177 research outputs found

    A Neurocomputational Model of Grounded Language Comprehension and Production at the Sentence Level

    Get PDF
    While symbolic and statistical approaches to natural language processing have become undeniably impressive in recent years, such systems still display a tendency to make errors that are inscrutable to human onlookers. This disconnect with human processing may stem from the vast differences in the substrates that underly natural language processing in artificial systems versus biological systems. To create a more relatable system, this dissertation turns to the more biologically inspired substrate of neural networks, describing the design and implementation of a model that learns to comprehend and produce language at the sentence level. The model's task is to ground simulated speech streams, representing a simple subset of English, in terms of a virtual environment. The model learns to understand and answer full-sentence questions about the environment by mimicking the speech stream of another speaker, much as a human language learner would. It is the only known neural model to date that can learn to map natural language questions to full-sentence natural language answers, where both question and answer are represented sublexically as phoneme sequences. The model addresses important points for which most other models, neural and otherwise, fail to account. First, the model learns to ground its linguistic knowledge using human-like sensory representations, gaining language understanding at a deeper level than that of syntactic structure. Second, analysis provides evidence that the model learns combinatorial internal representations, thus gaining the compositionality of symbolic approaches to cognition, which is vital for computationally efficient encoding and decoding of meaning. The model does this while retaining the fully distributed representations characteristic of neural networks, providing the resistance to damage and graceful degradation that are generally lacking in symbolic and statistical approaches. Finally, the model learns via direct imitation of another speaker, allowing it to emulate human processing with greater fidelity, thus increasing the relatability of its behavior. Along the way, this dissertation develops a novel training algorithm that, for the first time, requires only local computations to train arbitrary second-order recurrent neural networks. This algorithm is evaluated on its overall efficacy, biological feasibility, and ability to reproduce peculiarities of human learning such as age-correlated effects in second language acquisition

    Quantum-Inspired Machine Learning: a Survey

    Full text link
    Quantum-inspired Machine Learning (QiML) is a burgeoning field, receiving global attention from researchers for its potential to leverage principles of quantum mechanics within classical computational frameworks. However, current review literature often presents a superficial exploration of QiML, focusing instead on the broader Quantum Machine Learning (QML) field. In response to this gap, this survey provides an integrated and comprehensive examination of QiML, exploring QiML's diverse research domains including tensor network simulations, dequantized algorithms, and others, showcasing recent advancements, practical applications, and illuminating potential future research avenues. Further, a concrete definition of QiML is established by analyzing various prior interpretations of the term and their inherent ambiguities. As QiML continues to evolve, we anticipate a wealth of future developments drawing from quantum mechanics, quantum computing, and classical machine learning, enriching the field further. This survey serves as a guide for researchers and practitioners alike, providing a holistic understanding of QiML's current landscape and future directions.Comment: 56 pages, 13 figures, 8 table

    AI/ML Algorithms and Applications in VLSI Design and Technology

    Full text link
    An evident challenge ahead for the integrated circuit (IC) industry in the nanometer regime is the investigation and development of methods that can reduce the design complexity ensuing from growing process variations and curtail the turnaround time of chip manufacturing. Conventional methodologies employed for such tasks are largely manual; thus, time-consuming and resource-intensive. In contrast, the unique learning strategies of artificial intelligence (AI) provide numerous exciting automated approaches for handling complex and data-intensive tasks in very-large-scale integration (VLSI) design and testing. Employing AI and machine learning (ML) algorithms in VLSI design and manufacturing reduces the time and effort for understanding and processing the data within and across different abstraction levels via automated learning algorithms. It, in turn, improves the IC yield and reduces the manufacturing turnaround time. This paper thoroughly reviews the AI/ML automated approaches introduced in the past towards VLSI design and manufacturing. Moreover, we discuss the scope of AI/ML applications in the future at various abstraction levels to revolutionize the field of VLSI design, aiming for high-speed, highly intelligent, and efficient implementations

    Learned simulation as the engine of physical scene understanding

    Get PDF
    La cognición humana evoca las habilidades del razonamiento, la comunicación y la interacción. Esto incluye la interpretación de la física del mundo real para comprender las leyes que subyacen en ella. Algunas teorías postulan la semejanza entre esta capacidad de razonamiento con simulaciones para interpretar la física de la escena, que abarca la percepción para la comprensión del estado físico actual, y el razonamiento acerca de la evolución temporal de un sistema dado. En este contexto se propone el desarrollo de un sistema para realizar simulación aprendida. Establecido un objetivo, el algoritmo se entrena para aprender una aproximación de la dinámica real, para construir así un gemelo digital del entorno. Entonces, el sistema de simulación emulará la física subyacente con información obtenida mediante observaciones de la escena. Para ello, se empleará una cámara estéreo para adquirir datos a partir de secuencias de video. El trabajo se centra los fenómenos oscilatorios de fluidos. Los fluidos están presentes en muchas de nuestras acciones diarias y constituyen un reto físico para el sistema propuesto. Son deformables, no lineales, y presentan un carácter disipativo dominante, lo que los convierte en un sistema complejo para ser aprendido. Además, sólo se tiene acceso a mediciones parciales de su estado ya que la cámara sólo proporciona información acerca de la superficie libre. El resultado es un sistema capaz de percibir y razonar sobre la dinámica del fluido. El gemelo digital cognitivo así construido proporciona una interpretación del estado del mismo para integrar su evolución en tiempo real, aprendiendo con información observada del gemelo físico. El sistema, entrenado originalmente para un líquido concreto, se adaptará a cualquier otro a través del aprendizaje por refuerzo produciendo así resultados precisos para líquidos desconocidos. Finalmente, se emplea la realidad aumentada (RA) para ofrecer una representación visual de los resultados, así como información adicional sobre el estado del líquido que no es accesible al ojo humano. Este objetivo se alcanza mediante el uso de técnicas de aprendizaje de variedades, y aprendizaje automático, como las redes neuronales, enriquecido con información física. Empleamos sesgos inductivos basados en el conocimiento de la termodinámica para desarrollar un sistema inteligente que cumpla con estos principios para dar soluciones con sentido sobre la dinámica. El problema abordado en esta tesis constituye una dificultad de primer orden en el desarrollo de sistemas robóticos destinados a la manipulación de fluidos. En acciones como el vertido o el movimiento, la oscilación de los líquidos juega un papel importante en el desarrollo de sistemas de asistencia a personas con movilidad reducida o aplicaciones industriales. Cognition evokes human abilities for reasoning, communication, and interaction. This includes the interpretation of real-world physics so as to understand its underlying laws. Theories postulate the similarity of human reasoning about these phenomena with simulations for physical scene understanding, which gathers perception for comprehension of the current dynamical state, and reasoning for time evolution prediction of a given system. In this context, we propose the development of a system for learned simulation. Given a design objective, an algorithm is trained to learn an approximation to the real dynamics to build a digital twin of the environment. Then, the underlying physics will be emulated with information coming from observations of the scene. For this purpose, we use a commodity camera to acquire data exclusively from video recordings. We focus on the sloshing problem as a benchmark. Fluids are widely present in several daily actions and portray a physically rich challenge for the proposed systems. They are highly deformable, nonlinear, and present a dominant dissipative behavior, making them a complex entity to be emulated. In addition, we only have access to partial measurements of their dynamical state, since a commodity camera only provides information about the free surface. The result is a system capable of perceiving and reasoning about the dynamics of the fluid. This cognitive digital twin provides an interpretation of the state of the fluid to integrate its dynamical evolution in real-time, updated with information observed from the real twin. The system, trained originally for one liquid, will be able to adapt itself to any other fluid through reinforcement learning and produce accurate results for previously unseen liquids. Augmented reality is used in the design of this application to offer a visual interpretation of the solutions to the user, and include information about the dynamics that is not accessible to the human eye. This objective is to be achieved through the use of manifold learning and machine learning techniques, such as neural networks, enriched with physics information. We use inductive biases based on the knowledge of thermodynamics to develop machine intelligence systems that fulfill these principles to provide meaningful solutions to the dynamics. This problem is considered one of the main targets in fluid manipulation for the development of robotic systems. Pursuing actions such as pouring or moving, sloshing dynamics play a capital role for the correct performance of aiding systems for the elderly or industrial applications that involve liquids. <br /

    Modularity in artificial neural networks

    Get PDF
    Artificial neural networks are deep machine learning models that excel at complex artificial intelligence tasks by abstracting concepts through multiple layers of feature extraction. Modular neural networks are artificial neural networks that are composed of multiple subnetworks called modules. The study of modularity has a long history in the field of artificial neural networks and many of the actively studied models in the domain of artificial neural networks have modular aspects. In this work, we aim to formalize the study of modularity in artificial neural networks and outline how modularity can be used to enhance some neural network performance measures. We do an extensive review of the current practices of modularity in the literature. Based on that, we build a framework that captures the essential properties characterizing the modularization process. Using this modularization framework as an anchor, we investigate the use of modularity to solve three different problems in artificial neural networks: balancing latency and accuracy, reducing model complexity and increasing robustness to noise and adversarial attacks. Artificial neural networks are high-capacity models with high data and computational demands. This represents a serious problem for using these models in environments with limited computational resources. Using a differential architectural search technique, we guide the modularization of a fully-connected network into a modular multi-path network. By evaluating sampled architectures, we can establish a relation between latency and accuracy that can be used to meet a required soft balance between these conflicting measures. A related problem is reducing the complexity of neural network models while minimizing accuracy loss. CapsNet is a neural network architecture that builds on the ideas of convolutional neural networks. However, the original architecture is shallow and has wide layers that contribute significantly to its complexity. By replacing the early wide layers by parallel deep independent paths, we can significantly reduce the complexity of the model. Combining this modular architecture with max-pooling, DropCircuit regularization and a modified variant of the routing algorithm, we can achieve lower model latency with the same or better accuracy compared to the baseline. The last problem we address is the sensitivity of neural network models to random noise and to adversarial attacks, a highly disruptive form of engineered noise. Convolutional layers are the basis of state-of-the-art computer vision models and, much like other neural network layers, they suffer from sensitivity to noise and adversarial attacks. We introduce the weight map layer, a modular layer based on the convolutional layer, that can increase model robustness to noise and adversarial attacks. We conclude our work by a general discussion about the investigated relation between modularity and the addressed problems and potential future research directions
    corecore