84 research outputs found

    Unifying Functional Interpretations: Past and Future

    Full text link
    This article surveys work done in the last six years on the unification of various functional interpretations including G\"odel's dialectica interpretation, its Diller-Nahm variant, Kreisel modified realizability, Stein's family of functional interpretations, functional interpretations "with truth", and bounded functional interpretations. Our goal in the present paper is twofold: (1) to look back and single out the main lessons learnt so far, and (2) to look forward and list several open questions and possible directions for further research.Comment: 18 page

    On the Semantics of Intensionality and Intensional Recursion

    Full text link
    Intensionality is a phenomenon that occurs in logic and computation. In the most general sense, a function is intensional if it operates at a level finer than (extensional) equality. This is a familiar setting for computer scientists, who often study different programs or processes that are interchangeable, i.e. extensionally equal, even though they are not implemented in the same way, so intensionally distinct. Concomitant with intensionality is the phenomenon of intensional recursion, which refers to the ability of a program to have access to its own code. In computability theory, intensional recursion is enabled by Kleene's Second Recursion Theorem. This thesis is concerned with the crafting of a logical toolkit through which these phenomena can be studied. Our main contribution is a framework in which mathematical and computational constructions can be considered either extensionally, i.e. as abstract values, or intensionally, i.e. as fine-grained descriptions of their construction. Once this is achieved, it may be used to analyse intensional recursion.Comment: DPhil thesis, Department of Computer Science & St John's College, University of Oxfor

    Hybrid realizability for intuitionistic and classical choice

    Get PDF
    International audienceIn intuitionistic realizability like Kleene's or Kreisel's, the axiom of choice is trivially realized. It is even provable in Martin-Löf's intu-itionistic type theory. In classical logic, however, even the weaker axiom of countable choice proves the existence of non-computable functions. This logical strength comes at the price of a complicated computational interpretation which involves strong recursion schemes like bar recursion. We take the best from both worlds and define a realizability model for arithmetic and the axiom of choice which encompasses both intuitionistic and classical reasoning. In this model two versions of the axiom of choice can co-exist in a single proof: intuitionistic choice and classical countable choice. We interpret intuitionistic choice efficiently, however its premise cannot come from classical reasoning. Conversely, our version of classical choice is valid in full classical logic, but it is restricted to the countable case and its realizer involves bar recursion. Having both versions allows us to obtain efficient extracted programs while keeping the provability strength of classical logic

    Higher-order interpretations and program complexity

    Get PDF
    International audiencePolynomial interpretations and their generalizations like quasi-interpretations have been used in the setting of first-order functional languages to design criteria ensuring statically some complexity bounds on programs [10]. This fits in the area of implicit computational complexity, which aims at giving machine-free characterizations of complexity classes. In this paper, we extend this approach to the higher-order setting. For that we consider simply-typed term rewriting systems [35], we define higher-order polynomial interpretations for them, and we give a criterion ensuring that a program can be executed in polynomial time. In order to obtain a criterion flexible enough to validate interesting programs using higher-order primitives, we introduce a notion of polynomial quasi-interpretations, coupled with a simple termination criterion based on linear types and path-like orders
    corecore