39,612 research outputs found

    A novel mechanical analogy based battery model for SoC estimation using a multi-cell EKF

    Full text link
    The future evolution of technological systems dedicated to improve energy efficiency will strongly depend on effective and reliable Energy Storage Systems, as key components for Smart Grids, microgrids and electric mobility. Besides possible improvements in chemical materials and cells design, the Battery Management System is the most important electronic device that improves the reliability of a battery pack. In fact, a precise State of Charge (SoC) estimation allows the energy flows controller to exploit better the full capacity of each cell. In this paper, we propose an alternative definition for the SoC, explaining the rationales by a mechanical analogy. We introduce a novel cell model, conceived as a series of three electric dipoles, together with a procedure for parameters estimation relying only on voltage measures and a given current profile. The three dipoles represent the quasi-stationary, the dynamics and the istantaneous components of voltage measures. An Extended Kalman Filer (EKF) is adopted as a nonlinear state estimator. Moreover, we propose a multi-cell EKF system based on a round-robin approach to allow the same processing block to keep track of many cells at the same time. Performance tests with a prototype battery pack composed by 18 A123 cells connected in series show encouraging results.Comment: 8 page, 12 figures, 1 tabl

    Exact Topology and Parameter Estimation in Distribution Grids with Minimal Observability

    Full text link
    Limited presence of nodal and line meters in distribution grids hinders their optimal operation and participation in real-time markets. In particular lack of real-time information on the grid topology and infrequently calibrated line parameters (impedances) adversely affect the accuracy of any operational power flow control. This paper suggests a novel algorithm for learning the topology of distribution grid and estimating impedances of the operational lines with minimal observational requirements - it provably reconstructs topology and impedances using voltage and injection measured only at the terminal (end-user) nodes of the distribution grid. All other (intermediate) nodes in the network may be unobserved/hidden. Furthermore no additional input (e.g., number of grid nodes, historical information on injections at hidden nodes) is needed for the learning to succeed. Performance of the algorithm is illustrated in numerical experiments on the IEEE and custom power distribution models

    Power System State Estimation and Renewable Energy Optimization in Smart Grids

    Get PDF
    The future smart grid will benefit from real-time monitoring, automated outage management, increased renewable energy penetration, and enhanced consumer involvement. Among the many research areas related to smart grids, this dissertation will focus on two important topics: power system state estimation using phasor measurement units (PMUs), and optimization for renewable energy integration. In the first topic, we consider power system state estimation using PMUs, when phase angle mismatch exists in the measurements. In particular, we build a measurement model that takes into account the measurement phase angle mismatch. We then propose algorithms to increase state estimation accuracy by taking into account the phase angle mismatch. Based on the proposed measurement model, we derive the posterior Cramér-Rao bound on the estimation error, and propose a method for PMU placement in the grid. Using numerical examples, we show that by considering the phase angle mismatch in the measurements, the estimation accuracy can be significantly improved compared with the traditional weighted least-squares estimator or Kalman filtering. We also show that using the proposed PMU placement strategy can increase the estimation accuracy by placing a limited number of PMUs in proper locations. In the second topic, we consider optimization for renewable energy integration in smart grids. We first consider a scenario where individual energy users own on-site renewable generators, and can both purchase and sell electricity to the main grid. Under this setup, we develop a method for parallel load scheduling of different energy users, with the goal of reducing the overall cost to energy users as well as to energy providers. The goal is achieved by finding the optimal load schedule of each individual energy user in a parallel distributed manner, to flatten the overall load of all the energy users. We then consider the case of a micro-grid, or an isolated grid, with a large penetration of renewable energy. In this case, we jointly optimize the energy storage and renewable generator capacity, in order to ensure an uninterrupted power supply with minimum costs. To handle the large dimensionality of the problem due to large historical datasets used, we reformulate the original optimization problem as a consensus problem, and use the alternating direction method of multipliers to solve for the optimal solution in a distributed manner

    Learning Exact Topology of a Loopy Power Grid from Ambient Dynamics

    Full text link
    Estimation of the operational topology of the power grid is necessary for optimal market settlement and reliable dynamic operation of the grid. This paper presents a novel framework for topology estimation for general power grids (loopy or radial) using time-series measurements of nodal voltage phase angles that arise from the swing dynamics. Our learning framework utilizes multivariate Wiener filtering to unravel the interaction between fluctuations in voltage angles at different nodes and identifies operational edges by considering the phase response of the elements of the multivariate Wiener filter. The performance of our learning framework is demonstrated through simulations on standard IEEE test cases.Comment: accepted as a short paper in ACM eEnergy 2017, Hong Kon
    • …
    corecore