225 research outputs found

    Analysis and Detection of Information Types of Open Source Software Issue Discussions

    Full text link
    Most modern Issue Tracking Systems (ITSs) for open source software (OSS) projects allow users to add comments to issues. Over time, these comments accumulate into discussion threads embedded with rich information about the software project, which can potentially satisfy the diverse needs of OSS stakeholders. However, discovering and retrieving relevant information from the discussion threads is a challenging task, especially when the discussions are lengthy and the number of issues in ITSs are vast. In this paper, we address this challenge by identifying the information types presented in OSS issue discussions. Through qualitative content analysis of 15 complex issue threads across three projects hosted on GitHub, we uncovered 16 information types and created a labeled corpus containing 4656 sentences. Our investigation of supervised, automated classification techniques indicated that, when prior knowledge about the issue is available, Random Forest can effectively detect most sentence types using conversational features such as the sentence length and its position. When classifying sentences from new issues, Logistic Regression can yield satisfactory performance using textual features for certain information types, while falling short on others. Our work represents a nontrivial first step towards tools and techniques for identifying and obtaining the rich information recorded in the ITSs to support various software engineering activities and to satisfy the diverse needs of OSS stakeholders.Comment: 41st ACM/IEEE International Conference on Software Engineering (ICSE2019

    A multi-label, dual-output deep neural network for automated bug triaging

    Full text link
    Bug tracking enables the monitoring and resolution of issues and bugs within organizations. Bug triaging, or assigning bugs to the owner(s) who will resolve them, is a critical component of this process because there are many incorrect assignments that waste developer time and reduce bug resolution throughput. In this work, we explore the use of a novel two-output deep neural network architecture (Dual DNN) for triaging a bug to both an individual team and developer, simultaneously. Dual DNN leverages this simultaneous prediction by exploiting its own guess of the team classes to aid in developer assignment. A multi-label classification approach is used for each of the two outputs to learn from all interim owners, not just the last one who closed the bug. We make use of a heuristic combination of the interim owners (owner-importance-weighted labeling) which is converted into a probability mass function (pmf). We employ a two-stage learning scheme, whereby the team portion of the model is trained first and then held static to train the team--developer and bug--developer relationships. The scheme employed to encode the team--developer relationships is based on an organizational chart (org chart), which renders the model robust to organizational changes as it can adapt to role changes within an organization. There is an observed average lift (with respect to both team and developer assignment) of 13%-points in 11-fold incremental-learning cross-validation (IL-CV) accuracy for Dual DNN utilizing owner-weighted labels compared with the traditional multi-class classification approach. Furthermore, Dual DNN with owner-weighted labels achieves average 11-fold IL-CV accuracies of 76% (team assignment) and 55% (developer assignment), outperforming reference models by 14%- and 25%-points, respectively, on a proprietary dataset with 236,865 entries.Comment: 8 pages, 2 figures, 9 table

    Duplicate Defect Detection

    Get PDF
    Discovering and fixing faults is an unavoidable process in Software Engineering. It is always a good practice to document and organize fault reports. This facilitates the effectiveness of development and maintenance process. Bug Tracking Repositories, such as Bugzilla, are designed to provide fault reporting facilities for developers, testers and users of the system. Allowing anyone to contribute finding and reporting faults has an immediate impact on software quality. However, this benefit comes with one side-effect. Users often file reports that describe the same fault. This increases the triaging time spent by the maintainers. At the same time, important information required to fix the fault is likely to be distributed across different reports.;The objective of this thesis is twofold. First, we want to understand the dynamics of bug report filing for a large, long duration open source project, Firefox. Second, we present a new approach that can reduce the number of duplicate reports. The novel element in the proposed approach is the ability to concentrate the search for duplicates on specific portions of the bug repository. This improves the performance of Information Retrieval techniques and classification runtime of our algorithm. Our system can be deployed as a search tool to help reporters query the repository or it can be adopted to help maintainers detect duplicate reports. In both cases the performance is satisfactory. When tested as a search tool our system is able to detect up to 53% of duplicate reports. The approach adapted for maintainers has a maximum recall rate of 59%

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    A Replicated Study on Duplicate Detection: Using Apache Lucene to Search Among Android Defects

    Get PDF
    Context: Duplicate detection is a fundamental part of issue management. Systems able to predict whether a new defect report will be closed as a duplicate, may decrease costs by limiting rework and collecting related pieces of information. Goal: Our work explores using Apache Lucene for large-scale duplicate detection based on textual content. Also, we evaluate the previous claim that results are improved if the title is weighted as more important than the description. Method: We conduct a conceptual replication of a well-cited study conducted at Sony Ericsson, using Lucene for searching in the public Android defect repository. In line with the original study, we explore how varying the weighting of the title and the description affects the accuracy. Results: We show that Lucene obtains the best results when the defect report title is weighted three times higher than the description, a bigger difference than has been previously acknowledged. Conclusions: Our work shows the potential of using Lucene as a scalable solution for duplicate detection

    Bug Triaging with High Confidence Predictions

    Get PDF
    Correctly assigning bugs to the right developer or team, i.e., bug triaging, is a costly activity. A concerted effort at Ericsson has been done to adopt automated bug triaging to reduce development costs. We also perform a case study on Eclipse bug reports. In this work, we replicate the research approaches that have been widely used in the literature including FixerCache. We apply them on over 10k bug reports for 9 large products at Ericsson and 2 large Eclipse products containing 21 components. We find that a logistic regression classifier including simple textual and categorical attributes of the bug reports has the highest accuracy of 79.00% and 46% on Ericsson and Eclipse bug reports respectively. Ericsson’s bug reports often contain logs that have crash dumps and alarms. We add this information to the bug triage models. We find that this information does not improve the accuracy of bug triaging in Ericsson’s context. Eclipse bug reports contain the stack traces that we add to the bug triaging model. Stack traces are only present in 8% of bug reports and do not improve the triage accuracy. Although our models perform as well as the best ones reported in the literature, a criticism of bug triaging at Ericsson is that accuracy is not sufficient for regular use. We develop a novel approach that only triages bugs when the model has high confidence in the triage prediction. We find that we improve the accuracy to 90% at Ericsson and 70% at Eclipse, but we can make predictions for 62% and 25% of the total Ericsson and Eclipse bug reports,respectively
    • …
    corecore