shift by 64 bits. The appropriate multiple can be
computed as y = z ×M where z = x0 × (−M)−1 mod 264 for x0 the least
significant word of x. The value (−M)−1 mod 264 can be precomputed. A
final subtraction may be needed after the right shift to normalize the result
below M .

A single Montgomery reduction actually divides x by 264 modulo M .
Step 6.5 is executed a constant number of times, therefore the resulting
value of x is off by a fixed power of 264. Because a fixed bijection has no
effect on the security of our compression function, we do not fix the result
in the end at all.

Fast Multiplication Methods The above algorithm uses quadratic-time
schoolbook multiplication. Although asymptotically faster methods exist,
they appear not to help in this setting. By the GNU MP benchmark, Karat-
suba multiplication becomes faster on our architecture once the operands
are at least 18 words long. Moreover, it would require long arguments of
comparable size and most of our inputs are short. Building longer inter-
mediate products to benefit from Karatsuba multiplication is not worth the
effort in our setting. Such an approach would be asymptotically superior,
but the simple schoolbook method is empirically better for the parameter
ranges considered.

6.3.2 Speed Measurements

The speed was measured on a 2.7 GHz Intel Core i7-2620M (Sandy Bridge)
CPU running a 64-bit GNU/Linux system. Table 6.2 displays speed mea-
surements for Faster VSH variants running in the Merkle-Damg̊ard mode.
Performance of Smoother VSH is summarized in Table 6.3. The tables also
capture the total size of the lists of small prime numbers, represented by
three bytes each. The bounds on collision and preimage resistance were
computed using (6.10) and (6.8). For comparison, in the case of Faster VSH
modulo a product of two primes, we include “factoring” security levels im-
plied by the Computational VSSR assumption derived using formulas (5.7)
and (5.8) in Chapter 5.

Use of the modulus 2n makes Smoother VSH approximately twice as fast
as in the case of a random n-bit modulus M . For comparison, the speed of
SHA-256 on the same platform is approximately 155 MB/s or 17.4 cycles

6.3. EXPERIMENTAL RESULTS 77

Table 6.2: Faster VSH Variants

k n Coll Pre Factoring Coll Memory MB/s Cycles/b

128 640 2128 2184 375 96 kB 36.4 74.0

256 768 2128 2166 452 192 kB 47.9 56.1

512 896 2128 2157 528 384 kB 49.4 54.4

192 960 2192 2276 603 144 kB 26.1 103.0

384 1152 2192 2249 727 288 kB 34.8 77.2

256 1280 2256 2368 839 192 kB 21.3 126.4

512 1536 2256 2332 1013 384 kB 27.5 97.9

Table 6.3: Smoother VSH Variants

k n Coll Pre Memory MB/s Cycles/b

128 640 2128 2184 96 kB 66.9 40.2

256 768 2128 2166 192 kB 94.0 28.6

512 896 2128 2157 384 kB 97.9 27.5

192 960 2192 2276 144 kB 51.0 52.8

384 1152 2192 2249 288 kB 68.6 39.2

256 1280 2256 2368 192 kB 40.8 65.9

512 1536 2256 2332 384 kB 54.9 49.0

78 CHAPTER 6. NEW VSH VARIANTS

per byte and the speed of SHA-512 is 193 MB/s or 13.9 cycles per byte.
Both were measured by the Crypto++ benchmark. Our fastest variant of
Smoother VSH with 128-bit collision resistance approaches two thirds of the
speed of SHA-256.

None of the seven variants of Faster VSH would be considered sufficiently
secure based on the original computational VSSR assumption, possibly with
the exception of the last one that is as secure as a 1013-bit RSA modulus.

6.4 Separation of Colliding Inputs

The list elements used in VSH are independent in a very strong sense that
results in non-trivial separation of colliding messages. Suppose there is a pair
of colliding inputs m 6= m′ under Faster or Smoother VSH such that

H(m) =
k∏
i=1

si mod M (6.12)

H(m′) =
k∏
i=1

ti mod M (6.13)

and the two inputs differ in precisely l ≤ k of the b-bit message blocks
that select a particular element from a list. Given H(m) = H(m′), there is
a congruence of two products of primes:

l∏
i=1

s′i =
l∏

i=1

t′i mod M . (6.14)

At least one of the products must exceed M . This argument is analogous to
that used by Tillich and Zémor to establish a similar property for their hash
function. If d is the maximal bit length of any prime in our k lists, then

l ≥ n

d
.

More precisely, if the first k2b primes are used to fill the lists, the largest
prime is approximately equal to k2b log(k2b). The length of that prime in
bits is then

d ≈ b+ log2(bk log 2 + k log k) .

Any pair of colliding messages must differ in δ of the b-bit blocks where

δ ≈ n

b+ log2(bk log 2 + k log k)
.

6.5. SUMMARY 79

Table 6.4: Minimum Distance of Collisions in New VSH Variants

k n δ

128 640 35

256 768 40

512 896 44

192 960 51

384 1152 58

256 1280 66

512 1536 75

A more exact value of δ can easily be computed as the least integer j
such that the product

∏j
i=0 p(k−i)2b exceeds M . The minimum separation

constants for our seven variants are listed in Table 6.4. Observe that δ ≈
n/20 for all the cases considered.

As an example, take our most efficient variant with n = 896 and k = 512
and the separation constant equal to 44. This does not prevent colliding
messages that differ in as few as 44 bits, but the differences cannot be limited
to fewer than 44 blocks. Colliding messages are therefore easy to tell apart.

On the other end, if we select any 43 of the (aligned) 8-bit blocks and
hash all the 243×8 = 2344 messages obtained by varying these blocks in all
the possible ways, then the resulting digests will all be different. All this for
a function with estimated 2128 collision resistance.

Note that our collision separation property is valid for the compression
function only and does not extend to the hash function operating in the
Merkle-Damg̊ard mode. Once the length of inputs is not restricted, there
may exist colliding inputs that differ in as little as a single bit.

We do not have a more direct link to collision resistance, the property
itself does not prevent collision attacks. After all, non-trivial separation of
colliding inputs holds for the function of Zémor and Tillich as well as the
LPS function where collisions are now easy to find.

6.5 Summary

The main advantage of Fast VSH was the heuristic connection to well-known
hard algorithmic problems. In Faster VSH modulo an integer that is hard to

80 CHAPTER 6. NEW VSH VARIANTS

factor, there is still the option to rely on the VSSR assumption. Our mod-
ification preserves the provable connection and even allows a conceptually
simpler version of the security proof, because one does not need to deal with
chaining at all. The design of Faster VSH also prevents the known attacks
on Fast VSH. This does come at a cost that can be controlled.

Most importantly, the modifications proposed in this chapter allow the
security to be measured in a different way. There is a deep combinatorial
problem behind Faster VSH. The problem is very similar to problems behind
the functions SWIFFT or FSB. The similarity allows us to adapt the attack
methods and obtain meaningful bounds of security. With the new view of
security, we no longer rely on the VSSR or VSDL assumption. This allows
us to introduce smooth moduli in Section 6.2 and rely exclusively on the
hardness of k-products.

The VSSR assumption can heuristically be linked to factoring and comes
with a reasonable lower bound. On the other hand, VSDL is not that closely
connected to discrete logarithms modulo M , it is an ad-hoc assumption that
has never been quantified.

The new hard problem we propose can also be considered ad-hoc, but we
believe it captures the security properties better. In addition, it comes with
a quantified estimate of hardness. The estimates are type lU bounds at the
moment and may not provide the most useful information about security as
such. The bounds only quantify the cost of the tree algorithm. If we are
confident that this is the most efficient strategy, we will be able to assume
the type of the bounds is L. No hardness assumption in cryptology was cre-
ated “standard”. Although more insight in the complexity of these specific
multiplicative k-sum problems is desirable, there is considerable evidence
that k-sums are hard in at least some groups.

The most prominent feature of our new compression functions is the
now reasonable performance. Smoother VSH in particular can compete with
some of the “classical” hash functions widely deployed today. Further per-
formance improvements may be possible.

Chapter 7

Field Smooth Hash

The major drawback of the functions from the previous chapter is the need
to maintain a relatively big table of prime numbers. The table can either be
hardcoded in the implementation, or generated at runtime. Both approaches
affect set-up time as well as runtime performance. The few hundred kilobytes
of memory required may be prohibitive for some architectures, in particular
in hardware. Even if memory is cheap and fast, the size of tables of prime
numbers significantly limits the freedom to select parameters. Values of b
around 20 are highly impractical, values above 30 become impossible.

This chapter presents a new compression function family based on mul-
tiplication in finite fields Fqd for d > 1. The main advantage of the func-
tion is that there is no more need to keep any table of the multiplicative
weights. Our new design can generate the elements on the fly. The block
size b can therefore be increased considerably with a positive effect on perfor-
mance. Apart from the omnipresent connection to the k-sum problem, the
new function also provides good collision separation. The minimum distance
of collisions δ becomes a parameter that can be set more freely than before.

To motivate our design, we will briefly mention two related public-key
cryptosystems based on knapsacks.

7.1 Chor-Rivest Cryptosystem

In a knapsack public key cryptosystems one typically publishes a set of
weights A = {a1, . . . , aq}. Messages are encrypted by encoding them as q-
bit vectors and evaluating the knapsack function E(m) =

∑q
i=1miai. The

set A has a special secret structure that allows the legitimate recipient to
invert the knapsack. The public-key system designed by Chor and Rivest is

81

82 CHAPTER 7. FIELD SMOOTH HASH

an additive knapsack scheme connected to arithmetic in finite fields [38, 37].

System Generation Let Fq be a finite field with q elements, pick an
extension degree d such that discrete logarithms in Fqd are feasible. Let
f(t) ∈ Fq[t] be a monic degree d polynomial irreducible over Fq, represent
Fqd as Fq[t]/ (f(t)). Select a random multiplicative generator g of Fqd . Fix
a numbering αi for 1 ≤ i ≤ q of the field Fq and compute the logarithms

γi = logg(t+ αi) . (7.1)

Select a random permutation π : {1, . . . , q} → {1, . . . , q} and a random
constant 0 ≤ u ≤ qd−2. Compute ai = γπ(i) +u for i = 1, . . . , q. The public
key consists of A = {a1, . . . , aq} as well as d and q. The mapping π and the
elements t, u are in the private key.

From a theorem by Bose and Chowla it follows that all the possible sums
of precisely d of the elements γi are distinct modulo qd − 1 [26]. To prove
the theorem, let 1 ≤ i1 ≤ . . . ≤ id ≤ q and 1 ≤ j1 ≤ . . . ≤ jd ≤ q be two sets
of indices such that the sums γi1 + γi2 + . . . + γid and γj1 + γj2 + . . . + γjd
are equal. The following powers of g are then also equal in Fqd :

gγi1 × . . .× gγid = gγj1 × . . .× gγjd . (7.2)

By the definition (7.1)

d∏
k=1

(t+ αik) =
d∏

k=1

(t+ αjk) . (7.3)

If the term td is subtracted from both sides, we obtain an equation of two
polynomials of degree at most d − 1 in t over Fq. Because t has algebraic
degree d, it follows that ik = jk for 1 ≤ k ≤ d.

Encryption Assume that the message m is encoded as an q-bit binary
vector (m1, . . . ,mq) with weight precisely d. Up to

(
q
d

)
bit messages can

be encoded in this form. With an appropriate encoder the length of the
plaintexts is blog2

(
q
d

)
c. To encrypt m, compute

E(m) =

q∑
i=1

miai mod qd − 1 (7.4)

Encryption only involves modular additions and results in an integer in the
range 0, . . . , qd − 1.

7.2. POWERLINE SYSTEM 83

Decryption To decrypt s = E(m), first compute s′ = s−du mod pd− 1.
Then obtain the extension field element q(t) = gs

′
represented as a degree

d − 1 polynomial in t over Fq. Then the polynomial f(t) + q(t) factors in
Fq[t] to linear terms

f(t) + q(t) = (t+ αi1) · (t+ αi2) · · · (t+ αid) . (7.5)

Find the roots by successive substitutions of elements from Fq. The d po-
sitions of 1 bits in m can then be recovered by applying π−1 to the indices
i1, . . . , id.

Proposed Parameters Key generation involves computations of discrete
logarithms in Fqd . The parameters need to be selected such that the log-
arithms are feasible. It is suggested that d is a smooth number to allow
fast DL computations by the algorithm of Pohlig and Hellman. One of the
parameters sets considered by Chor and Rivest is q = 197 and d = 24. The
encryption function then maps log2

(
197
24

)
≈ 101 bits to d log2 q ≈ 183 bits.

7.1.1 Cryptanalysis

The density of the underlying additive knapsacks is greater than one, for
example in the case q = 197 and d = 24 it is approximately 1.077. The cryp-
tosystem has resisted lattice attacks for several years. Schnorr and Hörner
demonstrated that random instances with parameters q = 103, d = 12 and
q = 151, d = 16 were feasible with an improved lattice reduction algo-
rithm [126].

Vaudenay exploited the smoothness requirement on d in a practical al-
gebraic attack that efficiently recovers the secret key from the public key for
virtually all reasonable parameter sets [143, 144]. If d has a factor r greater

than
√
d+ 1

4 + 1
2 , the complexity of the attack is O(d3qr/r2). An instance of

the cryptosystem with both q and d prime would survive the attack. Such
parameters however limit the ability to compute discrete logarithms neces-
sary for key generation.

7.2 Powerline System

Lenstra designed a similar public-key system that does not involve computa-
tion of discrete logarithms to generate the parameters [80]. Operations are
performed directly in the multiplicative group of the finite field Fqd .

84 CHAPTER 7. FIELD SMOOTH HASH

System Generation Let q be a power of a prime, let f(x) ∈ Fq[x] be an
irreducible polynomial of degree d. The field Fqd will be publicly represented
as Fq[x]/(f(x)). Select an integer k ≤ q and a random injective mapping
π : {1, 2, . . . , k} → Fq. Pick a random element t ∈ Fqd with algebraic degree
d over Fq such that Fqd = Fq(t). Fix a random u ∈ Fqd and a random integer

v satisfying 1 ≤ v ≤ qd− 1, gcd(v, qd− 1) = 1. For each 1 ≤ i ≤ k compute
the element ai = uv(t− π(i))v of Fqd .

Publish a description of the field Fq and the polynomial f(x) defining the
extension Fqd . The public key consists of k and the elements a1, a2, . . . ak.
Keep the t, u, v and the function π secret.

Encryption A message is assumed to be represented by sequence of non-
negative integers m = (m1, . . . ,mk) such that

∑k
i=1mi = d. To encrypt m,

compute the element E(m) =
∏k
i=1 a

mi
i in Fqd . The encryption function is

a multiplicative knapsack.

Decryption Compute z = v−1 mod qd − 1, the multiplicative inverse of
v and the element u−d of Fqd . To decrypt E(m), compute E(m)z · u−d − td

and express it in the basis 1, t, . . . , td−1 of Fqd :

E(m)z · u−d − td =
d−1∑
i=0

citi, ci ∈ Fq .

The message m can then be recovered by finding the roots of the polynomial

td +

d−1∑
i=0

cit
i = 0

over Fq[t] . For every 1 ≤ i ≤ k, the number mi will be the multiplicity of
φ(i) as a zero of the above polynomial.

Security The Powerline system is at least as secure as the Chor-Rivest
system. In particular, instances of the latter system can be transformed to
instances of the Powerline system. For a generator g ∈ Fqd , if ai are the
weights of the additive Chor-Rivest Knapsack, then the powers gai define
a multiplicative Powerline knapsack.

Lenstra also suggests that the fastest method to break the multiplica-
tive Powerline system is to transform it to an instance of the Chor-Rivest

7.3. A NEW COMPRESSION FUNCTION 85

system by taking discrete logarithms and attack the additive knapsack in-
stead. By the results of Vaudenay, it is desirable that both q and h be prime
even in the multiplicative case of the Powerline system. In such a case, the
fastest method to solve the knapsack in the additive representation is due
to Brickell [38].

7.3 A New Compression Function

Our search for group-based hash functions within this thesis has become
a search for hard group knapsacks with compact representation. We design
a knapsack and a compression function inspired by the two above cryptosys-
tems.

For hashing purposes, the knapsack function should not be injective.
If we drop the requirement that the weight of the input message m is pre-
cisely d, we obtain a compression function. By the result of Bose and Chowla,
any pair of inputs m 6= m′ that collide under the Chor-Rivest knapsack must
differ in at least δ = d + 1 bits, an equivalent result is valid for the Pow-
erline system. This is the collision separation property we obtained for our
functions in the previous chapter.

The fastest known method to break Powerline system seems to attack
it in the additive representation after computing discrete logarithms. The
hardness of the lattice methods involved depends on the density and the
dimension represented by the total number of weights. One may therefore
simply generate a random high density Powerline knapsack with large k
and then discard the private key. The weights ai in the powerline system
unfortunately do not have a compact representation, they are in general full
length elements of the extension field. In terms of storage such a knapsack
is no better than a list of k random elements of Fqd . If we include the
private key in the description of the powerline knapsack, it will be possible
to generate the weights ai from the very compact description involving t, u, v
and π. If all the parameters are public, one may as well choose u, v = 1 and
t = x.

The First Knapsack Let Fq be a field with q elements and let the ex-
tension Fqd be defined with respect to a degree d monic irreducible polyno-
mial f(t) ∈ Fq[t]. Fix a positive integer k ≤ q and an injective mapping
π : {1, . . . , k} → Fq. Consider the multiplicative knapsack function H de-
fined on the elements ai = (t + αi) such that αi = π(i) for i ∈ 1, . . . , k. It

86 CHAPTER 7. FIELD SMOOTH HASH

transforms a k-bit vector m to the product

H(m) =
k∏
i=1

ai
mi (7.6)

computed in Fqd . If k > d log2 q, this function compresses the input. It is
an instance of group subset sums considered by Impagliazzo and Naor (cf.
Section 4.4) for G the multiplicative group of Fqd .

The above knapsack serves as an intermediate step towards a more prac-
tical construction. We therefore propose no specific parameter choices and,
in particular, make no claims about preimage or collision resistance of H.
The function may turn out to be easy to invert for poor parameter choices.

By construction, any pair of colliding inputs to H differ in at least δ =
d+1 bits. Any of the k weights ai can be generated on the fly given suitable
π. Evaluation of the H requires a single multiplication in Fqd per input bit.
One of the operands is linear in t, the other is in general full-length in Fqd .

The expression (7.6) is analogous to the product of primes
∏k
i=1 p

mjk+i
i

mod M that appears in Basic VSH (cf. p. 57). Because storage of the
multiplicative weights ai is now free, we may increase the number of knapsack
elements to k2b and perform one group operation per b bits for a constant
b > 1. This is the same “standard” trick that led to Fast VSH and was in
fact used in most of the functions in Chapter 5.

Field Smooth Hash Let Fqd be a finite field as above, let G denote the
multiplicative group of Fqd and let n ≈ log2 |G|. Instead of a single mapping

π consider a set of k injective functions φi : {0, 1}b → Li for i = 1, . . . , k and
Li pairwise disjoint such that Li ⊆ {(t + α) ∈ Fqd | α ∈ Fq} and |Li| = 2b.

The above condition implies k2b < q, in order for our function to compress,
require also bk > n. If m is a bk-bit input message, compute the compression
function as follows:

1. Initialize x0 = 1.

2. For i = 1 to k compute xi+1 = xi × φi(m[i]).

3. Return xk+1.

The result is an element of the field Fqd that can be represented by
approximately n bits. The function can be seen as a variant of Faster VSH.
Small primes are replaced by low degree polynomials, reduction modulo the
integer M is replaced by reduction modulo the degree d polynomial f(t).

7.4. SECURITY 87

7.4 Security

The construction leaves a lot of freedom for selecting parameters. Because
Step 2 is executed once per b bits of input, one would want b to be as big as
possible to achieve the highest performance. Unfortunately, if b is selected
to be the largest integer subject to the condition k2b < q, the compression
function may turn out to be easy to invert.

Factoring Attacks

If we omit reductions modulo f(t) from FSH, the function maps the bk bits
of input to a degree k monic polynomial x′(t) ∈ Fq[t]. This mapping is
injective and easy to invert by factoring the polynomial x′(t) over Fq. There
exist efficient probabilistic methods for doing so, for example the algorithm
by Cantor and Zassenhaus [34].

Given a digest x ∈ Fqd , one may invert FSH by finding a suitable monic
polynomial z(t) ∈ Fq[t] such that x′(t) = x+ z(t)f(t) factors over Fq:

x′(t) =
k∏
i=1

si for si ∈ Li . (7.7)

The degree of z(t) equals k − d, there are qk−d such polynomials available.
For a random z(t), there is a chance 2k(b−log2 q) that the factorization of
x′(t) has the form (7.7) required to invert H. One expects to succeed after
2k(log2 q−b) trials. Inversion by factoring gets easier as b approaches log2 q.
On the other hand, the approach can be slower than generic preimage search
for many parameter choices.

Divide and Factor To extend the above inversion attack, one can guess
1 ≤ j ≤ k−d message blocks m[i] and solve for the remaining k−j. Without
loss of generality fix the blocks numbered 1 to j and invert the function on
positions j + 1, . . . , k. Let si ∈ Li for i = 1, . . . , j be the linear polynomials
corresponding to the bj bits guessed. To invert x ∈ Fqd , first compute

y = x×

(
j∏
i=1

si

)−1

∈ Fqd . (7.8)

Then find a degree k − d− j polynomial z(t) such that y′(t) = y + z(t)f(t)
factors over Fq as y′(t) =

∏k
i=j+1 si for si ∈ Li. There are 2bj choices for

88 CHAPTER 7. FIELD SMOOTH HASH

s1, . . . , sj and qk−d−j possible values of z(t). The expected number of trials
needed to invert H is 2(k−j)(log2 q−b). The expression is minimized when
j = k − d and evaluates to 2n−bd. In this case the degree of z(t) is zero, i.e.
z(t) = 1 and y′(t) = y + f(t).

If we fix j > k − d of the k available positions, then the function can be
inverted by computing y ∈ Fqd as in (7.8) and then factoring it in Fq[t]. The

degree of y is at most d− 1. The probability that it factors as y =
∏k
i=j+i si

is 2b(k−j)−n, therefore 2n−b(k−j) trials are expected to succesfully invert H.
This cost is strictly greater than the optimal value 2n−bd achieved for j =
k− d. Observe that when j = k, we are guessing all the bk bits of the input
and expect to succeed in 2n trials.

Countermeasures To prevent the factoring attacks, we need to select
the parameters such that the cost 2n−bd is large. As k2b approaches the
maximum q = 2n/d, the quantity 2n−bd approaches kd. Factoring attacks are
a threat in particular for instances with small k and d. We will nevertheless
keep track of n− bd when selecting parameters.

Extended k-Tree Algorithm

If n− bd is sufficiently high to prevent the above inversion attacks, measure
security by the cost of the extended tree algorithm as in the case of Faster
VSH in Chapter 6. For some fields, the tree algorithm may run in a chain
of multiplicative subgroups of G. In other fields, it may be necessary to
compute discrete logarithms first and proceed in the equivalent additive
representation of G. As in the case of Faster VSH, the cost of discrete
logarithms will be neglected. The type lU bounds remain valid. Recall that
we will quantify preimage resistance with respect to the tree algorithm as 2

n
v

for v that satisfies 2v−1

v = r = bk
n , collision resistance will be approximated

by 2
n
v′ where v′ satisfies 2v

′−1

v′ = 2r.

7.5 Choosing the Base Field

Apart from the above security considerations, the choice of parameters is
restricted by the existence of a field for given q and d. The limitations are
fortunately not too severe, there are a plenty of fields to choose from. We
can even be quite picky about the fields to hope for better performance.

We will choose the field Fq such that its elements (almost) fill an integral
number of machine words, and stick to 64-bit architecture. If we denote the

7.5. CHOOSING THE BASE FIELD 89

Table 7.1: Available Extensions of Binary Fields

Field Size Degrees of Available Trinomials

263 2, 4, 5, 10, 11, 17, 20, 22, 23, 25, 29, 31

264 3, 5, 7, 9, 11, 15, 17, 21, 23, 25, 29, 31

2127 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15

2128 3, 5, 7, 9, 11, 15

2191 3, 4, 5, 6, 7, 9, 10

2192 5, 7

2255 2, 4, 7

2256 3, 5, 7

number of words needed to represent the base field Fq by w, then log2 q ≈
64w. The bitlength of the extension field is then n ≈ 64dw. To define the
extension field Fqd , we only consider irreducible monic trinomials f(t) =

td ± tc ± 1 for 1 < c < d. This way we will avoid field multiplications when
reducing modulo f(t) and accomplish such reductions only by a few additions
or subtractions in Fq. The candidate polynomials can be easily tested for
irreducibility, we found all the useful pairs of q and the corresponding f(t)
by a simple program for Sage [134].

Binary Fields In the binary case, the choice of trinomials f is limited,
for a given d there are only d− 1 candidate polynomials of the form f(t) =
td + tc + 1. Moreover, if the extension degree of Fq over F2 is even, then
all the trinomials of this form with d even will be reducible over Fq. For
this reason we will consider either q = 264w or q = 264w−1 for the base field.
We tested such fields for w ∈ {1, 2, 3, 4} for all d such that dw ≤ 32. The
latter condition simply avoids the fields that lead to n > 2048. The available
choices for d are listed in Table 7.1.

Prime Fields We will consider fields for q an odd prime number only
slightly below 264w. Because 1 6= −1 in Fq, there are now 4(d− 1) candidate
polynomials to test for irreducibility. For any chosen w ≥ 1 and d ≥ 2 we
were able to find a valid pair q, f(t) practically in no time, by trying random
q close to 264w.

To optimize computation in Fq we also considered special prime moduli

90 CHAPTER 7. FIELD SMOOTH HASH

Table 7.2: Available Extensions of Fields Modulo Special Primes

Field Size Degrees of Available Trinomials

2127 − 1 2,4,5,8,9,10,11,12,13,16

2127 − 735 2,4,6,8,9,13

2255 − 19 4,5,7,9

q that allow cheap reductions. The available extension degrees for three such
primes are displayed in Table 7.2.

Even if we aim for fields that can be represented and implemented effi-
ciently, there is still plenty of freedom for selecting parameters. We continue
to look for convenient parameters experimentally.

7.6 Implementation

For simplicity, only consider multiples of 8 for b. We may then process
messages in blocks of B bytes for B = b/8.

7.6.1 From Bits to Field Elements

We proceed to define the k injective mappings φi : {0, 1} → Li ⊆ Fq that
map message blocks m[i] to elements of the base field. The index i can be
represented by log2 k bits. Take the binary representation of i and append
the b-bit string input to φi, i.e. concatenate the index i and the b-bit message
block m[i] to form α = i||m[i]. Because k2b < q implies log2 k + b < log2 q,
the resulting bit string is at most log2 q bits long. Pad α to fill w machine
words such that the result is a binary representation of an element of Fq. We
go for the simplest padding with all zero bits, in practice one may choose
any fixed pattern. The total size of the padding pattern across all 1 ≤ i ≤ k
is approximately k(log2 q − log2 k − b) bits. The pattern can be considered
extra “key material” that allows to select a custom compression function
even if all the remaining parameters are fixed. Define the output of φi(m[i])
as the element of Fq with binary representation α.

In practice, we will simply represent the index i by an integral number
of bytes, and append B bytes of input. The function φi can be “computed”
for free, it does nothing more than read the input. This special choice of φi
removes the requirement to store the lists of field elements.

7.6. IMPLEMENTATION 91

7.6.2 The FSH Iteration

By the similarity to Faster VSH, the new function allows an equivalent iter-
ative implementation:

1. Initialize a w(d+ 1)-word intermediate value x with φ1(m[1]).

2. For i = 2 to d − 1 multiply x by (t + φi(m[i])), no reductions by f(t)
are needed here.

3. For i = d to k multiply x by (t+ φi(m[i])) modulo f(t).

4. Output x.

A multiplication of x by (t + α) can be implemented by adding the vector
x shifted w words to the left and the product xα. Once x has full length
of d field elements, the product in Step 3 needs d field multiplications and
d− 1 additions. The resulting polynomial is a degree d+ 1 polynomial over
Fq. A reduction modulo f(t) can be accomplished by two additions resp.
subtractions in Fq.

7.6.3 Field Arithmetic

We have implemented FSH in C for a 64-bit PC architecture for both binary
and prime extension fields. The initial implementations were for w = 1 and
allowed the values B, k, d to be specified at compile time. A later version
allows to compile for various w as well. With such a versatile implementation,
we may not have reached the performance that would be expected of a fine-
tuned optimized implementation specific to a single set of parameters. The
advantage of the approach is that real-world performance can help select
parameters from the vast set of possibilities.

Binary Fields

Field addition in binary fields can be implemented by XORs. We used rou-
tines from the MPFQ library by Gaudry and Thomé for multiplication [54].
The library offers optimized arithmetic routines for many finite fields, it is
especially suitable in our setting when a field is known at compile time. For
the fields we consider, all the MPFQ code is actually inlined, i.e. there is no
binary library to call.

A field multiplication for w = 1 performs a 64× 64 bit carry-less binary
multiplication. Intel recently extended the x86-64 instruction set by the

92 CHAPTER 7. FIELD SMOOTH HASH

instruction PCLMULQDQ to compute such a product [60]. We implemented an
option to call the instruction instead of the MPFQ multiplication routine
where available.

For w ≥ 2 we exclusively rely on MPFQ for both multiplication and
addition, the library provides all binary fields up to 2256, this limits us to
w ∈ {1, 2, 3, 4}.

For all the binary fields, we use the fields as implemented in MPFQ.
Field operations in Fq are the most basic arithmetic primitives we use, we
will therefore not describe inner workings of Fq. In order to implement the
mapping φi properly, it is sufficient to check that the field with 264w elements
is represented in MPFQ by an array of w machine words.

Prime Fields

An implementation for w = 1 was written from scratch in C with limited
inline assembly code for modular arithmetic. Divisions are avoided by per-
forming Montgomery reductions instead. There is no need to perform any
conversions to Montgomery representation, the reduction is linear over Fq in
the end it only permutes the results. As in the case of Faster VSH, the final
output can be “fixed”, but it is not necessary.

For w ≥ 2 we use the MPFQ library for all arithmetic in prime or-
der fields. The library provides optimized routines for three special moduli
numbers that allow fast reductions, these are the primes listed in Table 7.2.
There are dedicated routines for general primes q known to fit to w machine
words, the arithmetic is in turn performed by the GNU MP library. The
library offers routines to compute in Montgomery representation, these are
used directly, any conversions are omitted.

7.7 Experimental results

Thanks to the versatile implementation we were able to compile many in-
stances and perform preliminary speed tests. We report on a selection of
variants including the most efficient ones found when testing on the same
Intel Core i7 system used in Chapter 6. Speed was measured when hashing
long messages in Merkle-Damg̊ard mode.

The choice of parameters was guided by the complexity collision search
by the extended tree algorithm. We set three target levels for this quantity,
2128, 2192 and 2256. The results are organized with respect to the class of Fq
and ordered by estimated collision resistance.

7.8. SUMMARY 93

7.7.1 Binary Fields

The parameters and performance results are listed in Table 7.3. For a given
security level, the performance of the variants included increases with w, i.e.
size of the base field Fq. The fastest variant that is expected to offer an
equivalent of 2128 collision resistance is a sum on k = 11 “lists” of 2b = 2184

elements each. Such extreme values of b are possible because all the weights
(t+ αi) are generated on the fly.

The code for w = 4 uses multiplication from the MPFQ library. The
dedicated PCLMULQDQ instruction appears to be, perhaps surprisingly, slower
than MPFQ. More careful low-level optimization could possibly benefit from
the new instruction.

7.7.2 Prime Fields

The results for general primes q are listed in Table 7.4 and for the three
special primes in Table 7.5. The software performance of FSH over prime
fields is superior to the case of binary fields. Here as well the fastest variants
are those with large w. The variants with w = 1 benefit from a more careful
dedicated implementation, the instances for w ≥ 2 use a more generic code
and are likely to suffer from function call overhead. As soon as w = 4, even
the generic code becomes faster for a given security level.

Observe in particular the function with w = 7, k = 11, d = 2 in row 4 of
Table 7.4. It offers an equivalent of 2130 collision resistance and computes
in a quadratic extension of a field modulo a 448 bit prime number. The hy-
pothetical lists of weights are 2352 elements long, only 11 linear polynomials
are multiplied to compress 3872 bits. This function runs at approximately
half the speed of SHA-256.

The fastest compression function found corresponds to the second row of
Table 7.5. It offers an equivalent of 2130 collision resistance. Computation
is preformed over a base field modulo the special prime q = 2255 − 19.
The function benefits from cheap reductions in the base field in addition
to the usual cheap reductions in the extension field. This function runs at
approximately 70% of the speed of SHA-256. This is better than the fastest
variant of Smoother VSH (p. 77).

7.8 Summary

The new family of compression functions in multiplicative groups of finite
fields is both simple and flexible in design. In contrast to VSH there is no

94 CHAPTER 7. FIELD SMOOTH HASH

Table 7.3: Variants of FSH in Binary Fields

w B k d n Pre Coll n− bd MB/s Cycles/b

1 6 120 15 960 2154 2128 240 22.6 119

2 12 21 6 768 2167 2128 190 28.7 94

4 23 11 3 768 2167 2128 216 38.3 70

1 5 161 22 1408 2232 2192 352 11.9 226

2 9 34 11 1152 2252 2193 360 17.1 157

4 24 25 5 1280 2240 2193 320 27.1 99

4 24 42 7 1792 2315 2257 448 20.1 134

Table 7.4: Variants of FSH in Prime Fields for General q

w B k d n Pre Coll n− bd MB/s Cycles/b

1 6 85 14 896 2157 2128 224 46.1 58

2 12 42 7 896 2157 2128 224 40.1 67

4 25 40 4 1024 2152 2128 224 65.2 41

7 44 11 2 896 2160 2130 192 78.3 34

1 6 101 20 1280 2240 2192 320 29.5 91

2 12 50 10 1280 2240 2192 320 27.2 99

4 24 25 5 1280 2240 2192 320 45.9 59

1 6 120 26 1664 2322 2256 416 22.8 118

2 12 60 13 1664 2322 2256 416 20.8 129

4 24 42 7 1792 2315 2257 448 34.4 78

7.8. SUMMARY 95

Table 7.5: Variants of FSH in Prime Fields for Special q

w B k d n Pre Coll n− bd MB/s Cycles/b

2 12 85 8 1024 2151 2128 256 53.3 51

4 25 40 4 1024 2153 2128 224 111.9 24

2 12 50 10 1280 2240 2192 320 38.6 70

4 25 24 5 1280 2240 2192 320 77.9 35

2 12 60 13 1664 2322 2256 416 29.5 91

4 24 42 7 1792 2315 2257 448 60.1 45

need to collect and organize prime numbers. The fields in the new setting
can be made to measure, there is enough freedom to satisfy the limitations
of almost any architecture. The linear polynomials can be obtained and
multiplied fast, memory requirements hardly exceed the output size. For
well chosen parameters, the performance of Field Smooth Hash in software
is superior to Faster and Smoother VSH considered in Chapter 6. The
performance of our fastest variant that offers 128-bit collision resistance is
comparable to SHA-256.

Security properties are again linked to the hardness of specific k-product
problems in a multiplicative group. The security is quantified by means of
type lU bounds relative to the cost of the tree algorithm.

Conclusions

The recent “provably secure” hash functions have turned out to be surpris-
ingly similar. From a high level point of view, all the functions considered
in Chapters 4 to 7 are k-sums in finite groups. This allows to establish
a provable link between the security of such functions and the hardness of
the corresponding k-sum instances. In this respect, the generalized birthday
problem appears to be well suited for hash function design.

A connection to some mathematical problem does not of course prove
security by itself. Several hash functions related to Cayley graphs were
claimed to be provably secure and then shown insecure. The current version
of FSB has evolved from a series of “provably secure” and broken variants.
In these cases, security was provably reduced to a problem that turned out to
be easy. Most of the attacks on k-sum compression functions either applied
the tree algorithm or exploited some special structure of the group elements
involved. The complexity of the tree algorithm can be factored in when
designing new functions. The k-sum problem is by no means new. It has been
studied for several years and can be considered for a hardness assumption
on its own.

The risk associated with special structure might not be easy to avoid.
Such structure is needed for a k-sum function to have a compact description
and in turn allow efficient implementation.

Finding k-sum instances that lead to both efficient and secure compres-
sion functions remains an open question. Our contributions show that even
multiplicative k-sums can be very fast. We have also investigated an inter-
esting collision separation property that appears to be exclusive to multi-
plicative k-sums.

The security of our new functions, as far as provable L bounds are con-
cerned, remains open.

97

Bibliography

[1] L. M. Adleman and M.-D. A. Huang. Function field sieve method
for discrete logarithms over finite fields. Inf. Comput., 151(1-2):5–16,
1999.

[2] M. Ajtai. Generating hard instances of lattice problems (extended
abstract). In STOC, pages 99–108, 1996.

[3] M. Ajtai. The Shortest Vector Problem in l2 is NP-hard for Random-
ized Reductions (Extended Abstract). In STOC, pages 10–19, 1998.

[4] M. Ajtai. Generating hard instances of lattice problems. J. Kraj́ıček
(ed.), Complexity of computations and proofs. Quaderni di Matemat-
ica 13, 1-32., 2004.

[5] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-
case/average-case equivalence. In STOC, pages 284–293, 1997.

[6] Y. Arbitman, G. Dogon, V. Lyubashevsky, D. Micciancio, C. Peik-
ert, and A. Rosen. SWIFFTX: A Proposal for the SHA-3 Standard.
Submission to NIST, 2008.

[7] D. Augot, M. Finiasz, P. Gaborit, S. Manuel, and N. Sendrier. SHA-3
proposal: FSB. Submission to NIST, 2008.

[8] D. Augot, M. Finiasz, and N. Sendrier. A Fast Provably Secure Cryp-
tographic Hash Function. 2003.

[9] D. Augot, M. Finiasz, and N. Sendrier. A Family of Fast Syndrome
Based Cryptographic Hash Functions. In E. Dawson and S. Vaudenay,
editors, Mycrypt, volume 3715 of Lecture Notes in Computer Science,
pages 64–83. Springer, 2005.

99

100 BIBLIOGRAPHY

[10] J.-P. Aumasson and W. Meier. Analysis of multivariate hash functions.
In K.-H. Nam and G. Rhee, editors, ICISC, volume 4817 of Lecture
Notes in Computer Science, pages 309–323. Springer, 2007.

[11] M. Bardet, J. Faugere, and B. Salvy. On the complexity of Grob-
ner basis computation of semi-regular overdetermined algebraic equa-
tions. Proceedings of the International Conference on Polynomial Sys-
tem Solving, pages 71–74, 2004.

[12] P. S. L. M. Barreto and V. Rijmen. The Whirlpool hashing function.
Submitted to NESSIE, September 2000. Revised May 2003. Available:
http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html.

[13] R. Barua and T. Lange, editors. Progress in Cryptology - IN-
DOCRYPT 2006, 7th International Conference on Cryptology in In-
dia, Kolkata, India, December 11-13, 2006, Proceedings, volume 4329
of Lecture Notes in Computer Science. Springer, 2006.

[14] A. Becker, J.-S. Coron, and A. Joux. Improved generic algorithms for
hard knapsacks. In K. G. Paterson, editor, EUROCRYPT, volume
6632 of Lecture Notes in Computer Science, pages 364–385. Springer,
2011.

[15] M. Bellare. Practice-oriented provable security. In I. Damg̊ard, editor,
Lectures on Data Security, volume 1561 of Lecture Notes in Computer
Science, pages 1–15. Springer, 1998.

[16] M. Bellare, A. Boldyreva, and A. Palacio. An uninstantiable random-
oracle-model scheme for a hybrid-encryption problem. In C. Cachin
and J. Camenisch, editors, EUROCRYPT, volume 3027 of Lecture
Notes in Computer Science, pages 171–188. Springer, 2004.

[17] M. Bellare and D. Micciancio. A new paradigm for collision-free hash-
ing: Incrementality at reduced cost. In EUROCRYPT, pages 163–192,
1997.

[18] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM Conference on Computer and
Communications Security, pages 62–73, 1993.

[19] C. Berbain, H. Gilbert, and J. Patarin. QUAD: A practical stream
cipher with provable security. In Vaudenay [145], pages 109–128.

http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html

BIBLIOGRAPHY 101

[20] E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg. On the
inherent intractability of certain coding problems. IEEE Trans. Inf.
Theory, 24:384–386, 1978.

[21] D. J. Bernstein, T. Lange, R. Niederhagen, C. Peters, and P. Schwabe.
FSBday. In Roy and Sendrier [119], pages 18–38.

[22] D. J. Bernstein, T. Lange, C. Peters, and P. Schwabe. Really fast
syndrome-based hashing. In A. Nitaj and D. Pointcheval, editors,
AFRICACRYPT, volume 6737 of Lecture Notes in Computer Science,
pages 134–152. Springer, 2011.

[23] E. Biham and O. Dunkelman. A framework for iterative hash functions
- HAIFA. Cryptology ePrint Archive, Report 2007/278, 2007. http:

//eprint.iacr.org/.

[24] O. Billet, M. J. B. Robshaw, and T. Peyrin. On building hash functions
from multivariate quadratic equations. In J. Pieprzyk, H. Ghodosi, and
E. Dawson, editors, ACISP, volume 4586 of Lecture Notes in Computer
Science, pages 82–95. Springer, 2007.

[25] J. Black, P. Rogaway, and T. Shrimpton. Black-box analysis of the
block-cipher-based hash-function constructions from PGV. In Yung
[151], pages 320–335.

[26] R. C. Bose and S. Chowla. Theorems in the additive theory of numbers.
Comment. Math. Helv, pages 141–147, 1962.

[27] J. Bosset. Contre les risques d’altération, un systeme de certification
des informations. 01 Informatique, 107, 1977.

[28] G. Brassard, editor. Advances in Cryptology - CRYPTO ’89, 9th An-
nual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes
in Computer Science. Springer, 1990.

[29] J. Buchmann and R. Lindner. Secure parameters for SWIFFT. In Roy
and Sendrier [119], pages 1–17.

[30] P. Camion. Can a fast signature scheme without secret key be secure?
In A. Poli, editor, AAECC, volume 228 of Lecture Notes in Computer
Science, pages 215–241. Springer, 1984.

http://eprint.iacr.org/
http://eprint.iacr.org/

102 BIBLIOGRAPHY

[31] P. Camion and J. Patarin. The knapsack hash function proposed at
Crypto’89 can be broken. In EUROCRYPT, pages 39–53, 1991.

[32] R. Canetti, O. Goldreich, and S. Halevi. The random oracle method-
ology, revisited. J. ACM, 51(4):557–594, 2004.

[33] A. Canteaut and F. Chabaud. A new algorithm for finding minimum-
weight words in a linear code: Application to McEliece’s cryptosystem
and to narrow-sense BCH codes of length 511. IEEE Trans. Inf. The-
ory, 44(1):367–378, 1998.

[34] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring poly-
nomials over finite fields. Math. Comput., 36:587–592, 1981.

[35] D. X. Charles, K. E. Lauter, and E. Z. Goren. Cryptographic hash
functions from expander graphs. J. Cryptology, 22(1):93–113, 2009.

[36] C. Charnes and J. Pieprzyk. Attacking the SL2 hashing scheme. In
J. Pieprzyk and R. Safavi-Naini, editors, ASIACRYPT, volume 917 of
Lecture Notes in Computer Science, pages 322–330. Springer, 1994.

[37] B. Chor and R. L. Rivest. A knapsack type public key cryptosystem
based on arithmetic in finite fields. In CRYPTO, pages 54–65, 1984.

[38] B. Chor and R. L. Rivest. A knapsack-type public key cryptosystem
based on arithmetic in finite fields. IEEE Transactions on Information
Theory, 34(5):901–909, 1988.

[39] H. Cohen, G. Frey, R. M. Avanzi, C. Doche, T. Lange, K. Nguyen, and
F. Vercauteren. Handbook of elliptic and hyperelliptic curve cryptog-
raphy. Discrete Mathematics and its Applications. Boca Raton, FL:
Chapman & Hall/CRC. xxxiv, 808 p., 2006.

[40] S. Contini, A. K. Lenstra, and R. Steinfeld. VSH, an efficient and
provable collision-resistant hash function. In Vaudenay [145], pages
165–182.

[41] J.-S. Coron and A. Joux. Cryptanalysis of a provably secure crypto-
graphic hash function. Cryptology ePrint Archive, Report 2004/013,
2004.

[42] M. J. Coster, A. Joux, B. A. LaMacchia, A. M. Odlyzko, C.-P. Schnorr,
and J. Stern. Improved low-density subset sum algorithms. Computa-
tional Complexity, 2:111–128, 1992.

BIBLIOGRAPHY 103

[43] R. Cramer, editor. Advances in Cryptology - EUROCRYPT 2005, 24th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005, Pro-
ceedings, volume 3494 of Lecture Notes in Computer Science. Springer,
2005.

[44] I. Damg̊ard. A design principle for hash functions. In Brassard [28],
pages 416–427.

[45] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Trans. Inf. Theory, 22:644–654, 1976.

[46] M. Finiasz. Syndrome based collision resistant hashing. In J. Buch-
mann and J. Ding, editors, PQCrypto 2008, volume 5299 of LNCS,
pages 137–147. Springer, 2008.

[47] M. Finiasz, P. Gaborit, and N. Sendrier. Improved fast syndrome
based cryptographic hash functions. ECRYPT Hash Function Work-
shop 2007, 2007.

[48] M. Finiasz and N. Sendrier. Security bounds for the design of code-
based cryptosystems. In M. Matsui, editor, Asiacrypt 2009, volume
5912 of LNCS, pages 88–105. Springer, 2009.

[49] M. Finiasz and N. Sendrier. Security bounds for the design of code-
based cryptosystems. In M. Matsui, editor, ASIACRYPT, volume 5912
of Lecture Notes in Computer Science, pages 88–105. Springer, 2009.

[50] P.-A. Fouque and G. Leurent. Cryptanalysis of a Hash Function Based
on Quasi-cyclic Codes. In T. Malkin, editor, CT-RSA, volume 4964 of
Lecture Notes in Computer Science, pages 19–35. Springer, 2008.

[51] N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Smart
[132], pages 31–51.

[52] T. E. Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory,
31(4):469–472, 1985.

[53] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[54] P. Gaudry and E. Thomé. MPFQ Library Version 1.0-rc3, 2010. http:
//www.mpfq.org.

http://www.mpfq.org
http://www.mpfq.org

104 BIBLIOGRAPHY

[55] P. Godlewski and P. Camion. Manipulations and errors, detection and
localization. In EUROCRYPT, pages 97–106, 1988.

[56] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-free hashing from
lattice problems. Electronic Colloquium on Computational Complexity
(ECCC), 3(42), 1996.

[57] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosys-
tems from lattice reduction problems. In J. Burton S. Kaliski, editor,
CRYPTO, volume 1294 of Lecture Notes in Computer Science, pages
112–131. Springer, 1997.

[58] D. M. Gordon. Discrete logarithms in GF (p) using the number field
sieve. SIAM J. Discrete Math., 6(1):124–138, 1993.

[59] M. Grassl, I. Ilic, S. S. Magliveras, and R. Steinwandt. Cryptanalysis
of the Tillich-Zémor hash function. J. Cryptology, 24(1):148–156, 2011.

[60] S. Gueron and M. E. Kounavis. Intel carry-less multiplication instruc-
tion and its usage for computing the GCM mode - rev 2, 2010. Intel
Software Network.

[61] S. Halevi, editor. Advances in Cryptology - CRYPTO 2009, 29th An-
nual International Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in
Computer Science. Springer, 2009.

[62] N. Howgrave-Graham and A. Joux. New generic algorithms for hard
knapsacks. In H. Gilbert, editor, EUROCRYPT, volume 6110 of Lec-
ture Notes in Computer Science, pages 235–256. Springer, 2010.

[63] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably
as secure as subset sum. In FOCS, pages 236–241. IEEE, 1989.

[64] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably
as secure as subset sum. J. Cryptology, 9(4):199–216, 1996.

[65] A. Joux. Multicollisions in iterated hash functions. Application to
cascaded constructions. In M. K. Franklin, editor, CRYPTO, volume
3152 of Lecture Notes in Computer Science, pages 306–316. Springer,
2004.

BIBLIOGRAPHY 105

[66] A. Joux and L. Granboulan. A practical attack against knapsack based
hash functions (extended abstract). In EUROCRYPT, pages 58–66,
1994.

[67] A. Joux and R. Lercier. The function field sieve in the medium prime
case. In Vaudenay [145], pages 254–270.

[68] A. Joux, R. Lercier, N. P. Smart, and F. Vercauteren. The number
field sieve in the medium prime case. In C. Dwork, editor, CRYPTO,
volume 4117 of Lecture Notes in Computer Science, pages 326–344.
Springer, 2006.

[69] A. Joux and J. Stern. Lattice reduction: A toolbox for the cryptana-
lyst. J. Cryptology, 11(3):161–185, 1998.

[70] R. M. Karp. Reducibility among combinatorial problems. In R. E.
Miller and J. W. Thatcher, editors, Complexity of Computer Compu-
tations, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972.

[71] J. Kelsey and T. Kohno. Herding hash functions and the nostradamus
attack. In Vaudenay [145], pages 183–200.

[72] J. Kelsey and B. Schneier. Second preimages on n-bit hash functions
for much less than 2n work. In Cramer [43], pages 474–490.

[73] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W.
Bos, P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, H. J. J.
te Riele, A. Timofeev, and P. Zimmermann. Factorization of a 768-bit
RSA modulus. In T. Rabin, editor, CRYPTO, volume 6223 of Lecture
Notes in Computer Science, pages 333–350. Springer, 2010.

[74] N. Koblitz and A. Menezes. Another Look at “Provable Security”. II.
In Barua and Lange [13], pages 148–175.

[75] N. Koblitz and A. Menezes. Another look at “provable security”. J.
Cryptology, 20(1):3–37, 2007.

[76] J. C. Lagarias and A. M. Odlyzko. Solving low-density subset sum
problems. J. ACM, 32(1):229–246, 1985.

[77] A. K. Lenstra and H. W. Lenstra. The Development of the Number
Field Sieve. Springer, 1993.

106 BIBLIOGRAPHY

[78] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polyno-
mials with rational coefficients. Math. Ann., 261:515–534, 1982.

[79] A. K. Lenstra, D. Page, and M. Stam. Discrete logarithm variants of
VSH. In Nguyen [102], pages 229–242.

[80] H. W. Lenstra. On the Chor-Rivest knapsack cryptosystem. J. Cryp-
tology, 3(3):149–155, 1991.

[81] H. W. Lenstra, Jr. Factoring integers with elliptic curves. The Annals
of Mathematics, 126(3):pp. 649–673, 1987.

[82] G. Leurent and P. Q. Nguyen. How risky is the random-oracle model?
In Halevi [61], pages 445–464.

[83] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combi-
natorica, 8(3):261–277, 1988.

[84] V. Lyubashevsky. On random high density subset sums. In Electronic
Colloquium on Computational Complexity (ECCC), volume 12, 2005.

[85] V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks
are collision resistant. In M. Bugliesi, B. Preneel, V. Sassone, and
I. Wegener, editors, ICALP (2), volume 4052 of Lecture Notes in Com-
puter Science, pages 144–155. Springer, 2006.

[86] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Provably
Secure FFT Hashing. 2nd NIST Cryptographic Hash Function Work-
shop, 2006.

[87] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. SWIFFT:
A modest proposal for FFT hashing. In K. Nyberg, editor, FSE, vol-
ume 5086 of Lecture Notes in Computer Science, pages 54–72. Springer,
2008.

[88] R. J. McEliece. A public-key cryptosystem based on algebraic coding
theory. DSN progress report, 42(44):114–116, 1978.

[89] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of
Applied Cryptography. CRC Press, Inc., Boca Raton, FL, USA, 1st
edition, 1996.

[90] R. Merkle and M. Hellman. Hiding information and signatures in trap-
door knapsacks. Information Theory, IEEE Transactions on, 24(5):525
– 530, sep 1978.

BIBLIOGRAPHY 107

[91] R. C. Merkle. A certified digital signature. In Brassard [28], pages
218–238.

[92] D. Micciancio. The shortest vector problem is NP-hard to approximate
to within some constant. SIAM Journal on Computing, 30(6):2008–
2035, Mar. 2001. Preliminary version in FOCS 1998.

[93] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions from worst-case complexity assumptions.
In FOCS, pages 356–365. IEEE Computer Society, 2002.

[94] D. Micciancio. Generalized compact knapsacks, cyclic lattices, and
efficient one-way functions. Computational Complexity, 16(4):365–411,
2007.

[95] L. Minder and A. Sinclair. The extended k-tree algorithm. In C. Math-
ieu, editor, SODA, pages 586–595. SIAM, 2009.

[96] L. Minder and A. Sinclair. The extended k-tree algorithm. Journal of
Cryptology, pages 1–34, 2011.

[97] P. L. Montgomery. Modular multiplication without trial division.
Mathematics of Computation, 44:519–519, 1985.

[98] M. A. Morrison and J. Brillhart. A method of factoring and the fac-
torization of F7. Math. Comput., 29:183–205, 1975.

[99] National Institute of Standards and Technology. FIPS 180-2, Se-
cure Hash Standard, Federal Information Processing Standard (FIPS),
Publication 180-2. Technical report, Aug. 2002.

[100] National Institute of Standards and Technology. Announcing request
for candidate algorithm nominations for a new cryptographic hash
algorithm (SHA–3) family. Federal Register, 72(212):62212–62220, Nov
2007.

[101] P. Q. Nguyen. Cryptanalysis of the goldreich-goldwasser-halevi cryp-
tosystem from crypto ’97. In M. J. Wiener, editor, CRYPTO, volume
1666 of Lecture Notes in Computer Science, pages 288–304. Springer,
1999.

[102] P. Q. Nguyen, editor. Progressin Cryptology - VIETCRYPT 2006,
First International Conferenceon Cryptology in Vietnam, Hanoi, Viet-
nam, September 25-28, 2006, Revised Selected Papers, volume 4341 of
Lecture Notes in Computer Science. Springer, 2006.

108 BIBLIOGRAPHY

[103] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding
theory. Probl. Control Inf. Theory, 15:159–166, 1986.

[104] R. Overbeck and N. Sendrier. Code-based cryptography. Bernstein,
Daniel J. (ed.) et al., Post-quantum cryptography. First international
workshop PQCrypto 2006, Leuven, The Netherland, May 23–26, 2006.
Selected papers. Berlin: Springer. 95-145 (2009)., 2009.

[105] C. Peikert and A. Rosen. Efficient collision-resistant hashing from
worst-case assumptions on cyclic lattices. In S. Halevi and T. Ra-
bin, editors, TCC, volume 3876 of Lecture Notes in Computer Science,
pages 145–166. Springer, 2006.

[106] C. Petit, K. Lauter, and J.-J. Quisquater. Cayley Hashes: A Class of
Efficient Graph-based Hash Functions. 2007.

[107] C. Petit, K. Lauter, and J.-J. Quisquater. Full Cryptanalysis of LPS
and Morgenstern Hash Functions. 2008.

[108] C. Petit and J.-J. Quisquater. Preimages for the Tillich-Zémor hash
function. In SAC2010 Selected Areas in Cryptography, 8 2010.

[109] S. C. Pohlig and M. E. Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE Trans.
Inf. Theory, 24:106–110, 1978.

[110] D. Pointcheval. The composite discrete logarithm and secure authen-
tication. In H. Imai and Y. Zheng, editors, Public Key Cryptography,
volume 1751 of Lecture Notes in Computer Science, pages 113–128.
Springer, 2000.

[111] J. M. Pollard. Monte Carlo methods for index computation (mod p).
Math. Comput., 32:918–924, 1978.

[112] J. M. Pollard. Factoring with cubic integers. Lenstra, A. K. (ed.) et
al., The development of the number field sieve. Berlin: Springer-Verlag.
Lect. Notes Math. 1554, 4-10 (1993)., 1993.

[113] B. Preneel, R. Govaerts, and J. Vandewalle. Hash functions based
on block ciphers: A synthetic approach. In D. R. Stinson, editor,
CRYPTO, volume 773 of Lecture Notes in Computer Science, pages
368–378. Springer, 1993.

BIBLIOGRAPHY 109

[114] M. O. Rabin. Digitalized signatures and public-key functions as in-
tractable as factorization. Technical report, Cambridge, MA, USA,
1979.

[115] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informa-
tional), Apr. 1992. Updated by RFC 6151.

[116] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[117] P. Rogaway. Formalizing human ignorance. In Nguyen [102], pages
211–228.

[118] P. Rogaway and T. Shrimpton. Cryptographic hash-function ba-
sics: Definitions, implications, and separations for preimage resistance,
second-preimage resistance, and collision resistance. In B. K. Roy and
W. Meier, editors, FSE, volume 3017 of Lecture Notes in Computer
Science, pages 371–388. Springer, 2004.

[119] B. K. Roy and N. Sendrier, editors. Progress in Cryptology - IN-
DOCRYPT 2009, 10th International Conference on Cryptology in In-
dia, New Delhi, India, December 13-16, 2009. Proceedings, volume
5922 of Lecture Notes in Computer Science. Springer, 2009.

[120] M.-J. O. Saarinen. Security of VSH in the real world. In Barua and
Lange [13], pages 95–103.

[121] M.-J. O. Saarinen. Linearization attacks against syndrome based
hashes. In K. Srinathan, C. P. Rangan, and M. Yung, editors, IN-
DOCRYPT, volume 4859 of Lecture Notes in Computer Science, pages
1–9. Springer, 2007.

[122] J. Šarinay. Interpreting hash function security proofs. In S.-H. Heng
and K. Kurosawa, editors, ProvSec, volume 6402 of Lecture Notes in
Computer Science, pages 119–132. Springer, 2010.

[123] J. Šarinay. Faster and smoother - VSH revisited. In U. Parampalli and
P. Hawkes, editors, ACISP, volume 6812 of Lecture Notes in Computer
Science, pages 142–156. Springer, 2011.

[124] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theor. Comput. Sci., 53:201–224, 1987.

110 BIBLIOGRAPHY

[125] C.-P. Schnorr and M. Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Math. Pro-
gram., 66:181–199, 1994.

[126] C.-P. Schnorr and H. H. Hörner. Attacking the Chor-Rivest cryp-
tosystem by improved lattice reduction. In EUROCRYPT, pages 1–12,
1995.

[127] C.-P. Schnorr and S. Vaudenay. The black-box model for cryptographic
primitives. J. Cryptology, 11(2):125–140, 1998.

[128] R. Schroeppel and A. Shamir. A T=O(2n/2), S = O(2n/4) algorithm
for certain NP-complete problems. SIAM J. Comput., 10(3):456–464,
1981.

[129] A. Shallue. An improved multi-set algorithm for the dense subset sum
problem. van der Poorten, Alfred J. (ed.) et al., Algorithmic number
theory. 8th international symposium, ANTS-VIII Banff, Canada, May
17–22, 2008 Proceedings. Berlin: Springer. Lecture Notes in Computer
Science 5011, 416-429 (2008)., 2008.

[130] A. Shamir and Y. Tauman. Improved online/offline signature schemes.
In J. Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Com-
puter Science, pages 355–367. Springer, 2001.

[131] V. Shoup. Lower bounds for discrete logarithms and related problems.
In EUROCRYPT, pages 256–266, 1997.

[132] N. P. Smart, editor. Advances in Cryptology - EUROCRYPT 2008,
27th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Pro-
ceedings, volume 4965 of Lecture Notes in Computer Science. Springer,
2008.

[133] M. Stam. Blockcipher-based hashing revisited. In O. Dunkelman,
editor, FSE, volume 5665 of Lecture Notes in Computer Science, pages
67–83. Springer, 2009.

[134] W. Stein et al. Sage Mathematics Software (Version 4.7.1). The Sage
Development Team, 2011. http://www.sagemath.org.

[135] R. Steinwandt, M. Grassl, W. Geiselmann, and T. Beth. Weaknesses in
the SL2(F2n) hashing scheme. In M. Bellare, editor, CRYPTO, volume

BIBLIOGRAPHY 111

1880 of Lecture Notes in Computer Science, pages 287–299. Springer,
2000.

[136] J. Stern. A method for finding codewords of small weight. In G. D.
Cohen and J. Wolfmann, editors, Coding Theory and Applications,
volume 388 of Lecture Notes in Computer Science, pages 106–113.
Springer, 1988.

[137] M. Stevens, A. Sotirov, J. Appelbaum, A. K. Lenstra, D. Molnar, D. A.
Osvik, and B. de Weger. Short chosen-prefix collisions for md5 and
the creation of a rogue ca certificate. In Halevi [61], pages 55–69.

[138] J.-P. Tillich and G. Zémor. Group-theoretic hash functions. In G. D.
Cohen, S. Litsyn, A. Lobstein, and G. Zémor, editors, Algebraic Cod-
ing, volume 781 of Lecture Notes in Computer Science, pages 90–110.
Springer, 1993.

[139] J.-P. Tillich and G. Zémor. Hashing with SL2. In Y. Desmedt, editor,
CRYPTO, volume 839 of Lecture Notes in Computer Science, pages
40–49. Springer, 1994.

[140] J.-P. Tillich and G. Zémor. Collisions for the LPS Expander Graph
Hash Function. In Smart [132], pages 254–269.

[141] P. van Emde Boas. Another NP-complete problem and the complexity
of computing short vectors in lattices. Math. Dept. Report 81—. 04.
Univ. of Amsterdam, 1981.

[142] P. C. van Oorschot and M. J. Wiener. Parallel collision search with
cryptanalytic applications. J. Cryptology, 12(1):1–28, 1999.

[143] S. Vaudenay. Cryptanalysis of the Chor-Rivest cryptosystem. In
H. Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Com-
puter Science, pages 243–256. Springer, 1998.

[144] S. Vaudenay. Cryptanalysis of the Chor-Rivest cryptosystem. J. Cryp-
tology, 14(2):87–100, 2001.

[145] S. Vaudenay, editor. Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1,
2006, Proceedings, volume 4004 of Lecture Notes in Computer Science.
Springer, 2006.

112 BIBLIOGRAPHY

[146] D. Wagner. A Generalized Birthday Problem. Full version, http:

//www.eecs.berkeley.edu/~daw/papers/genbday-long.ps.

[147] D. Wagner. A Generalized Birthday Problem. In Yung [151], pages
288–303.

[148] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-
1. In V. Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in
Computer Science, pages 17–36. Springer, 2005.

[149] X. Wang and H. Yu. How to break MD5 and other hash functions. In
Cramer [43], pages 19–35.

[150] B.-Y. Yang, C.-H. O. Chen, D. J. Bernstein, and J.-M. Chen. Analysis
of QUAD. In A. Biryukov, editor, FSE, volume 4593 of Lecture Notes
in Computer Science, pages 290–308. Springer, 2007.

[151] M. Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd An-
nual International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 2002, Proceedings, volume 2442 of Lecture Notes
in Computer Science. Springer, 2002.

[152] G. Zémor. Hash functions and graphs with large girths. In EURO-
CRYPT, pages 508–511, 1991.

[153] G. Zémor. Hash functions and Cayley graphs. Des. Codes Cryptogra-
phy, 4(4):381–394, 1994.

http://www.eecs.berkeley.edu/~daw/papers/genbday-long.ps
http://www.eecs.berkeley.edu/~daw/papers/genbday-long.ps

Curriculum Vitae

Juraj Šarinay
Born 8 April 1983

Education

Sep 2007 – Dec 2011 PhD in Computer Science
School of Computer and Communication Sciences

École Polytechnique Fédérale de Lausanne

Sep 2001 – May 2006 Master Degree in Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava, Slovakia

Work Experience

Sep 2007 – Dec 2011 Assistant
Laboratory For Cryptologic Algorithms

École Polytechnique Fédérale de Lausanne

Oct 2003 – Aug 2007 Malware Researcher
Virus Laboratory
ESET spol. s r.o., Bratislava, Slovakia

113

	Title
	Résumé
	Abstract
	Contents
	Introduction
	Hash Functions and Applications
	Classical Hash Functions
	The Future Standard
	Hash Functions and Provable Security
	Outline of the Thesis

	Hash Function Basics
	Definitions
	Random Oracle Methodology
	Hash Function Security Properties
	Modeling cost
	Examples

	Towards Proofs of Security
	Generic Attacks
	MQ-HASH - An Example
	Domain Extenders

	Hard Computational Problems
	Integer Factorization
	Algorithms
	Related Problems
	Related Cryptosystems

	Discrete Logarithm
	Algorithms
	Related Cryptosystems

	Integer Lattices
	Lower Bounds
	Algorithms
	Related Problems
	Related Cryptosystems

	Subset Sum
	Related Problems
	Algorithms
	Related Cryptosystems

	Syndrome Decoding
	Algorithms
	Related Cryptosystems

	Generalized Birthday Problem
	Algorithms
	Lower Bounds

	Early Hash Functions in Groups
	Matrix Multiplication by Bosset
	Cryptanalysis

	Two Schemes by Godlewski and Camion
	Integer Addition
	Error Correcting Codes
	Cryptanalysis

	Matrix Multiplication by Tillich and Zémor
	Cryptanalysis

	Group Subset Sums by Impagliazzo and Naor
	Integer Addition by Damgård
	Cryptanalysis

	Vector Addition by Goldreich et al.
	Fast Syndrome Based Hash
	Security
	Cryptanalysis

	Incremental Functions by Bellare and Micciancio
	Cryptanalysis

	Knapsacks Revisited
	New Variants of FSB
	SHA-3 Candidate
	Really Fast Syndrome Based Hash

	Hash Functions from Expander Graphs
	Provable Security
	Cryptanalysis

	Generalized Compact Knapsacks
	SWIFFT
	SHA-3 Candidate

	Very Smooth Hash
	Basic VSH
	Discrete Logarithm Variant
	Preimage Resistance
	The Role of Small Primes
	Extensions to Other Groups

	New VSH Variants
	A Variant Without Modular Squaring
	The Extended Tree Algorithm
	Security of Faster VSH

	A Variant Without Modular Reduction
	Experimental Results
	Implementation
	Speed Measurements

	Separation of Colliding Inputs
	Summary

	Field Smooth Hash
	Chor-Rivest Cryptosystem
	Cryptanalysis

	Powerline System
	A New Compression Function
	Security
	Choosing the Base Field
	Implementation
	From Bits to Field Elements
	The FSH Iteration
	Field Arithmetic

	Experimental results
	Binary Fields
	Prime Fields

	Summary

	Conclusions
	Curriculum Vitae

