2,370 research outputs found

    Fast traffic sign recognition using color segmentation and deep convolutional networks

    Get PDF
    The use of Computer Vision techniques for the automatic recognition of road signs is fundamental for the development of intelli- gent vehicles and advanced driver assistance systems. In this paper, we describe a procedure based on color segmentation, Histogram of Ori- ented Gradients (HOG), and Convolutional Neural Networks (CNN) for detecting and classifying road signs. Detection is speeded up by a pre- processing step to reduce the search space, while classication is carried out by using a Deep Learning technique. A quantitative evaluation of the proposed approach has been conducted on the well-known German Traf- c Sign data set and on the novel Data set of Italian Trac Signs (DITS), which is publicly available and contains challenging sequences captured in adverse weather conditions and in an urban scenario at night-time. Experimental results demonstrate the eectiveness of the proposed ap- proach in terms of both classication accuracy and computational speed

    Total Recall: Understanding Traffic Signs using Deep Hierarchical Convolutional Neural Networks

    Full text link
    Recognizing Traffic Signs using intelligent systems can drastically reduce the number of accidents happening world-wide. With the arrival of Self-driving cars it has become a staple challenge to solve the automatic recognition of Traffic and Hand-held signs in the major streets. Various machine learning techniques like Random Forest, SVM as well as deep learning models has been proposed for classifying traffic signs. Though they reach state-of-the-art performance on a particular data-set, but fall short of tackling multiple Traffic Sign Recognition benchmarks. In this paper, we propose a novel and one-for-all architecture that aces multiple benchmarks with better overall score than the state-of-the-art architectures. Our model is made of residual convolutional blocks with hierarchical dilated skip connections joined in steps. With this we score 99.33% Accuracy in German sign recognition benchmark and 99.17% Accuracy in Belgian traffic sign classification benchmark. Moreover, we propose a newly devised dilated residual learning representation technique which is very low in both memory and computational complexity

    Traffic sign detection based on simple XOR and discriminative features

    Get PDF
    Traffic Sign Detection (TSD) is an important application in computer vision. It plays a crucial role in driver assistance systems, and provides drivers with safety and precaution information. In this paper, in addition to detecting Traffic Signs (TSs), the proposed technique also recognizes the shape of the TS. The proposed technique consist of two stages. The first stage is an image segmentation technique that is based on Learning Vector Quantization (LVQ), which divides the image into six different color regions. The second stage is based on discriminative features (area, color, and aspect ratio) and the exclusive OR logical operator (XOR). The output is the location and shape of the TS. The proposed technique is applied on the German Traffic Sign Detection Benchmark (GTSDB), and achieves overall detection and shape matching of around 97% and 100% respectively. The testing speed is around 0.8 seconds per image on a mainstream PC, and the technique is coded using the Matlab toolbox

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    Detection and Recognition of Traffic Sign using FCM with SVM

    Get PDF
    This paper mainly focuses on Traffic Sign and board Detection systems that have been placed on roads and highway. This system aims to deal with real-time traffic sign and traffic board recognition, i.e. localizing what type of traffic sign and traffic board are appears in which area of an input image at a fast processing time. Our detection module is based on proposed extraction and classification of traffic signs built upon a color probability model using HAAR feature Extraction and color Histogram of Orientated Gradients (HOG).HOG technique is used to convert original image into gray color then applies RGB for foreground. Then the Support Vector Machine (SVM) fetches the object from the above result and compares with database. At the same time Fuzzy Cmeans cluster (FCM) technique get the same output from above result and then  to compare with the database images. By using this method, accuracy of identifying the signs could be improved. Also the dynamic updating of new signals can be done. The goal of this work is to provide optimized prediction on the given sign

    A robust algorithm for detection and classification of traffic signs in video data

    Get PDF
    —The accurate identification and recognition of the traffic signs is a challenging problem as the developed systems have to address a large number of imaging problems such as motion artifacts, various weather conditions, shadows and partial occlusion, issues that are often encountered in video traffic sequences that are captured from a moving vehicle. These factors substantially degrade the performance of the existing traffic sign recognition (TSR) systems and in this paper we detail the implementation of a new strategy that entails three distinct computational stages. The first component addresses the robust identification of the candidate traffic signs in each frame of the video sequence. The second component discards the traffic sign candidates that do not comply with stringent shape constraints, and the last component implements the classification of the traffic signs using Support Vector Machines (SVMs). The main novel elements of our TSR algorithm are given by the approach that has been developed for traffic sign classification and by the experimental evaluation that was employed to identify the optimal image attributes that are able to maximize the traffic sign classification performance. The TSR algorithm has been validated using video sequences that include the most important categories of signs that are used to regulate the traffic on the Irish and UK roads, and it achieved 87.6% sign detection, 99.2% traffic sign classification accuracy and 86.7% overall traffic sign recognition

    Assessment of Driver\u27s Attention to Traffic Signs through Analysis of Gaze and Driving Sequences

    Get PDF
    A driver’s behavior is one of the most significant factors in Advance Driver Assistance Systems. One area that has received little study is just how observant drivers are in seeing and recognizing traffic signs. In this contribution, we present a system considering the location where a driver is looking (points of gaze) as a factor to determine that whether the driver has seen a sign. Our system detects and classifies traffic signs inside the driver’s attentional visual field to identify whether the driver has seen the traffic signs or not. Based on the results obtained from this stage which provides quantitative information, our system is able to determine how observant of traffic signs that drivers are. We take advantage of the combination of Maximally Stable Extremal Regions algorithm and Color information in addition to a binary linear Support Vector Machine classifier and Histogram of Oriented Gradients as features detector for detection. In classification stage, we use a multi class Support Vector Machine for classifier also Histogram of Oriented Gradients for features. In addition to the detection and recognition of traffic signs, our system is capable of determining if the sign is inside the attentional visual field of the drivers. It means the driver has kept his gaze on traffic signs and sees the sign, while if the sign is not inside this area, the driver did not look at the sign and sign has been missed

    Car Traffic Sign Annunciator

    Get PDF
    Automatic detection and recognition of traffic signs is an essential part of automated driver assistance systems which contribute to the safety of the drivers, pedestrians and vehicles. This paper presents the advanced driver assistance system (ADAS) based on Raspberry pi for traffic sign detection, recognition and annunciation. Such a system presents a vital support for driver assistance in an intelligent automotive. The proposed algorithm is implemented in a real time embedded system using OpenCV library. Proposed method introduced a new method for detection and recognition of traffic signs. Firstly, Potential traffic signs regions are detected by colour segmentation method, then classified using HOG features and a linear SVM classifier to identify the traffic sign class. The proposed system shows good recognition rate under complex challenging lighting and weather conditions. Experimental results on the accuracy of the road sign detection are reported in this paper
    corecore