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Abstract

Cognition evokes human abilities for reasoning, communication, and interaction. This in-
cludes the interpretation of real-world physics so as to understand its underlying laws.
Theories postulate the similarity of human reasoning about these phenomena with simu-
lations for physical scene understanding, which gathers perception for comprehension of
the current dynamical state, and reasoning for time evolution prediction of a given system.

In this context, we propose the development of a system for learned simulation. Given
a design objective, an algorithm is trained to learn an approximation to the real dynamics
to build a digital twin of the environment. Then, the underlying physics will be emulated
with information coming from observations of the scene. For this purpose, we use a com-
modity camera to acquire data exclusively from video recordings.

We focus on the sloshing problem as a benchmark. Fluids are widely present in several
daily actions and portray a physically rich challenge for the proposed systems. They are
highly deformable, nonlinear, and present a dominant dissipative behavior, making them
a complex entity to be emulated. In addition, we only have access to partial measurements
of their dynamical state, since a commodity camera only provides information about the
free surface.

The result is a system capable of perceiving and reasoning about the dynamics of the
fluid. This cognitive digital twin provides an interpretation of the state of the fluid to in-
tegrate its dynamical evolution in real-time, updated with information observed from the
real twin. The system, trained originally for one liquid, will be able to adapt itself to any
other fluid through reinforcement learning and produce accurate results for previously
unseen liquids. Augmented reality is used in the design of this application to offer a visual
interpretation of the solutions to the user, and include information about the dynamics
that is not accessible to the human eye.

This objective is to be achieved through the use of manifold learning and machine
learning techniques, such as neural networks, enriched with physics information. We use
inductive biases based on the knowledge of thermodynamics to develop machine intelli-
gence systems that fulfill these principles to provide meaningful solutions to the dynam-
ics.

This problem is considered one of the main targets in fluid manipulation for the de-
velopment of robotic systems. Pursuing actions such as pouring or moving, sloshing dy-
namics play a capital role for the correct performance of aiding systems for the elderly or
industrial applications that involve liquids.
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Resumen

La cognición humana evoca las habilidades del razonamiento, la comunicación y la in-
teracción. Esto incluye la interpretación de la física del mundo real para comprender las
leyes que subyacen en ella. Algunas teorías postulan la semejanza entre esta capacidad
de razonamiento con simulaciones para interpretar la física de la escena, que abarca la
percepción para la comprensión del estado físico actual, y el razonamiento acerca de la
evolución temporal de un sistema dado.

En este contexto se propone el desarrollo de un sistema para realizar simulación apren-
dida. Establecido un objetivo, el algoritmo se entrena para aprender una aproximación
de la dinámica real, para construir así un gemelo digital del entorno. Entonces, el sistema
de simulación emulará la física subyacente con información obtenida mediante observa-
ciones de la escena. Para ello, se empleará una cámara estéreo para adquirir datos a partir
de secuencias de video.

El trabajo se centra los fenómenos oscilatorios de fluidos. Los fluidos están presentes en
muchas de nuestras acciones diarias y constituyen un reto físico para el sistema propuesto.
Son deformables, no lineales, y presentan un carácter disipativo dominante, lo que los
convierte en un sistema complejo para ser aprendido. Además, sólo se tiene acceso a
mediciones parciales de su estado ya que la cámara sólo proporciona información acerca
de la superficie libre.

El resultado es un sistema capaz de percibir y razonar sobre la dinámica del fluido. El
gemelo digital cognitivo así construido proporciona una interpretación del estado del
mismo para integrar su evolución en tiempo real, aprendiendo con información obser-
vada del gemelo físico. El sistema, entrenado originalmente para un líquido concreto, se
adaptará a cualquier otro a través del aprendizaje por refuerzo produciendo así resultados
precisos para líquidos desconocidos.

Finalmente, se emplea la realidad aumentada (RA) para ofrecer una representación vi-
sual de los resultados, así como información adicional sobre el estado del líquido que no
es accesible al ojo humano.

Este objetivo se alcanza mediante el uso de técnicas de aprendizaje de variedades, y
aprendizaje automático, como las redes neuronales, enriquecido con información física.
Empleamos sesgos inductivos basados en el conocimiento de la termodinámica para de-
sarrollar un sistema inteligente que cumpla con estos principios para dar soluciones con
sentido sobre la dinámica.
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El problema abordado en esta tesis constituye una dificultad de primer orden en el de-
sarrollo de sistemas robóticos destinados a la manipulación de fluidos. En acciones como
el vertido o el movimiento, la oscilación de los líquidos juega un papel importante en el
desarrollo de sistemas de asistencia a personas con movilidad reducida o aplicaciones in-
dustriales.
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Chapter 1

Introduction

1.1 General overview

The human brain has been an exceptional source of inspiration for science, research, and
technology historically. Many disciplines have taken advantage of the enhancements re-
sulting from recreating both the human cognitive system and neuron connections that
learn the correlation of events. The brain has vast capabilities, some of them still unknown
to us, but in the current decade, both questions and solutions arise exponentially concern-
ing how we can exploit them.

Cognition is one of the brain’s core functions. It encompasses the capacities related to
knowledge acquisition, processing of information, reasoning, and decision making. It is
thanks to them that a person can learn. In other words, these skills trigger our intelligence.
Perception is one of the core skills of human cognition. This term refers to the interpreta-
tion of real events from information captured by our senses. Thus, physics perception is
the interpretation of physical events.

A question may arise here: when do we learn this as we grow? Piaget’s theory describes
the four phases of intelligence development [Reynolds et al., 2007]. The first stage, known
as sensorimotor stage, occurs between the ages of 0 and 2. One of the major developments
in this step is the interpretation and knowledge internalization of the functioning of the
world through the infants’ movements and sensations. Toddlers learn basic actions, like
grasping or, more importantly, listening and observing, to explore the behavior of ele-
ments that surround them. As a result, they learn that objects exist although they may
be hidden (this is referred to as object permanence) and, more importantly, they under-
stand that actions will have consequences in the environment thanks to their acquired
reasoning capacities about real events.

In this context, physical scene understanding encompasses the comprehension of the
scene and its link with the acquisition of knowledge and experience to forecast future
events. [Battaglia et al., 2013] postulate that this ability can be represented as a simulation
to understand real-world situations that involve physics.
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The present work intends to contribute to the field of physical scene understanding by
developing a system for performing learned simulations to mimic the behavior of dynam-
ical systems from real observations focusing on the sloshing dynamics. It will provide an
interpretation of the current dynamical state for reasoning about its dynamical evolution
from observations of the real environment. The outcome is a digital twin of a real entity
to mimic its dynamics as an interface with reality. It will interact with the environment like
the real counterpart, and adapt to changes in the scenario [Liu and Negrut, 2021].

Some requirements for the development of these systems will be progressively ad-
dressed by enriching the proposed algorithm with new capabilities built upon computer
vision, machine learning, and computational modeling. The method will be first tested
on a common liquid: water. Then, the proposal will be extended to a wider variety of flu-
ids with tools to distinguish the type of fluid in the implementation of a digital twin with
computer vision systems. Based on this scheme, we will develop a means to learn from
observations of the free surface. Finally, the algorithm will learn to adapt to previously
unseen fluids based on reinforcement learning techniques.

1.2 Simulation for physical scene understand-
ing

The problem presented in this thesis is denominated physical scene understanding
[Battaglia et al., 2013]. This terminology encompasses systems capable of seeing, interact-
ing, and reasoning around real dynamical events. In addition, there should be continuity
in the learning to improve physics perception from experience without the imposition of
new instructions.

The flow of information is represented in Fig. 1.1. Data is acquired by our senses, and
then it is interpreted and converted into information. Then, simulation based on acquired
knowledge provides an interpretation of the physics and prediction of future states. This
information may be employed for decision-making if required. Knowledge will be contin-
uously enriched from experience and new data perceived to improve predictions about
reality.

Several works show diverse proposals for physical reasoning for solids and fluids
[Mrowca et al., 2018] [Lieto et al., 2017] [Yildirim et al., 2015] [Schenck and Fox, 2016b]
[Sanchez-Gonzalez et al., 2020] [Schenck and Fox, 2018a] [Schenck and Fox, 2018b]. These
works explore knowledge and approximation of cognition based on simulators for pre-
diction and decision making. [Battaglia et al., 2016] propose the so-called interaction net-
works to study dynamical systems. In this proposal, there are different algorithms trained
for describing the object’s behavior and correlations separately. The networks are graph-
inspired to learn from evolving connections in the elements that interact to introduce the
geometry of the dynamics as an inductive bias [Battaglia et al., 2018]. We call inductive
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Visual
perception of
reality

Data zt Data zt+1

Reasoning State st State s
′

t+1

Physics

Decision
making

State st+1

Figure 1.1: Learning cycle. Visual inputs are perceived and data is converted into infor-
mation for reasoning. At this stage, learned physical models inferred from experience are
used for the prediction of the future state and decision-making in critical situations. zt

represents the information available about the dynamics. In contrast, st represents the
full state of the dynamics at a specific time step

bias the set of assumptions that we impose in the learning process so that the solutions
fulfill those conditions.

As a breakthrough for fluid dynamics understanding, recent studies show how humans’
intuition about liquids exhibits affinity to probabilistic fluid models [Bates et al., 2015]. This
statement not only supports the claimed complexity of fluid reasoning and understanding
but also that an approximation of this process utilizing physical modeling is possible to
reach the same or a higher degree of accuracy and performance than human reasoning.

In contrast with these methods, learned simulation is a technique that learns continu-
ously from the environment to perform the simulation and prediction of physics. Digital
twins include these types of systems to be connected to the physical entity to integrate in
real-time their future states. As a result, we have access to information about the real twin
for the development of diverse applications.

1.3 Model problem

The proposed method is to be applied to the understanding of sloshing dynamics. In
our daily routines, we mainly interact with solids and liquids, and liquid handling is part
of an extended series of tasks that we continuously perform in particular. Infants with
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emerging cognition are already able to understand the behavior of such substances and
their interaction with solids.

Liquids entail striking difficulty to be modeled. As a result, liquid manipulation is an
arduous challenge for autonomous machine systems that rely on the proposed physics
intuition models. Hence, the selection of this phenomenon will test our approach against
different complex conditions, in particular non-linearity, dissipation, and partial access to
information.

Among the existing list of countless fluid events—turbulence and laminar flows,
among others—the present work focuses mainly on one of them: the sloshing dynam-
ics [Ibrahim, 2005]. The slosh refers to the movement of a liquid that is inside a specific
container. Typically, this phenomenon happens in an undergoing movement. The liquid
necessarily has a defined free surface. Far from being negligible, the interaction between
the waves and the boundaries of the vessel is a notorious problem in physics analysis.
Modeling efforts are focused on estimating the motion of the free surface of the liquid.
Such oscillations trigger critical forces in the container’s walls. The modeling of sloshing
dynamics is of great concern in a multitude of scenarios and fields [Huerta and Liu, 1988],
see Fig. 1.2. The free-surface effect resulting from sloshing dynamics in open waters, for
instance, can cause destabilization or capsizing of ships. Tanks partially filled can expe-
rience strong oscillations hard to be controlled. Computer graphics is one of the areas
seeking to reproduce complex behaviors, traditionally studied through the Navier Stokes
equations, to provide convincing representations of different case studies that range from
flow divergence to splatter [Bender and Koschier, 2015] [Müller et al., 2003]. In what con-
cerns this dissertation, we will focus on the problems that arise in robotic manipulation.
These systems are of utmost importance in tasks such as packaging, assistance, cooking,
or industrial applications.

Nonetheless, real-time simulation of free-surface fluid flows is still an open research
field. The main issue which we address here lies in the commitment between accuracy
and computation time. Simulations of this kind are computationally demanding, and thus
difficult to perform in such conditions to produce credible results. In addition, a physically
consistent model from which we could extract valuable information would be highly de-
sirable. When the container is squared the problem is approximated to a 2D description.
Although good results are obtained, this assumption is no longer valid for cylindrical ves-
sels. In these cases, a 3D description is required for an accurate result.

The model is usually coupled with control algorithms that attempt to ensure a slosh-
free solution. Hence, the simulation should accomplish near or strict real-time perfor-
mance. The aforementioned applications in control theory usually rely on coarse approx-
imations of the slosh. The level of description required is the one that models efficiently
the motion of the free surface to apply appropriate actions in the manipulation.

Equivalent mechanistic models fulfill the prerequisites of accuracy in the results of the
models combined with the simplicity of controlling [Guagliumi et al., 2021] [Moriello et al.,
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Figure 1.2: Examples of slosh. (A) Baby learning fluid dynamics through interaction. In
manipulation, the slosh is one of the critical concerns to pursue a task. (B) Examples
of study of the slosh in robotic manipulation to mimic human capacities [Schenck and
Fox, 2018a] and analysis of wall forces in tanks undergoing sloshing [Kim et al., 2004].
(C) Visualization of sloshing dynamics through augmented reality to enrich the real en-
vironment [Fujisawa and Kato, 2009] (D) Approximation of the sloshing dynamics with
the smooth particle hydrodynamics theory to model the perception system [Moya et al.,
2019].

2018]. Although this technique is widely adopted in the community, a new paradigm
emerges to combine the modeling and control of the slosh with artificial intelligence. The
purpose is clear: while standard techniques are optimal, research can take a step forward
in the development of new applications that include the independence of reasoning with
smart use of data that can unveil new insights in the information for decision making. This
is known as intelligent liquid handling [Kroemer et al., 2021] [Matl et al., 2019]. [Schenck
and Fox, 2018a] employed convolutional networks to learn the physics of pouring liq-
uids. Noteworthy, these predictions have no guarantee to comply with the laws of Navier-
Stokes, for instance. This application is found especially relevant in the development of
aiding systems for disabled or elderly people, or industrial applications.
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1.4 Problem description
Physics perception involves three main paradigms. First of all, data needs to be acquired
and processed. In human physics perception, we mainly work from visual inputs, i.e. im-
ages taken by our eyes. We structure and analyze them to find patterns and features from
the information captured. Secondly, we need to build fast and accurate models that fit
the complex events that we sense to learn real-world physics. Finally, models of physics
and information are integrated for decision making and extrapolation of physical priors to
develop our common sense. Adaptation and learning of new materials from observation,
and using previous knowledge as a learning bias, is one of the applications of the latter
statement.

The result of the thesis is a method for learned simulation for sloshing dynamics built
upon the prerequisites of the agents involved in scene understanding to design a fully
operative system. We consider a machine system that learns to perceive and make pre-
dictions of fluid dynamics with certain state variables that describe the state of the fluid
under strict real-time constraints. The aforementioned system is connected to the real en-
tity to acquire information and replicate real physics. Hence, the objective of the research
is the development and assembly of a digital twin that performs learned simulation real-
world physics to provide an interpretation of the scenario. It will enrich itself with the
data acquired in the sense that it will enhance itself when outputs deviate from reality,
improving its accuracy.

This is to be achieved by profiting from new advances in artificial intelligence, focus-
ing on computer vision and machine learning. In particular, manifold learning and neu-
ral networks (NN) offer flexibility for the design of this application, which we enrich with
knowledge of physics to obtain meaningful solutions.

1.4.1 Data acquisition

Perception and tracking of liquids are crucial elements for the success of the proposed
statement. Nevertheless, its implementation with the simulation system is not trivial.
Common liquids, as the examples presented in this thesis, entail different challenges.
These are primarily rooted in the lack of texture (non-Lambertian properties) and translu-
cent characteristics of some of them. This fact makes perception tasks especially difficult
for commodity cameras, both monocular and stereo. Another factor that may affect fluid
tracking is the container. Opaque glasses show liquid occlusions, and transparent vessels
show distortions due to the diffraction properties of the material. Especially from certain
angles, the method can be acutely compromised. Conversely, these threats are contin-
uously addressed by the computer vision community, demonstrating the possibility to
achieve the connection between the model proposed and the real entity.

In this thesis, we focus on the perception and tracking of the container and the free
surface of the liquid of interest, which is performed with a stereo camera. These systems
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include two or more lenses to replicate the binocular nature of human vision. Although
current monocular systems achieve high performance, stereo cameras are more conve-
nient for fast and accurate 3D reconstruction of pixel coordinates. Many current cameras
already incorporate functionalities for tracking and depth estimation. First, computer vi-
sion is employed to build an augmented reality application that correlates the movement
of the glass that triggers the slosh of the liquid with the sloshing model proposed. Due to
the lack of texture of the container, we add features to be detected to estimate the move-
ment of the glass. Secondly, we track the free surface of the fluid to relate directly to the
real entity with the model and execute correction and adaptation.

1.4.2 Real-time interaction

Another important component in the design of the perception system is the speed in both
information interpretation and simulation. Liquids are deformable bodies. This fact entails
added complexity to the problem. Although we employ a coarse-grained description of
the fluid at a mesoscale, the full state of the volume is still remarkably high dimensional.
Thus, it is described by a high number of degrees of freedom.

Consequently, time is a bottleneck for the communication between connected agents.
Even in a low data regime, the perception loop could be jeopardized by the data required,
the computational cost in training, and the time consumption during implementation due
to the high dimensionality of the problem. The commodity camera that we employ to
connect the algorithm with the real entity of the liquid performs at a frequency of 30− 60

Hz. Hence, the simulation loop must ensure real-time response and connection. A solu-
tion could be to simplify the employed description, but we compromise the accuracy and
generalization of the test case. In addition, there has been considerable development
in computer systems. However, we aim at developing a system that could be part of a
portable gadget, for the ease of possible implementation. Another challenge that arises
is that, considering the high dimensionality and complexity of the problem, convergence
to infer correlations could be threatened. Data, especially that acquired from real environ-
ments, includes noisy measurements and, depending on the description used, it may be
difficult for the algorithm to extract meaningful features and patterns from data.

As models of social, dynamical, or biological systems become more and more com-
plex, model order reduction (MOR) is an appealing solution to prevent systems from being
overwhelmed by the curse of dimensionality. What is more, they unveil useful instances
of data to efficiently pursue different applications. Contrary to a rudimentary simplifica-
tion of the dynamical description, model order reduction preserves the integrity of the
insights of data to maintain the information in the reduction. A-posteriori MOR utilizes
data to find a low-dimensional manifold where the dynamics are embedded. POD [Ly and
Tran, 2001] is one of the most popular methods included in this category. Due to the ease
of implementation and efficacy in many applications, it has been also a source of inspi-
ration for the development of derived techniques. Conversely, non-linear model order
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reduction techniques such as kernel PCA (k−PCA) [Schölkopf et al., 1998], Locally Linear
Embedding (LLE) [Roweis and Saul, 2000], Topological Data Analysis (TDA) [Wasserman,
2018] or Isomap [Tenenbaum et al., 2000], are suitable for problems of considerable com-
plexity and strong nonlinearities.

There is a great variety of works to be explored in the field of fluid simulation facing
new complexities and problems. Probably POD is one of the most employed methods in
model order reduction due to its ease of application [Ortali et al., 2020]. Conversely, pro-
vided the highly non-linear nature of many complex phenomena, there is scope for the
employment of techniques that exploit non-linear correlations to fit the characteristics of
the system [Shvartsman and Kevrekidis, 1998] [Rowley and Dawson, 2017] [Chaturantabut
and Sorensen, 2010] [Treuille et al., 2006] [Xiao et al., 2014] [Rowley, 2005], also POD adap-
tations [Kang et al., 2015] [Ahmed et al., 2021].

Such is the interest in this topic that deep learning has made, and continues to make,
impactful contributions to this community. Autoencoders [Goodfellow et al., 2016] are
a specific type of neural network that achieves compression of information on a latent
manifold. They are presented combined with diverse types of structures. For instance,
they have been explored in conjunction with feedforward nets [Hernández et al., 2021a]
[Hesthaven and Ubbiali, 2018] [Chen et al., 2021a] [Taira et al., 2020] [Erichson et al., 2019]
[Xie et al., 2020], convolutional neural networks (CNNs) [Hinton and Salakhutdinov, 2006]
[Murata et al., 2020] [Kim et al., 2019] [Fukami et al., 2021] or graph architectures (GNNs)
[Ranjan et al., 2018].

We explore different manifold learning techniques applied to sloshing to analyze their
performance in data-driven modeling of complex physics. In addition, we study possible
applications resulting from the insights that may come up in the low-dimensional mani-
fold.

In spite of the effectiveness of MOR, we usually encounter observability issues that
complicate data collection of the required state variables for the physically informed de-
scription. Self-supervised learning provides a framework to explore and develop more re-
alistic and practical applications from not labeled, or partially labeled, data to learn to have
a deeper understanding of data available to recover the unavailable information. [Calla-
ham et al., 2019] [Sun and Wang, 2020] use strategically placed sensors that acquire data to
recover the full set of quantities from sparse observations. Erichson et al. [Erichson et al.,
2020] propose the use of shallow neural networks for reconstructing fluid flows. Lye et
al. [Lye et al., 2020] estimate the unknown input parameters in turbulent flows from ob-
servables. In contrast, we propose un unveil the hidden features of the missing dynamics
from the study of the history of the free surface.

1.4.3 Physics predictions with learned simulators

Data-driven modeling of physical systems is one of the major fields in current research.
The era of the 4.0 industry and Big Data triggered this phenomenon that profits from ac-
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quired information to learn insights that conventional models cannot reach. This is known
as inductive reasoning, where observations lead to broad conclusions. The development
of simulation engines that resemble human perception has witnessed great advances in
this line. However, to be useful, there is one main quality that they must fulfill: trustwor-
thiness. There exist accurate purely data-driven models with a strong black box character.
However, they lack generalization when they encounter new situations out of the bounds
of the training dataset. In addition, we cannot ensure the physical soundness of the pro-
posed solutions.

Many of the current works have been developed upon a black-box structure that shows
limitations and lack generalization. These algorithms depend on the available data, whose
quality and quantity will dictate the insights learned about physics. This situation occurs
similarly with people; scarcity of experience may induce the misinterpretation of what a
user senses through vision and hearing. But, as mentioned before, we store and enrich
progressively the models that we have learned of the real world. The philosopher Im-
manuel Kant claimed in his book Critique of Pure Reason (1781) [Kant, 1908]: “We see
things not as they are but as we are”. Hence, we are biased when learning new concepts
and ideas. By guiding the knowledge acquisition with the help of well-known physics in-
ductive priors, we expect to give the method extra flexibility in terms of generalization,
reducing the necessity of data, and capacity for adaptation to new scenarios.

The present work is intended to contribute to the field of physics perception by incor-
porating an added value to the process: our previous knowledge about physics, estab-
lished in the form of commonly accepted physical laws. The major purpose of this addi-
tion is to develop a data-driven system able to replicate physics intuition with physically
sound results.

Fig. 1.3 represents a scale of methods with regard to the knowledge and data used in
the development of applications. Physics-informed machine learning is an intermediate
point in this scale. It encompasses techniques that complement the lack of data with in-
ductive biases [Battaglia et al., 2018]. This term refers to information about the problem
imposed in the learning algorithm. It guides the optimization towards specific solutions
that respect the imposed limitations, bounding the convergence to a specific structure.
Consequently, algorithms reach more generalizable and smarter structures that ensure
the physical consistency of the results in a wider spectrum of situations. A widely known
example of this theory is Physics-Informed Neural Networks (PINNs) [Raissi et al., 2017].
From symbolic learning, [Brunton et al., 2016], to those that focus on Hamiltonian sys-
tems [Hesthaven et al., 2020] and thermodynamics [González et al., 2019b], this field in
continuous growth includes a plethora of techniques that cover very different casuistries.

Despite the variety of techniques that this framework gathers, the method must show
flexibility and ease of implementation in a simulation loop connected to real measure-
ments. Thermodynamics adapt to the inherent dissipative nature of real phenomena and
allow for modeling rather complex behaviors.
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Figure 1.3: Data-driven learning scale, adapted from [Karniadakis et al., 2021]. Methods
are conditioned by the amount of data available and the physics included in the learning
algorithm. Traditional dynamical models (i.e. Navier Stokes) require a little data for fitting,
while big data scenarios usually employ purely data-driven algorithms. Physics-informed
data-driven methods find a balance between the data provided, especially when we work
in small data regimes, combined with physics to guide learning.

The General Equation for the Non-Equilibrium Reversible-Irreversible Coupling, abbre-
viated as GENERIC, is a metriplectic formalism developed by [Grmela and Öttinger, 1997].
It expresses the time evolution of dynamical systems from energy and entropy potentials,
which combined describe the problem’s energetic state from a set of state variables. This
formalism can be discretized and inferred from data to design a data-driven algorithm that
fulfills the principles of thermodynamics by construction.

This formalism is the foundation of the algorithm proposed in this dissertation. It will
be employed to learn sloshing models from computational data. In addition, it is to be
coupled with data acquisition systems to the real liquid to integrate the fluid evolution in
time and perform the correction of the model itself when encountering new, previously
unseen, liquids.

1.4.4 Closed loop simulation and real-world interaction

A closed-loop simulation is defined as a feedback system. The algorithm retrieves output
information to the model to maintain it stable and accurate. This theory is mainly applied
to control problems, such as those involving reinforcement learning. Reinforcement learn-
ing (RL) proposes a series of techniques to perform control and model correction through
interaction. Its use is widely known in self-driving cars or robotics, where it is applied to
learning to adapt to previously unseen situations through the reward of desired behaviors.

In the case presented in this thesis, our physics perception problem can be formulated
as a RL problem, where the correct predictions of the motion of the free surface are re-
warded to correct the whole model and reach high prediction accuracy based on the ob-
servations captured with the camera.
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1.4.5 Augmented reality representation

In contrast with artificial intelligence (AI), which focuses on the independence and capaci-
ties of a machine individually, intelligence augmentation (IA) enhances human capacities
by providing extra knowledge to the user. The goal of perception systems is not only to
interpret real events for their machine tasks but to show additional relevant information
that the user may employ for decision making. Augmented reality’s main purpose is to
bridge the gap between the real asset and its digital twin. The model outputs data and,
in a simplistic way of thinking, those are but mere numbers pending interpretation. Data
must be presented in a user-friendly interface that facilitates assimilation by humans. The
output represented in augmented reality not only consists of reconstructing the evolution
of the dynamics but also of additional information not accessible at first sight that could
be useful in critical scenarios.

This application is strongly aligned with real-time requirements. If the added informa-
tion was not available at the time of the decision, the output of the simulation would be
trivial in this operation.

Real
Environement

Augmented
Reality

Virtual
Reality

Augmented
Virtuality

Mixed
Reaity

Immension

Connection to reality

Figure 1.4: Reality-virtuality scale. It shows the progressive addition of virtual elements
to the real setting. Augmented reality refers to the addition of virtual elements to reality,
while augmented virtuality includes information from the real world in the virtual setting.
Mixed reality operates in this range to perform the interaction between both realities.

Virtual immersion progressively introduces virtual elements into reality to mix both en-
vironments until the limit of total immersion in virtual reality displays, as seen in Fig. 1.4.
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Augmented reality is the framework where a real-world environment is enhanced with vir-
tual information, enabling the interaction of virtual objects in the reality [Moreland et al.,
2013]. Augmented reality not only refers to the mix between reality and virtuality but also
to the real-time behavior of objects and their correct positioning of them in the real 3D
space.

AR tools have been successfully implemented for nonrigid representation, such as
aerodynamics [Badías et al., 2019], deformable objects [Badías et al., 2018] [Badias et al.,
2021] and contact problems [Badías et al., 2020]. [Fujisawa and Kato, 2009] propose an
augmented reality interface for sloshing simulation. However, due to the complexity of
this problem, they make use of GPU to be able to compute the solution and representa-
tion in real-time.

This work proposes the implementation of augmented reality for representation and
interaction with the cognitive digital twin as a friendly interface for the user. In addition,
the proposed system will output augmented information about the internal state of the
fluid which can be used in other applications.

1.5 Data-driven computational mechanics

Computational mechanics has traditionally relied on mathematical approximations capa-
ble of accurately describing a plethora of physical phenomena. Just to cite a few, we could
think of the widely used Hooke law, or Navier-Stokes and Bernoulli for the description
of fluids. In contrast, data-driven computational mechanics propose the use of experi-
mental data to perform the computational simulation of systems of interest, which might
lead to a higher adaptivity to the processes described. In this area, machine learning pro-
pose several techniques to be employed in this task. Machine learning is the branch of
artificial intelligence (AI) in which algorithms are trained with data to learn patterns to
make predictions. Some of the most popular approaches in this field make use of Neu-
ral Networks (ANNs) [Oishi and Yagawa, 2017], but there are others based on bayesian
learning [Welling and Teh, 2011] [Rezende et al., 2014] [Zhang et al., 2018] and Gaussian
Processes (GPs) [Wang et al., 2005] [Wang et al., 2007] [Buisson-Fenet et al., 2020], random
forest [Ladickỳ et al., 2015] [Jain et al., 2021], support vector machines [Ershadnia et al.,
2020] [Drezet and Harrison, 1998], or nonlinear regression algorithms [Kanno, 2018].

The aforementioned algorithms play a capital role not only in the prediction of future
states in the simulations, but in the design, optimization, and control of systems. There-
fore, these approximations need to solve some issues to be sufficiently meaningful. Linear
systems are easily characterized, but even small nonlinearities are challenging issues in
data-driven computational mechanics. Other problems encountered are the curse of di-
mensionality, where high dimensional descriptions make it difficult to converge and learn,
noise, or multiscale dynamics, among others.
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The primary objective of supervised learning algorithms is to acquire the generaliza-
tion ability to push the boundaries of a model to tackle previously unseen situations. Only
under these conditions, we could approximate a problem with a sufficiently general trust-
worthy solution. Nevertheless, we still cannot ensure the physical validity of the results. If
machine learning is tailored so that the results are physically consistent and interpretable,
the model inferred from data can give new insights about the system characterized for its
understanding.

This is a recent but prolific field of research, where studies try to reach higher gener-
alization and interpretability of the solutions obtained to mirror classical physics. Efforts
have evolved towards the use of a new branch of methods to include knowledge coming
from the structure and/or the physics of the problems to guide the regression towards
learning meaningful structures. These restrictions are denominated inductive biases and
we distinguish two types of them [Karniadakis et al., 2021].

• Observational biases: As we have mentioned before, traditional black-box algorithms
depend on the quality and the amount of data to learn sufficiently general laws.
Observational biases rely on the physical meaning of data to, with enough snap-
shots, learn general approximations [Lu et al., 2021a] [Kashefi et al., 2021] [Yang and
Perdikaris, 2019]. However, in optimization problems, there is no unique solution
that fits the provided data.

• Inductive biases: In cognition, we base our learning on some acquired priors. For
instance, any child knows that any physical system is subjected to gravity, even if
they do not know what it is or its value. In the same way, we could impose known
priors of the systems into the learning process to infer correlations that adapt to the
problems. These algorithms are based on known learning schemes (ANNs, GPs, etc...),
and tailored to include the information that we know a priori. This is called inductive
bias.

Inductive biases group two subclassifications, as displayed in Fig. 1.5. Relational induc-
tivebiases are those that take into account the properties of the structure of data [Battaglia
et al., 2018]. For instance, symmetries are those transformations that do not affect the
properties of the system. If we know the characteristic symmetries of the given dataset,
they should be considered in the optimization to guarantee the compliance of the results.
For instance, in image learning, we must respect the translation symmetry, as it is done in
convolutional neural networks. This field is explored in geometrical deep learning, where
the authors suggest a broad mathematical framework in the domain of deep learning and
ANNs to derive algorithms that adapt to geometries that go beyond euclidean domains,
such as graphs, manifolds, or point clouds, to name a few [Bronstein et al., 2021].

There are also inductive biases, called learning biases, that consist in imposing physical
priors to fulfill some theories, structures, or basic principles learned along centuries of
research and study of mechanics and dynamics [Karniadakis et al., 2021]. These two types
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Figure 1.5: Inductive bias classification for the different types of knowledge that can be
included into learning described in [Karniadakis et al., 2021].

of priors are not exclusive. They can be combined, but it is a field that has started to be
explored [Hernández et al., 2022] [Bogatskiy et al., 2022]. In this work, we focus on the
application of learning biases, particularly on those based on thermodynamic principles
to learn meaningful and physically sound schemes from data.

Biases can be imposed as hard or soft constraints. Physical laws can be imposed as
hard constraints, either in the neural network architecture, which is still an open problem,
or during the regression, which may lead to a difficult convergence. On the other hand,
soft constraints are more flexible in exchange for tolerance in learning the approximation.

The benefits of including learning biases are quite appealing. In scenarios where data
collection is difficult, it might be challenging to learn general rules. We complement the
lack of data with information to manipulate it smartly in the learning algorithms. This
is called the smart data paradigm [Chinesta et al., 2020], where instead of focusing on
gathering data, we emphasize how it is used to reach smart structures, which are specific
reached solutions of the optimization that exploit known information about the problem.

1.5.1 Classical Regression

There has been a long evolution in physically sound data-driven learning over the last
years. [Ibáñez et al., 2018a], followed by other works in the field [Ibáñez et al., 2017] [Ibáñez
et al., 2019] [Ibáñez et al., 2020], abandon the idea of using constitutive equations to pro-
pose employing the constitutive manifold where the dynamics are embedded based on
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a-posteriori MOR. Learned from data, this manifold has locally linear submanifolds to ap-
proximate the predictions for new input values, such as stress and strains [Ibáñez et al.,
2018a].

Some other incipient works were dedicated to imposing conservation laws into the
learning optimization to select the solution that best fitted those conditions in material
descriptions [Kirchdoerfer and Ortiz, 2016] [Kirchdoerfer and Ortiz, 2018] [Stainier et al.,
2019] and fracture problems [Carrara et al., 2020] [Carrara et al., 2021].

The Koopman Operator and the related Dynamic Mode Decomposition (DMD) [Kaiser
et al., 2018] [Kutz et al., 2016] [Proctor et al., 2016] also arose interest in the research com-
munity for data-driven learning. In contrast with POD-like methods, which compute spa-
tial modes, the DMD mechanism is based on the computation of spacetime modes from
data, which are eigenmodes and eigenvalues of a linear approximation to the nonlinear
governing operator of the dynamics [Alla and Kutz, 2017] [Proctor et al., 2018].

Symbolic machine learning focuses on learning symbolic expressions for dynamical
systems that fit their behavior [Zames et al., 1981] [Lui and Wolf, 2019]. Eureqa [Bongard
and Lipson, 2007] propose a framework to infer a posteriori nonlinear symbolic approxi-
mations of dynamical systems. They first perform partitioning, which consists in optimiz-
ing the equation to describe each variable separately to, in a second step, simplify the
structure of the model. SINDy (Sparse Identification of Non-Linear Dynamics [Brunton
et al., 2016] is based on the hypothesis that the dynamics evolve in a sparse, low dimen-
sional, function space. In the optimization phase, the algorithm penalizes the model com-
plexity to find a combination of a few functions that are the coefficients of the solution
governing equation. Similarly, [Flaschel et al., 2021] search for interpretable constitutive
laws for hyperelastic materials by imposing compliance with conservative laws.

The method sparse Proper Generalized Decomposition (s−PGD) [Ibáñez et al., 2018b]
[Sancarlos et al., 2021c] could remind also of this kind of methods. It begins with the same
ideas from a PGD approximation of the objective function into a sum of one-dimensional
functions. In this case, the approximation of the separated form is inferred from data to
minimize the distance to the objective function. This method has also been employed for
inferring the correction term in hybrid twins modeling [Moya et al., 2020a]. Sancarlos et
al. [Sancarlos et al., 2021a] [Sancarlos et al., 2021b] propose variations of this technique:
the regularized sparse PGD (rs-PGD) and the doubly sparse PGD (s2-PGD).

1.5.2 Neural Network approaches

Probably the most popular techniques in the framework of physics-informed machine
learning are those built upon neural networks. The term physics-informed neural networks
(PINNs) was first coined by [Raissi et al., 2017], and it is probably one of the most known
representatives in the field. The empirical risk is the evaluation of the performance of the
algorithm on training data. This evaluation guides the training of the algorithm. In this
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case, the empirical risk of the optimization includes the evaluation of the discrepancy be-
tween the predictions and ground truth and the penalty if the PDE constraints are not
fulfilled as a residual in the loss as a soft constraint. They have shown great effectiveness
in different fields and applications [Chen et al., 2021a]. For instance, [Raissi et al., 2018] en-
code partial differential equations for problems such as the heat equation, demonstrating
long-time stability in the integration.

PINNs have inspired several works in neural networks [Morton et al., 2018] [Ayensa-
Jiménez et al., 2021], bayesian learning [Dandekar et al., 2020], and Gaussian processes
[Raissi and Karniadakis, 2018] [Chen et al., 2021b] [Pang et al., 2019] with parameterized
governing equations as a constraint for physically sound schemes. [Lu et al., 2021b] im-
pose PINNs as a hard constraint in learning. Ayensa et al. [Ayensa-Jiménez et al., 2021]
[Ayensa-Jiménez et al., 2020] implement not only physical laws as hard constraints in the
neurons, but also internal states as soft constraints, into learning.

In the field of symbolic learning, [Cranmer et al., 2020b] propose a learning algorithm
that seeks analytic relations based on exiting analytic equations of physics to build new
expressions that are more interpretable.

These approaches also provide stability and interpretability of the solution, a conve-
nient characteristic not only in interpolation but also in extrapolation out of the database
range. [Miller et al., 2020] perform an analysis of the forecasting efficiency of physically
informed machine learning in the particular case of Hamiltonian problems considering
different approaches. By evaluating the predicted energy and state variables error, they
support the outperformance of physics-informed methods over conventional black-box
neural networks.

1.5.3 Machine Learning for Fluid Dynamics

Complex flow simulation, especially under strict real-time specifications, remains an open
research field. The main challenge lies in the balance between accuracy in the reconstruc-
tion and the physical meaning of the results, and the computation time of the time inte-
gration. Usually, the computational resources required for complex descriptions exceed
real-time constraints, and the extreme simplification of the description would cause the
loss of relevant information and physical consistency.

Data-driven descriptions are appealing approximations to fit these behaviors, espe-
cially with real measurements, due to their high dimensionality and complexity [Morton
et al., 2018] [Wiewel et al., 2019] [Tompson et al., 2017] [Schenck and Fox, 2018a] [Ummen-
hofer et al., 2019] [Sanchez-Gonzalez et al., 2020]. [Ladickỳ et al., 2015] proposed a GPU im-
plementation of fluid simulation consisting of a forest regressor [Cutler et al., 2012] with
an adaptive time integration step, which eliminated the time step restrictions for complex
simulations. Closely related, Byungsoo [Kim et al., 2019] explored reduced representations
of smoke and different types of liquids with CNNs from velocity fields. Yunzhu Li et al. [Li
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et al., 2018] study the (DPI-Nets), ANNs for fluid simulation from hierarchical particle in-
teractions in smooth hydrodynamics discretizations. Although these methods proposed
visually admissible results, solutions lack physical meaning.

[Brunton et al., 2020] make a review of these recent advances in machine learning ap-
plied to fluid mechanics and dynamics. It stands out the need for these systems to over-
come challenges such as generalization and interpretation. Particularly, there is a growing
interest in machine learning strategies that satisfy well-known principles of physics and
do not construct black-box models whose application to previously unseen data does not
guarantee to comply with basic principles such as energy conservation or equilibrium.

Physically sound data-driven modeling has also reached the field of fluid computa-
tional modeling. Fluid learning is a rather prolific field due to the complexity that it en-
tails and its wide presence in many phenomena of utmost importance. [Alla and Kutz,
2017] [Proctor et al., 2018] show an application of DMD for fluid dynamics learning from
velocity fields. [Kim et al., 2019] propose a generative network that learns the velocity field
of fluids (smoke and liquids). They work in parallel with a second network.

ANNs are an extended tool for its approximation [Kim et al., 2019]. [Tompson et al.,
2017] [Miyanawala and Jaiman, 2017] apply CNNs to characterize 2D and 3D fluid dynam-
ics. In the case of [Bukka et al., 2021], the authors distill the dynamics of unsteady flows
with RNNs. Following the same spirit of the latter work, [Wiewel et al., 2019] employs
specifically LSTMs networks in reduced order manifolds, while graph neural networks are
becoming popular in this field [Sanchez-Gonzalez et al., 2020]. Regarding physically in-
formed deep learning, there are also works related to the study of fluids. [Mao et al., 2020]
apply PINNs to high-speed flows. The work of [Gao et al., 2021] presents an approach for
learning PDEs from Physics-informed CNNs.

1.6 Objectives
The main global objective of this work is to advance in the development of tools to use sim-
ulation as the engine that performs physics perception. The present dissertation breaks
down the three learning steps of perception to design a new augmented intelligence al-
gorithm, able to perceive, simulate, and reason.

We have chosen the sloshing dynamics as a model problem, but other problems of in-
terest could have been chosen as well. The global objective is achieved by the consecution
of the following objectives:

• Designing a learned simulator from full-field data (full description of the dynamics)
of sloshing applicable to different liquid behaviors under strict real-time constraints.

• Guaranteeing, by construction, basic physical principles to ensure the obtention of
physically sound results, stability, and generalization of the simulation.
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• Implementation of the digital twin with information coming from the real item and
perform reality-virtuality interaction.

• Integration of simulation algorithms and visual techniques for the development of
augmented reality and augmented intelligence applications.

• Overcoming the limitations of partial measurements to ensure the physical consis-
tency of the approach when learning from limited data.

• Developing a reinforcement learning correction system to achieve adaptation to new
liquids and changes in the environment through reinforcement learning.

1.7 Thesis structure
This dissertation is structured in 6 chapters that walk through the process of concept de-
sign, training, and application of the proposed framework, progressively addressing new
challenges in the development of the perception system. At each development step,
shown in Fig. 1.6, we include an additional asset to enrich the learned simulation, driv-
ing towards a more complex, but complete, perception system.

• Chapter 1 exposes the motivation and objectives of this dissertation. We put in con-
text the addressed perception problem, and how different disciplines interplay to
build a physics perception algorithm.

• In Chapter 2 we perform an analysis of the application of manifold and machine learn-
ing techniques to the sloshing dynamics under study. We propose different linear
and non-linear techniques to compare their performance in the described problem.
We evaluate the results in the reduction capacity to embed the non-linearities dis-
tilled from data and the stability during the integration of the dynamics in the low
dimensional manifold. The output of this chapter is the foundation of the learned
simulator.

• Based on the results from Chapter 2, Chapter 3 describes the implementation of the
learned simulator in a digital twin of a real glass in real-time. We perform visual in-
terpretation for liquid understanding and perception of different types of liquids.

• In Chapter 4 we address the limitation of information from a commodity camera’s ex-
perimental measurements. In this step, we record the real liquid, from which we only
have access to the free surface. We extend the modeling to deep learning architec-
tures that achieve high accuracy and offer feasible alternatives to undertake partial
information.

• Chapter 5 tackles the final step in a close loop algorithm: the comparison between
the simulation output and the ground truth. We extend the problem from a digital
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twin to a hybrid twin to include the self-correction needed to adapt to previously
unseen liquids.

• Chapter 6 shows an overview of the results obtained and conclusions extracted from
them. In addition, we present the publications of the content of the dissertation.

Figure 1.6: Thesis outline. The development of the perception algorithm is broken down
into four steps. A chapter is dedicated to each of them.
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Chapter 2

A first attempt based on
manifold learning

This chapter proposes several manifold learning techniques to describe sloshing problems
based on data. The model is to be developed in a reduced order space under rigorous
thermodynamics settings. We exploit several model order reduction (MOR) techniques.
We employ Proper Orthogonal Decomposition (POD), followed by non-linear strategies
(Locally Linear Embedding and Topological Data Analysis). All three distinct possibilities
rely on a numeral integration scheme to advance dynamics in time. We show how the
resulting method employs a few degrees of freedom, while it allows a realistic reconstruc-
tion of the fluid dynamics of sloshing under severe real-time constraints.

This work has been published in the following contribution:

• Moya, B., González, D., Alfaro, I., Chinesta, F., & Cueto, E. (2019). Learning slosh dy-
namics by means of data. Computational Mechanics, 64(2), 511-523.

2.1 Introduction
The inception of perception systems starts with the development of the learning algo-
rithm that leads to the learned simulation. In other words, we first propose a fast and
accurate algorithm for the simulation of the dynamics in real-time. We have established
a data-driven framework for the design of the algorithm for this purpose. It includes two
main contributions: the proposed algorithm must be physically rigorous while accurate
and flexible to learn different types of behaviors, and the integration in time of the dynam-
ics must respect real-time (30 Hz) response rate to enable the connection with real-world
dynamics.

In this dissertation, we suggest a method that learns to replicate physics from observa-
tion, not only in the training phase but also in performing continuous interaction leading
to learned simulation in a digital twin. We first develop a learned simulator based on data-
driven techniques. We avoid black-box algorithms, which are unpredictable and lack gen-
eralization. We aim to impose physical knowledge, in this case the restrictions imposed
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by the compliance of the laws of thermodynamics, to ensure the physical consistency of
the results.

Data-driven methods have drawn attention in recent developments. These, combined
with machine learning assets, show high accuracy in replicating physics with data. How-
ever, the method proposed in this dissertation opens the black box of traditional data-
driven learning for combining observations with well-known epistemic requirements.

In this attempt, we build a simulation engine that mimics de sloshing dynamics that
will be the core of the future cognitive digital twin. Based on our previously stated hy-
pothesis, we propose the use of manifold learning to infer the knowledge of the dynam-
ics with purely data-driven methods in a low-dimensional manifold where the dynamics
are embedded. We construct the slow manifold of the sloshing guided by the GENERIC
formalism, which will ensure compliance with the laws of thermodynamics in the descrip-
tion of the dynamics evolution. [González et al., 2019b] introduced its implementation in
data-driven modeling as an inductive bias, and it has been successfully applied in several
fields [González et al., 2021] [Ghnatios et al., 2019].

The present work resembles the strategy developed by [Millán and Arroyo, 2013]. In
that case, emphasis was put on the non-linear dimensionality reduction aspects of the
technique. As will be done here, Millán and Arroyo developed an integration scheme in
generalized (reduced) coordinates. A fundamental difference of the present work is that
the integration scheme will be learned from data and, contrarily to the work of Millán and
Arroyo, is valid for Hamiltonian as well as for non-conservative or out of equilibrium me-
chanics.

As a first try, we model the sloshing of water with data obtained under different initial
conditions. The liquid is contained in an ordinary glass. The learning process could be
extended to other container typologies, but in this case, we initially bound the problem to
one geometry and one material. The geometry of the container is defined with diameter
b = 10 cm, and it is to be subjected to sloshing forces. The geometry is displayed in Fig.
2.1. We consider a fluid volume that adapts to the shape of the glass, filled up to 7 cm.

The results obtained at this step will set the foundation for the development of models
for a wider variety of liquids with diverse properties and the implementation of the digital
twin from the analysis of the performance of the algorithm and the verification of the real-
time constraint.

2.2 The dynamical systems equivalence
The problem of learning physics from data is formulated as follows [Weinan, 2017] [Ma
et al., 2020]. Let {zi} be input values sampled on a domain S ∈ RD, with D the dimen-
sionality of each sample. We have n values in the domain in a time interval, and suppose
that zi is a time discretization of a dynamical system, where values are probably noisy. We
also consider a regular time discretization for which tn+1 − tn = ∆t for all n.
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Figure2.1: Geometry of the liquid and the glass. The problem is defined for one geometry
and one type of liquid.

The learning problem presented in this dissertation is equivalent to a dynamic problem
whose evolution is to be learned, where the correlation between a set of state variables
and their rate of change is expressed as

żt =
dz(t)

dt
= f(z(t)),

with
z(0) = z0,

where zt stands for a set of variables that describe the aforementioned system and its
growth, and f , the mapping governing the evolution, whose form is to be learned from
data.

The set of state variables defines the mathematical state of a dynamical system and
includes enough information to predict its future behavior—not considering external in-
puts such as external forces. Some typical state variables are the position of geometrical
points or velocity fields.

In dissipative problems and thermodynamical formulations, we require more informa-
tion to characterize this behavior. Thus, additional state variables that capture this infor-
mation are required, for instance, the internal energy. The set of selected state variables
and their combinations, which result in different states, form the state space of the system
in which we carry out the learning. The input-output correlation will be computationally
approximated with a dataset of available measurements.

The set zt are actually the coordinates of the smooth manifold of the dynamics for
which the differentiable maps have been defined. f is learned so that the flow map
z0 → z(T, z0) replicates the response, typically nonlinear, required to adapt to data and
fit the dynamics. Since this is a machine learning problem where we know the input as
well as the output of the approximation, it can be considered supervised learning.
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As mentioned before, zi obeys an unknown equation that defines its rate of change.
The goal is to be able to predict the state of the system givenzn at time tn+1 by learning an
approximation of the equation f . This function is approximated with pairs of inputs and
outputs (zn, zn+1) to accommodate the behavior of the domain by deriving a surrogate
model of the form

zn+1 = u(zn).

Tuning the appropriate f thus becomes an optimization problem. We denote as u the
proposed continuous function solution for the domain. Empirical risk minimization is the
principle used in statistical learning to perform the optimization. We define the empirical
risk R as a description of how well the algorithm is performing on training data to bound
the optimization to improve the performance. The empirical risk is defined as a

R(f) =
N∑

i=1

L(zn+1, f(zn)),

where L(·, ·) is the metric that evaluates how well the function learned fits the dynamics,
in the form of L2-norm or more sophisticated evaluations. As a result, we minimize the
error between the proposed solution and the ground truth

u = arg min
f

R(f).

The function f can be found based on different hypotheses with regard to the dynam-
ical system to build different approximations of reality. The goal of data-driven modeling
is to learn f in such a way that the flow map reproduces a non-linear function that fits the
provided data by regression. In this context, there are several data-driven methods to be
considered.

2.3 Data collection

We collect data of the behavior of water from the discretization of Navier-Stokes equa-
tions governing the fluid motion by applying the Smooth Particle Hydrodynamics method
[Monaghan, 1992] as described in Fig. 2.2. Developed by Gingold and Monaghan, they
propose a discretization into particles to approximate the dynamics of continuum media,
considering solids as well as fluids. Thus, it provides a Lagrangian meshless description of
the fluid. Particle discretization has been largely applied to analysis since particle-based
methods offer good approximations to deal with complex fluids due to their efficient
adaptability to complicated geometries. It is generalizable to the simulation of different
types of fluids, and it provides a sufficiently good description of the dynamics balanced
with the computational cost. Its application is demonstrated in a plethora of works in
computer graphics.
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Figure 2.2: Cloud of nodes of the discretization of the liquid at rest, which is its initial state
for the simulation of all velocities. There are 2898 particles in the discretization. Particle
with label 1, for which some results are analyzed hereafter, is highlighted in red.

The fluid of our case of study is discretized into M = 2898 particles. It is well-known
that for a Newtonian fluid the adequate set of state variables that characterizes a fluid
particle is composed by its position qj , velocity vj , and internal energy Ej [Español, 2004],
so that the set S of state variables is :

S = {z = (qj,vj, Ej) ∈ (R3 × R3 × R)}, j = 1, 2, ...M,

where z is the selection of the variables that determine the state of the particles, and
hence will define the dynamics of the phenomenon, is not a trivial question and has been
deeply discussed in previous works such as [Español, 2004] [Romero, 2009a] [Romero,
2010] [Romero, 2013]. An appropriate selection is required to ensure the thermodynamic
definition of the system. In other words, the energy E(z) can be written as a function of
the selected variables.

The fluid selected for the development of the first test case is water, due to its generality,
versatility, and wide presence in daily tasks. We describe it by using its density ρ = 1000

kg/m3 and the Us−Up Hugoniot form of the Mie-Grüneisen equation of state [Herrmann,
1969] [Carroll and Holt, 1972] in the commercial software Abaqus CAE (Dassault Systèmes).

The experimental campaign is composed by four simulations of sloshing dynamics at
incrementally higher initial velocities v0 = 0.05, 0.15, 0.1, 0.2 m/s. The set of snapshots
of the dynamical evolution of the slosh is obtained for a time increment of t = 0.00016

seconds. In total, we have obtained 10625 snapshots for each simulation. Conversely, we
do not need the full set of snapshots. The set will be pruned by selecting equally spaced
snapshots to keep the minimum required to capture the dynamics. Depending on the
reduction method imposed, more or fewer snapshots will be required.
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Since in this particular case we have seven relevant variables to describe the state of
each particle, the dimension D of each snapshot vector of the SPH approximation to the
problem is, therefore, D = 2898× 7 = 20286, justifying the need for a re-parametrization
to embed the dynamics onto a lower-dimensional manifold. The selection of the new
parametrization will be further discussed in the next sections, where different methods
will be proposed.

The data matrix available for training is composed of the set of n snapshots selected
grouped by columns, 


| | | |
z1 z2 · · · zn

| | | |



 = Z ∈ RD×n,

that describes the time history of the sloshing movement.

2.4 Manifold learning techniques
We have performed some numerical simulations so that the dynamical evolution of the
sloshing dynamics is described discretely. We have obtained n snapshots for the whole
set of particles N representing the time evolution of each simulation for all the computed
time steps. Manifold learning techniques look for the most distinctive structure in data
unveiled from the provided data. Given some measurements, these methods study the
hidden correlations among the state variables of each snapshot to ultimately find a rep-
resentation of the same information but in a space of much lower dimension d! D. This
hypothesis is represented in Fig. 2.3.

POD is a popular and successful technique in model order reduction. Conversely, the
problem under study is highly nonlinear, and this fact encourages the exploration of other
techniques capable of unveiling and capturing the non-linear features that can be distilled
from data.

2.4.1 Proper Orthogonal Decomposition (POD)

POD [Ly and Tran, 2001] is widely known for its application to model order reduction for
dynamical systems, and more precisely those involving complex fluid dynamics. Essen-
tially, it finds an orthogonal projection to the tangent plane at a given point from the
eigenvalue and eigenvector decomposition of the covariance matrix of the data provided.
We hypothesize that the gathered information of the sloshing dynamics underlies hidden
structures that can be exploited.

In this specific case, the dimensionality of the fluid description is greater than the num-
ber of snapshots collected. If ordinary POD was performed, the result would be distorted,
showing highlighted values that are related to the size of the time dimension. In addition,
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Figure 2.3: Hypothesis about the existence of a slow manifoldM on which the fluid lives.
The small dots represent the experimental data (snapshots) in a high-dimensional space
RD. An arbitrary trajectory of the system in the phase space is represented in red. Di-
mensionality reduction is applied to project the data to an embedding space in Rd, with
d! D where the system dynamics will be integrated.

the computation of the covariance matrix Q = ZZT ∈ RD×D and the eigenvalues would
probably be prohibitive in terms of time and space resources. We avoid this through the
application of the method of snapshots. In this case, the covariance matrix is computed
as:

Q = ZTZ ∈ Rn×n,

to perform the eigenvalue decomposition

Qvj = λjvj, j = 1, ..., n,

which would be equivalent to studying the right-singular vectors in Singular Value De-
composition.

The corresponding POD modes can be then computed. We perform the transformation
from the computed orthogonal basis in the method of snapshots to the POD projection
by a linear mapping:

uj =
1√
λj

Zvj, j = 1, ..., n.

The dimensionality of the low dimensional manifold is chosen from the analysis of the
computed singular values. Top eigenvalues encode the main features detected in the
dataset. On the contrary, the lowest eigenvalues correspond to trivial structures asso-
ciated with noise and perturbations. We choose the highest-valued eigenvectors to build
the new projection. They are chosen depending on the eigenvalue evolution. The number
of modes is the minimum possible to preserve the most relevant features of the dynamics.

We need a reduced basis coordinate system able to capture most of the energy of the
system. We will select a number d of orthogonal modes able to represent a prescribed
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amount of the energy of the system. Conversely, due to the high non-linearity of the sys-
tem, we observe that several modes higher than that value may be needed to ensure that
we have an accurate integration scheme. This set of d vectors form the projection matrix
D, which works bi-directionally to offer a linear mapping between the physical space Z

and the reduced basis,
Z = DX.

The problem with a POD-based approach is that it provides the best linear dimensionality
reduction for the set of snapshots. In this case, the dynamics of the liquid will be non-
linear and a big number of terms in the basis is expected, thus rendering the method less
efficient.

2.4.2 Locally Linear Embedding (LLE)

Some phenomena are poorly described by linear methods since, due to the high non-
linearity of their behavior, the intrinsic relationships are also non-linear and hard to be de-
scribed by linear correlations. Thus, new manifold learning methodologies have emerged
to face these shortcomings. Locally Linear Embedding, known as LLE [Roweis and Saul,
2000], considers that each point of the cloud will be interpolated by its K nearest neigh-
bors with their pairwise euclidean distance. Local linearity will be assumed to exist in the
neighborhood of each point. We take into consideration the premise that the number
of neighbors should be greater than the estimated intrinsic dimensionality d of the slow
manifold at the time of selecting these parameters. In contrast, due to the complex de-
scription of our case of study, we may need a higher dimensionality d to capture the main
features of the whole dynamics.

To obtain an embedding of the system onto a lower-dimensional space, we proceed
in three steps. First, we find the K-nearest neighbors of each point. Then, we compute
the reconstruction of each point from its neighbors. For this purpose, we calculate the
weights that enable the interpolation through the minimization of the approximation er-
ror, measured by the cost function represented by

ε(z) =
n∑

i=1

∣∣∣∣∣zi −
K∑

j=1

Wijzj

∣∣∣∣∣

2

,

restricted by two constraints. Firstly, each data point is reconstructed only by its neigh-
bors, enforcing Wij = 0 if zj is not a neighbor. Secondly, weights must add up to one:∑

j Wij = 1. Finally, an eigenvalue problem will provide the non-linear projection of the
system analyzed.

It is important to note that in LLE, the number of neighbors K is user-defined and con-
stant for every data point. This is a reasonable assumption if the sampling is dense and
a small number of neighbors is chosen. However, it does not take into account the true
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topology of the data or how intricate the manifold is at different regions. Indeed, as an as-
sumption, the linearity condition imposed at each patch is also assumed in the embedded
manifold. Therefore, the weights remain constant at any subspace of dimension d ! D.
In other words, they are invariant to transformations such as translation, rotation, and scal-
ing, enabling a linear mapping between the low dimensional space and the high dimen-
sional system. Then, the only unknown is the new coordinates X = {xi} , i = 1, ...,M of
the points in the embedded space, which is calculated by the cost function related to the
embedded space,

Φ(x) =
n∑

i=1

∣∣∣∣∣xi −
K∑

j=1

Wijxj

∣∣∣∣∣

2

.

This results in a D ×D eigenvalue problem, whose d bottom non-zero eigenvectors rep-
resent a set of optimal coordinates in which the manifold is embedded. Given the local
linearity constraint, if we introduced a new point in the slow manifold, it could be locally
linear interpolated by a set of neighbors in the subspace and, with the calculated coeffi-
cients and the set of neighbors, it could be reconstructed in the full space.

2.4.3 Topological Data Analysis (TDA)

Data science has recently been attracted by the sought of topological underlying struc-
tures in data to analyze its complexity. One of the milestones achieved by these tech-
niques is their use for manifold learning purposes. Data has a shape, which can be inter-
preted as the slow manifold where it is embedded. One of the main strengths of Topologi-
cal Data Analysis (TDA) is that it makes data less sensitive to noise or outliers by discerning
the intrinsic features of the set of data. Due to the reduction capacity of this technique,
TDA can be used to visualize high dimensional data or as a preprocessing method for su-
pervised manifold learning methodologies to find the smooth manifold of the object of
study.

TDA makes intensive use of persistent homology, which consists in the sought of topo-
logical features of data [Munch, 2017] [Wasserman, 2018]. Information can be extracted
from a point cloud just by analyzing its clustering history. The study is performed through
the selection of a connectivity parameter, which will determine the shape of the data. The
internal elements we refer to are known as simplices. For a given connectivity parameter
R, two points are pairwise connected if they are far apart at most R. As a consequence,
they will conform to a 1-simplex, or edge. To define a simplex of higher dimensionality,
the M -points that would conform to it must be closer than R to every other point. The
set of various simplices results in a simplicial complex.

The final goal of the analysis is to construct a simplicial complex able to characterize
and represent accurately the structure data. The optimal parameter R is selected from
the persistence diagrams. Persistence diagrams are a representation of the time history of
the elements. They show barcodes, that show when the simplicial complex appears and
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Figure 2.4: A sketch of the concept of persistence homology. By making R grow from 0,
simplices (edges, triangles, tetrahedra) appear (respectively, when two, three, or four cir-
cles/spheres intersect) or disappear (when a hole collapses). Persistence diagrams collect
the values of R for which these simplices appear or disappear.

disappears over time. Short barcodes show structures that are interpreted as noise, while
long bars show the predominant structures of data. Therefore,Rwill ensure that the result
avoids noise and represents the natural underlying shape of the point cloud. For a graph-
ical explanation of TDA, see Fig. 2.4. For the represented value of R, node 2 is isolated
from the rest of the data points, while nodes 3 and 5, for instance, are connected—their
1D persistence diagram takes a value different from zero. On the contrary, the triangle
1-3-4 is closed for this R value, thus meaning that it must disappear from the 1D persis-
tence diagram—a hole has collapsed. Those simplices with higher persistence intervals
represent the overall shape of the data set (they persist for wider R intervals), while brief
intervals are usually associated with noise in the data.

Once we have selected the optimal connectivity parameter R that reflects the true
shape of the data set, the obtained simplicial complex storages the relationships among
data points, which represent the neighborhood of each one. In contrast with Locally Lin-
ear Embedding, the analyst does not enforce each datum to be related to a specified and
fixed number of neighbors K , but to have relationships only with the persistent neigh-
boring points —those data points whose neighborhood is obtained on the manifold and
not the Euclidean space—. On the other hand, TDA does not provide (as LLE does) an in-
terpolation scheme within the just obtained manifold structure of the data. Here, we will
employ Kriging [Williams, 1998]. Of course, it is always possible to employ the weights
provided by LLE with a variable number of neighbors, but Kriging has demonstrated in
our experience to provide slightly more accurate results. From this point, we proceed like
in an LLE problem, but with a variable number of neighbors for each data point N(i). We
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calculate the embedded coordinates xi of each point by minimizing the functional

Φ(X) =
n∑

i=1

∣∣∣∣∣∣
xi −

N(i)∑

j=1

W ∗
ijxj

∣∣∣∣∣∣

2

,

where W ∗
ij represents the weights provided by a Kriging scheme constructed on the N(i)

neighbors zi ∈ RD.

It is worth noting that, as in LLE techniques, we hypothesize that the Kriging scheme is
valid on the physical as well as in the embedded spaces so that it provides the necessary
smooth mapping between the embedded coordinates and the physical ones:

Z : A ⊂ Rd → RD,

x '→
N(i)∑

j=1

W ∗
ij(x)zj,

where A ∈ Rd is the convex hull of the neighbors of the point.

2.5 Dynamical systems with known properties

Works in machine learning for computational mechanics are not only restricted to algo-
rithms based on PDEs constraints [Yang et al., 2018] [Hanuka et al., 2021] [Rath et al.,
2022] [Yang et al., 2021]. [Schmidt and Lipson, 2009] propose an algorithm for finding
meaningful invariances by learning to discard those invariances present in data that do
not have a connection with physics.

Hamiltonian and Lagrangian equations are well-known formulations in conservative
frameworks. Newtonian mechanics phrase problems in terms of constraints and forces,
while Lagrangian and Hamiltonian formulations make use of energies and generalized co-
ordinates. In addition, conservation laws can be easily derived from Noether’s Theorem.
This theorem, also known as Noether’s first theorem, was developed in 1918 as a frame-
work to explain how every symmetry in the system is naturally related to a conservation
law. Symmetries are those transformations that leave a system invariant. Therefore, this
invariance will reflect some kind of conservation. For instance, energy and momentum
conservation can be derived from the time and space translation invariance respectively.
A final advantage of this formulation is also the possibility to use powerful geometric tech-
niques for studying the properties of dynamical systems.

Many works are dedicated to the study of Hamiltonian and Lagrangian descriptions
to ensure energy conservation and symmetries emerging in this formulation in different
settings in machine learning [Jin et al., 2020] [Wu et al., 2020] [Course et al., 2020] [Lei et al.,
2016] [Jin et al., 2022] [Hesthaven et al., 2020] [Bertalan et al., 2019] [Greydanus et al., 2019]
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[Toth et al., 2019] [Zhong et al., 2019] [Cranmer et al., 2020a]. Conversely, this framework
is not applicable to problems of inherent dissipative nature that go beyond equilibrium.

The metriplectic formulation is a variation of the Hamiltonian (or symplectic) descrip-
tion to generalize its application to dissipative systems [Fish, 2005] [Nguyen and Turski,
2001]. They propose to complement the Poisson bracket of the Hamiltonian formulation
{·, ·} with an additional symmetric bracket, called Leibniz or metric bracket [·, ·]. Various
examples of dynamical systems, such as fluid dynamics or plasma physics, are described
by a metriplectic structure [Kraus, 2021]. This formalism is suitable for cases in which the
conservative Hamiltonian description of a dynamical system includes unresolved degrees
of freedom, that are not included in mesoscopic descriptions and that introduce dissipa-
tion by the fluctuation-dissipation theorem [Kubo, 1966]. Consider an initial microscale
description at the molecular dynamics scale, that can be expressed in terms of a purely
conservative formulation. The degrees of freedom, and therefore knowledge, that we
omit growing from the micro to the meso and macro scales introduce dissipation that
is included in the metric part of the formulation.

In this new framework, we describe the evolution of a functional F of a set of state
variables z as

dF
dt

= {F ,G}+ [F ,G] ,

where G = H−S is a generalized free energy, H is the Hamiltonian or a generalization of
the energy for the nondissipative contribution, and S an arbitrary function of the Casimir.
A Casimir is an element that must not contribute to the reversible part of the dynamics. A
metriplectic formulation can be defined with a different selection of potentials as long as
the conditions of the metriplectic formulation are fulfilled.

2.5.1 GENERIC

GENERIC stands for General Equation for the Non-Equilibrium Reversible Irreversible Cou-
pling [Grmela and Öttinger, 1997]. It is a metriplectic formalism that expresses the evolu-
tion of a system in terms of the so-called reversible (Hamiltonian potential) and irreversible
(dissipative potential) contributions to describe the conservative and the dissipative parts
of the dynamics of the system under study. It is a powerful tool for studying systems of
practical interest since it guarantees no violation of thermodynamic laws while represent-
ing the model with fewer degrees of freedom. The generalization offered by this formal-
ism comes from only considering the so-called slow variables, which will persist in the sta-
tionary state, and thus characterize with stronger influence the evolution of the dynamics.
This formalism obeys the first and second laws of thermodynamics due to the fulfillment
of Noether’s theorem, i.e., it preserves the symmetries of the system.

In the case of GENERIC, these two contributions of the metriplectic formulation are
described specifically with regard to the total energy E and entropy S of the system ex-
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pressed of a set of state variables

dz

dt
= L(z)∇E(z) +M (z)∇S(z), (2.1)

where z denotes a set of independent state variables that fully describe the thermody-
namical state of the system. Without that information, we lack a GENERIC structure. Fluid
dynamics are fully described in terms of the position and momentum of the particle dis-
cretization, internal energy, and, in the case of learning more complex fluids, the extra-
stress tensor related to their microscopic evolution [Español et al., 1999]. L(z) is the Pois-
son matrix. It is antisymmetric and, together with the gradient of energy ∇E, charac-
terizes the reversible part of the studied dynamics. M (z) is the friction matrix, which
describes the dissipative irreversible characteristics of the system in conjunction with the
entropy gradient∇S. M is symmetric positive semidefinite.

GENERIC fulfills, by construction, the symmetries of the dynamical system that en-
sure the preservation of the symmetries related to the conservation and dissipation laws
of thermodynamics by Noether’s theorem. Hence, this structure-preserving formulation
guarantees the conservation of critical quantities (mass, momentum), and the thermody-
namical admissibility of the evolution of the system under study.

This formulation is supplemented by the degeneracy conditions to ensure the re-
versibility of the contribution of the Hamiltonian to the dynamics

L
∂S

∂z
= 0,

and that the entropy contribution cannot be affected by the operator that generates the
reversible dynamics

M
∂E

∂z
= 0.

By imposing L to be skew symmetric, and M symmetric, positive semi-definite we
guarantee that

Ė(z) = ∇E(z) · ż = ∇E(z) ·L(z)∇E(z) +∇E(z) ·M∇S(z) = 0, (2.2)

to comply with the conservation of energy in closed systems, and

Ṡ(z) = ∇S(z) · ż = ∇S(z) ·L(z)∇E(z) +∇S(z) ·M∇S(z) ≥ 0. (2.3)

which fulfills that entropy does not decrease and that it is generated in irreversible sys-
tems.

Given the measurements of the state of the system S at different discrete time steps,
Z , we could also obtain in discrete form the elements L, M ,∇E and∇S of the GENERIC
formalism, described in Eq. 2.1, by performing a regression process over the discretized
expression of GENERIC

zn+1 − zn

∆t
= LnDEn + MnDSn. (2.4)

MechanicalEngineering



36 B. Moya

Our work aims to obtain the values of DE and DS, discretized energy and entropy gradi-
ents, and L and M if they were also unknown. Very often they have a pre-defined struc-
ture, but it could be unknown in the reduced-order manifold. As a final goal, we aim
to construct the constitutive manifold of the sloshing dynamics. This concept described
in [Ibáñez et al., 2018a] proposes a strictly numerical approximation to work on the mani-
fold of the latent parameters that govern the dynamics instead of relying on constitutive
equations to extract results. By constructing the slow manifold of {L,M,DE,DS} we are
developing the basis of the integration scheme for the sloshing problem. Considering the
finiteness of the variables at discrete time steps, gradients operators can be approximated
as:

DE = Az,DS = Bz,

as usual in the finite element community. To determine the numerical value of each
GENERIC constituent, we accomplish a regression over discrete time intervals J ⊂ I ,

µ∗ = {Ln,Mn,A,n Bn} = arg min
µ
‖z(µ)− zmeas‖ , (2.5)

subject to the constraints:
L ·Bz = 0,

M ·Az = 0,

which are the discrete form of the degeneracy conditions.

This formulation is also consistent in the low dimensional manifold we have built [Öt-
tinger, 2015]. It will greatly reduce the computational cost of the optimization and the
reconstruction of new, previously unseen, sloshing phenomena. L and M are squared ma-
trices whose shape we frequently know from the description of the problem we model—
there is a vast literature in the field [Romero, 2009b] [Portillo et al., 2017] [Ghnatios et al.,
2019] [Mielke, 2011] [Grmela and Öttinger, 1997]. Nevertheless, they cannot be projected
to the non-linear, low-dimensional manifold where the database has been projected,
where we risk losing the rich thermodynamic structure induced by the degeneracy con-
ditions. As a result, they are also the objective of the regression procedure in the reduced
manifold.

2.6 Numerical results
In this section, we will expose the results obtained from the implementation of the just-
introduced algorithm under the three different approaches already mentioned. Regard-
ing the results extracted from the application of each methodology, we will analyze their
efficacy to reach the best degree of accuracy possible without neglecting the real-time
constraint to culminate the development of the integration scheme that is, ultimately,
the main milestone of this chapter.

Universidadde Zaragoza



Learned simulation as the engine of physical scene understanding 37

As mentioned earlier, the proof-of-concept problem that we have considered is dis-
cretized by a total number of 2898 SPH particles. In the subsequent sections, we verify the
developed method by reconstructing one of the experiments (in particular, the one that
corresponds to an initial velocity of 0.15 m/s). The ability of the method to reconstruct
one of the experiments will provide important insight into the accuracy of the scheme.

2.6.1 Manifold learning evaluation

Analysis through POD

Proper Orthogonal Decomposition is the first approach to test. To apply this linear strat-
egy, we have started by selecting equally spaced snapshots at intervals of t = 0.02 sec-
onds. Additionally, the structure of the GENERIC matrix L is known [Vázquez-Quesada
et al., 2009],

L =





0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

−1 0 0 0 0 0 1

0 −1 0 0 0 0 1

0 0 −1 0 0 0 1

0 0 0 −1 −1 −1 0





,

so only the discrete matrix form of the gradients A and B and the dissipative matrix M are
to be identified.

From the pseudo-experimental results, it can be noticed that the eigenvalues of their
POD decomposition show a typical pattern. In it, see Fig. 2.5, it can readily be noticed
how the first modes present an abrupt decay of several orders of magnitude. However,
with 25 modes, only 62.81% of the energy of the system is captured. By increasing the
number of modes selected, we reach 77.43% of energy captured with 50 modes, which is
still not enough to build accurately the slow manifold of the whole set. A further increase
in the number of modes renders the calculation too computationally demanding to be
performed. When analyzing the eigenvalues of the problem we can appreciate that, al-
though some modes stand out, a great number of them are significant for representing
the dynamics accurately. As a consequence, a high number of modes will be also required
to capture the essential dynamics of the sloshing movement. After comparing the results
for a range of modes, we decide to use 25 modes to perform a reasonable calculation and
generate a credible representation of the fluid for each trajectory. Notwithstanding the
mentioned difficulties—not surprising, given the linearity of the POD method—the L2

norm error in the reconstruction of the velocity field, see Fig. 2.6, is in the order of 1.5%.
It is worth mentioning that these difficulties of the POD approach could not be at-

tributed to the GENERIC integration scheme,—whose stability has been deeply studied
and proved in the literature, see for instance [Romero, 2009a]—but to the big number of

MechanicalEngineering



38 B. Moya

Figure 2.5: Evolution of the eigenvalues of the pseudo-experimental results in POD ap-
proach.

POD modes necessary to obtain an accurate representation of the non-linear character of
the pseudo-experimental results.

Analysis through LLE

Through the application of LLE, a lower number of modes is expected to capture the es-
sential dynamics and obtain a consistent form of the GENERIC gradients. More specifically,
we have applied satisfactorily the identification algorithm in an embedding manifold of
dimensionality 18 for a proper reconstruction. In this case, the L2-norm error in the re-
construction of the velocity field significantly decreases compared to the POD approach.
This error resulted to be on the order of 0.017%. The reconstruction of the displacement
in time of a specific particle (number 1) is shown in Fig. 2.7.

Analysis through TDA

Similar to the LLE approach, TDA requires enough information to properly unveil the topo-
logical shape of data. For this reason, we pruned the data every t = 0.00272 seconds. Each
trajectory is successfully embedded in a manifold of d = 3 dimensions for calculating the
set of {Mn,An,Bn} matrices.

Remark 1 The set of constituents of the GENERIC expression of the problem cannot, in
general, be obtained in the physical space M ⊂ RD and then projected to the reduced-
order, embedded manifold. We risk losing the properties of these terms to ensure ther-
modynamic consistency. Instead, they are obtained in the embedded space Rd, after the
necessary embedding of the data. Therefore, the regression introduced in Eq. 2.5 is ac-
complished as

µ∗ = {Mn,An,Bn} = arg min
µ
‖xµ − xmeas‖ ,
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Figure 2.6: POD-based reconstruction of the trajectory of one particular particle (evolu-
tion of coordinates x, y and z along time) vs. pseudoexperimental results. Initial velocity
0.15 m/s.
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Figure2.7: LLE-based reconstruction of the trajectory of one particular particle (evolution
of coordinates x, y and z along time) vs. pseudoexperimental results. Initial velocity 0.15

m/s.
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Figure 2.8: TDA-based reconstruction of the trajectory of one particular particle (evolu-
tion of coordinates x, y and z along time) vs. pseudoexperimental results. Initial velocity
0.15 m/s.
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where the precise form of L is assumed known, as already mentioned. TheL2-norm error in
the reconstruction of the velocity field for this problem was 0.00011%, substantially lower
than that of the POD and LLE approaches. This error is represented in the reconstruction
of the time evolution of one particle in Fig. 2.8. This very low error justifies the selection
of the TDA-based approach for a general case, whose details will be analyzed next.

2.6.2 Integration in the reduced-order manifold

Of course, the final goal of the just developed method is not to reproduce one of the exper-
imental results—something that has been done just for verification of the approach—but
to be able to integrate an arbitrary trajectory in the manifold described by the experimen-
tal results. We have previously considered four simulations to create the training dataset
for learning the constitutive manifold of the sloshing. In the next phase, we use a test sim-
ulation out of the training dataset to evaluate the performance of the learned simulation.
We provide the first snapshot and the simulator engine has to recover the time evolution
of the dynamics.

To test the integration scheme’s efficacy, we will compare the results calculated by
this method with pseudo-experimental data from a trajectory other than the pseudo-
experimental data employed to describe the manifold. From Eq. 2.4—recall also Fig. 2.3—
we obtain a scheme of the form

xn+1 = xn +∆t [LnAn + MnBn]xn,

where we have highlighted the dependence of every term of the GENERIC description of
the movement onn, if an explicit scheme is chosen. Since no pseudo-experimental results
for n will exist, these values must generally be interpolated on the manifold by leveraging
its just found geometrical structure.

We have performed the integration of a new trajectory with initial velocity v0 = 0.0175

m/s and compared the results obtained by the GENERIC integrator and those that we have
obtained by SPH methods. A comparison of selected snapshots is shown in Fig. 2.9. Note
the visible similarity between the results obtained by the proposed method and those
obtained by SPH.

In Fig. 2.10 we show the reconstruction of the displacement of particle number with la-
bel 1. Of course, the error increases compared to the examples in the preceding sections,
since there is no experimental result that coincides with the simulated problem. The rela-
tive mean-squared error evolution in time is plotted in Fig. 2.11. It is worth noting that the
error remains under 2% in the vast majority of the time increments. Only in a small por-
tion of the increments does the error rise to a value always under 10%. Of course, further
refinement in the data sampling will produce more accurate results.

The method runs faster than in real-time. For instance, a simulation of 1.7 seconds
of physical time takes 1.640434 seconds running Matlab on a 2015 Mac-Book Pro laptop
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equipped with an Intel Core i7 processor. Of these, 0.901420 seconds correspond to the
integration in time of the GENERIC expression. The remaining time is related to the neigh-
boring process in the manifold of the results.

2.7 Conclusions
What we have developed in this chapter is the foundation for a practical way of learn-
ing the behavior of a free-surface fluid that allows overcoming the need to integrate in
time the Navier-Stokes equations, whose difficulty is well known. The method begins by
writing down the equations of the fluid in the most general framework that allows for a
description of the dynamics of the fluid without losing information on the displacement
and velocity fields based on the GENERIC formulation.

GENERIC has several appealing features. First, its terms can be obtained numerically
by regression of available experimental data. This approach guarantees the correct satis-
faction of energy conservation and entropy dissipation. Second, numerical discretization
of GENERIC by finite differences in time provides us with a powerful and consistent inte-
gration scheme that has shown to possess remarkable numerical properties, as previously
studied by different authors. The third ingredient of the method is nonlinear model order
reduction.

Since GENERIC establishes a system of equations for every particle in the model and
given the fact that this number is usually very high, we reduced the dimensionality of the
model by employing TDA-informed locally linear embeddings, thus greatly minimizing
the number of degrees of freedom. The combination of these ingredients has allowed us
to develop a method that can cope with severe real-time constraints while maintaining
its desired thermodynamic consistency. Results showed that the simulations ran slightly
faster than in real-time, with remarkable error levels always under 10%. This level of error
is considered enough for many applications such as computer games, rendering, robot
control, etc. Provided the obtained results for emulation of water behavior, we consider
its application to a wider range of fluids of Newtonian and Non-Newtonian nature and the
implementation of a digital twin for online learned simulation.
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Figure 2.9: Comparison between snapshots obtained by the proposed method (left col-
umn) and their equivalent ground truth obtained by SPH (right). Time instants 28, 115
and 172 are shown. Particle 1 is highlighted in red so as to ease the comparison among
pseudo-experimental and learned results.
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Figure 2.10: Integration of the sloshing movement versus ground truth. Initial velocity
0.175 m/s. Fig.s represent, respectively from top to bottom, the displacement of particle
with label 1 along x, y and z coordinates.
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Figure 2.11: Evolution in time of the error in the prediction of the water height.
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Chapter 3

Developing physically sound,
self-learning digital twins for
sloshing fluids

In this chapter, a self-learning digital twin strategy is developed for fluid sloshing phe-
nomena. The proposed method infers the (linear or non-linear) constitutive behavior of
the fluid from video sequences of the sloshing. Real-time prediction of the fluid response
is obtained from a reduced-order model (ROM) constructed using our thermodynamics-
informed data-driven learning approach. From these data, we aim to predict the future
response of a twin fluid reacting to the movement of the real container. The constructed
system can perform accurate forecasts of its future reactions to the movements of the
glass. The system is completed with augmented reality techniques to enable comparisons
among the predicted result with the actual response of the same liquid and to provide the
user with insightful information about the physics taking place. The content of this chap-
ter is included in the following publication:

• Moya, B., Alfaro, I., González, D., Chinesta, F., & Cueto, E. (2020). Physically sound, self-
learning digital twins for sloshing fluids. PloS one, 15(6), e0234569.

3.1 Introduction
Considering the results obtained in the development of a simulation engine for water, we
take a step forward in the implementation of learned simulation from observations. For
this purpose, we assemble the digital twin and broaden the spectrum of considered fluids.
As a result, we face new challenges in the implementation. The fluids employed in the new
descriptions will be both Newtonian and non-Newtonian, and the simulation must learn
correctly the behavior of all. In addition, we are still restricted by the real-time constraints,
now also in the data-acquisition process and loop performance. Finally, a tool is required
for distinguishing fluids and employing the appropriate model for the detected liquid.
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Digital twins are tools to fully address real-world phenomena and seamlessly connect
reality with virtual predictions. The abundance of data inputs allows relating physical ob-
jects or processes with the simulation to obtain online meaningful results. The digital twin
of the object of interest offers, in the end, a cost-effective real-time solution for making de-
cisions analogous to those that we would make interacting with the real process or object.

These virtual replicas have already shown their usefulness through their implementa-
tion across many kinds of industries and branches of science. In the field of robotics, they
are the means for scene understanding and interaction to connect robots with the actual
reality to develop a method for physical scene understanding in real-time and with real
measurements [Pan et al., 2016] [Schenck and Fox, 2018a].

While finite elements (or related numerical simulation techniques) are primarily used
for offline product development, design, and simulation, real-time digital twins offer ap-
plications for continuously changing, monitored systems [Chinesta et al., 2018]. The de-
velopment of the latter is more infrequent than the former due to their highly demand-
ing computational cost. Reduced-order models supply with tools to face such disadvan-
tage [Badías et al., 2018] [Aversano et al., 2019] [Keiper et al., 2018] [Tezzele et al., 2018].

[Kapteyn et al., 2020] face difficulties that show some similarities to our problem. They
work on physically-constrained digital twins, developed in a reduced-order space. Their
particular object of study is aircraft replanning, and propose a library of models with re-
gard to the detected conditions. They identify the proper model that will fit its behavior
best based on a tree classification with the data available. The model for each topology is
defined on a reduced basis, giving support for immediate decision-making.

In this chapter, we present the implementation of a novel self-learning digital twin of
fluid sloshing. By self-learning digital twin we mean a system that, rather than perform-
ing data assimilation (to determine the viscosity of the fluid, for instance) can construct
a physically correct, data-driven replica of a previously unseen fluid, regardless of its con-
stitutive behavior. The digital twin employs computer vision to obtain data from the real
system. In particular, in this application, we track the container of the fluid, which triggers
the slosh. From these data, we aim to predict the evolution of the fluid dynamics in time.
The system is complemented with augmented reality techniques, to enable comparisons
among the predicted result with the actual response of the same liquid.

Augmented reality (AR) enables the contextualization of the twin in the physical world.
Consequently, the interaction between reality and the replica, as well as user control and
interpretation, are straightforward. AR tools have also been implemented for non-rigid
representation, such as aerodynamics [Badías et al., 2019], or deformable objects [Badías
et al., 2018]. AR applications of sloshing dynamics are not common, and they present
limitations such as computing time, and localization in the scene, made with markers or
features in the image [Fujisawa and Kato, 2009].

The workflow of the digital twin follows the next sequence. First, by employing com-
puter vision techniques, we obtain data about the movement of the glass. Secondly, we

Universidadde Zaragoza



Learned simulation as the engine of physical scene understanding 49

feed the simulator engine with that information. Finally, the output is represented within
a real container, which may be the one containing the fluid or not. We let the simulation
run in the background to interpret the physics taking place.

3.2 Learning Newtonian and non-Newtonian
fluids

We take a step forward from the simplified geometry of Chapter 2 to model the glass used
to contain the real liquid entity of the digital twin. It has a slight slope that increases its
diameter which can be seen in Fig. 3.1. In our proof-of-concept, the height of the glass is
h = 8 cm and the bottom and top diameters are b1 = 6.5 cm and b2 = 8 cm, respectively.
We consider a fluid volume adapted to the shape of the glass, filled up to 6 cm. Equally to
the work already presented, data are obtained with the Smooth Particle Hydrodynamics
theory [Monaghan, 1992].

Figure 3.1: Containers used for simulation, representation and comparison with the vir-
tual phantom. The three glasses are identical. The middle glass will be virtually filled with
the replica of the liquid volume. Since it is empty, the painted texture helps the cameras
to track its movement.

Let j = 1, . . . ,M be the particle number, with which the fluid volume has been dis-
cretized. Although to describe a Newtonian behavior we only need their position qj , ve-
locity vj and internal energy Ej at discrete time instants, non-Newtonian fluids are not
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fully described with these state variables [Español et al., 1999]. Some of the liquids we
attempt to describe here have viscoelastic properties, and this behavior is captured by in-
cluding the extra stress tensor τj—or a related magnitude—of each particle in the set of
state variables. The fluid is then characterized by a vector of these particle variables, such
as

S = {z = (qj,vj, Ej, τj) ∈ (R3 × R3 × R× R6), j = 1, 2, . . . ,M},

for everyn > 1equally spaced time steps in the interval (0, T ]of each simulation. The fluid
volume has been discretized into M = 2134 particles. If we have 13 degrees of freedom
per particle, the full dimensionality of each snapshot vector is D = 27742.

In this chapter, we generalize this approach to be able to identify any kind of viscoelas-
tic fluid from data. A database has been constructed with pseudo-experimental results for
glycerine, butter, honey, mayonnaise, and chocolate. We intend to cover different viscosi-
ties and densities, as well as behaviors. Blood, chocolate, and mayonnaise have been de-
scribed as non-Newtonian fluids. Blood is usually Newtonian in this type of simulation, but
we have decided to employ a non-Newtonian approximation for testing the method. Our
goal is to prove the generalization of this method over liquids with different viscosities and
densities. Blood, chocolate, and mayonnaise have been described as non-Newtonian flu-
ids. The adaptation to different physics will set the bases to perform correction and adap-
tation to any new perceived fluid. The different fluid constitutive models in a rheogram
are sketched in Fig. 3.2.

Chocolate, mayonnaise and blood1 are shear-thinning [Izidoro et al., 2007] [Kumbár
et al., 2018]. We have selected the Herschel-Bulkley model to reproduce their rheology
[Herschel and Bulkley, 1926] . It follows the next expression

τ(t) = kγ̇n(t) + τ0,

in which τ is the shear stress, k the consistency index, γ̇ the shear rate, n the flow index,
and τ0 the yield stress. The flow index indicates the behavior of the fluid, being n < 1 for
the shear-thinning, and n > 1 for the shear-thickening like the oobleck. The consistency
index is a proportionality constant and can show approximately the magnitude of the
viscosity when comparing fluids with similar n.

For all these fluids, synthetic data have been obtained according to the parameters in
Table 3.1.

We have simulated four different sloshing trajectories for each liquid. It is also worth
mentioning that the stable time step of the computation was defined as 0.001 sec-
onds. Despite having all these data, we will select equally spaced snapshots, pruning the
database to avoid overfitting and undesirable noise of the synthetic measurements.

Our digital twin needs to produce results at a real-time frequency, which is 30 Hz.
Therefore, our constraint is to select a time step of at least 0.03 seconds. Nevertheless, the

1https://www.michael-smith-engineerscouk/mse/uploads/resources/useful-info/General-Info/
Viscosities-of-Common-Liquidspdf
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Figure 3.2: Standard classification of the fluid families considered herein. In the case of
Newtonian fluids, their properties are constant over time and show a linear response. Their
flow index n is then set to 1, and their yield stress to τ0 = 0. In contrast, shear thickening
fluids start flowing when the stimulus is greater than the yield stress τ0 > 0. For these
fluids, n > 1. In this work, fluids whose behavior can be assimilated to shear-thinning.
Fluids that incorporate some kind of plastic behavior need special treatment and have
not been considered yet.
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Fluids k (Pa· s) n τ0 (Pa)
Glycerine 0.95 1 -

Blood 0.017 0.708 -
Mayonnaise 45.40 0.495 98.18

Melted chocolate 5.764 0.697 9.096

Table 3.1: Characteristics of the fluids considered in this work.

selected time step for the learning process must ensure that we capture all the important
features of the dynamics. If we considered a larger time step, we might miss important
details of the phenomenon.

3.3 Manifold learning of fluids: the k-PCA
Our strategy here is to assume that the already discretized sloshing dynamics of each fluid
evolve on a finite-dimensional, smooth, and real manifold M ∈ RD. This manifold is
reconstructed from the synthetic data previously obtained.

We make use of model order reduction techniques to find a reduced-order manifold
N ∈ Rd, where d ! D, to embed the manifold to achieve real-time performance for our
digital twin. Again, Fig. 2.3 sketches our approach. On this reduced-dimensionality man-
ifold, we will preserve the important features of the dynamics expressed in a new system
of latent variables. Despite its lack of physical meaning, they capture the patterns of the
dynamics from the dataset. These techniques will provide insights about the manifold
where all the fluids are embedded to study their correlations.

The dominant non-linear and high dimensional nature of the problem has shown dif-
ficulties to be embedded in a manifold led by linear correlations [Moya et al., 2019]. In-
stead, it showed a good performance with non-linear model order reduction techniques
(namely, LLE [Roweis and Saul, 2000] and TDA [Wasserman, 2018]). Following these
results, we have employed k-PCA (kernel Principal Component Analysis) to distill the
reduced-order manifold of each fluid [Schölkopf et al., 1998]. Although TDA provided ac-
curate results, the computational resources required for the method posed a problem for
the implementation of the twin. k-PCA overcomes these limitations to build a real-time
digital twin at a lower computational cost.

Given a matrix Z of fluid snapshots, we compute the product S = ZZT to obtain the
matrix of pairwise scalar products. The key hypothesis of k-PCA is that the projection of
the points to a new space φ : M ⊂ RD → RQ, where Q is the new dimension, probably
higher than the current space, can result to be linearly separable. Then, we apply PCA in
RQ. As a result, we obtain the most relevant nonlinear principal components of Z and
thus a projection to a much lower-dimensional manifold.

Universidadde Zaragoza



Learned simulation as the engine of physical scene understanding 53

In our problem, we have a matrix Z of snapshots. Each column zi, i = 1, . . . , n is a
snapshot, a vector of state variables that represent the state of the fluid at a specific time
instant. For each fluid, we have a total of n snapshots,




| | |
z1 z2 · · · zn

| | |



 = Z ∈ RD×n.

With this method we successfully embedded the points of each fluid into a manifold
N ⊆ Rd=3, see the results in Section 3.8.

3.4 Dynamics reconstruction from acquired
data

The digital twin is designed to learn the description of the dynamics of the fluids, modeled
as a time-evolution problem, expressed as a function of a set of variables

zt = z(t) ∈ S ⊂ RD,

with D representing the full dimensionality of the problem. These variables are those re-
quired for a thermodynamically admissible representation of the sloshing dynamics, eval-
uated at each particle in which the fluid has been discretized. Note that some of these
variables are, in general, not all measurable with a camera. Then, we must develop a link
between the state of the fluid and the information that we obtain via computer vision
techniques. In this case, we have related the velocity of the glass that causes the sloshing
effect with the state variables under this condition. As a result, scene information becomes
an interpretable input for our integration scheme.

The physical constraints that we impose have the ultimate goal of developing more
accurate and generalizable models. Despite the simplification of the calculation method,
those models still entail a high computational cost difficult to surmount that is overcome
with model order reduction to predict the next state of the fluid at a frequency of 30 Hz or
faster (the one at which standard cameras operate).

This time, we apply GENERIC learning to coarsely model the macroscopic behavior of
fluids with different densities and viscosities, finding patterns that root at the micro-scale
level. Some of these fluids are non-Newtonian and show viscoelastic properties. We re-
quire a more complex formulation that is to be learned from the new selection of state
variables. With these measurements obtained from computational simulations, we per-
form the optimization over the discretized friction matrix M, and the approximation of the
gradients of energy and entropy, as described in Chapter 2, considering L to be known in
the regression

µ∗ = {M,A,B} = argmin
µ

||z(µ)− zmeas||, (3.1)

including the discretized degeneracy conditions in the optimization.
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Figure 3.3: This picture represents the evolution of the eigenvalues for the first 10 k-PCA
modes for the whole set of fluids. We distinguish three modes that stand out over the
others. This fact justifies the reduction performed. As a result, we aim to provide a more
manageable and efficient system for classification.

3.5 Fluid clustering and classification

The digital twin should be able to mimic the behavior of any type of fluid, not necessarily
in the database. Then, in future applications, it must perceive and recognize the fluid in
the scene to perform accurate calculations. In other words, it must interpret data from the
scene to explain what it is watching in understandable terms for a human.

We expect to classify the fluid with only a few observations and, knowing which fluid
it is—or interpolating between the closest neighbors in the phase space—, make the cal-
culations in the appropriately reduced-order manifold.

We remind that the dimensionality of the problem is of order D ∼ 104. This would
make it unfeasible to perform the classification as fast as the application requires. We ad-
dress this problem by applying model order reduction techniques to perform the classifi-
cation in a manifold of much lower order. Dimensionality reduction is a common prepro-
cessing step for classification tasks [Wang and Carreira-Perpinan, 2014]. The time invested
in learning to map the dataset to a reduced space is compensated with the time reduction
entailed in the classification itself. In addition, dimensionality reduction can improve the
efficacy of the classification. If the dataset has a lower-dimensional structure, we avoid the
noise of the large dimensional set, which results in an improvement in the accuracy.

k-PCA enables us to project the data onto a low dimensional manifold, of 3 dimensions
in our case (see the eigenvalue evolution in Fig. 3.3). The different types of fluids remain
clustered in the new projection, as can be seen in Fig. 3.4. k-PCA can unveil the features
that make the behavior of each fluid unique with respect to the others. We expect this
fact to be advantageous for the classification process.
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Figure 3.4: By employing k-PCA we reach a manifold of 3 dimensions where the different
fluids, represented by one color each, remain clustered.

In our case, we employ random forests for classifying our dataset [Breiman, 2001]. This
technique consists in constructing several decision trees in different subspaces of the
training set to generalize the classification and, as a result, avoid the overfitting that usu-
ally appears in single regression tree techniques.

We also apply k-fold cross-validation as part of the learning process. The method sug-
gests splitting the database into two parts, one assigned for training and the rest saved
for testing. This process is repeated iteratively k loops, changing the distribution data of
training and test sets, to improve the fitting.

We need enough data to recognize the underlying trend, but we also need to leave suf-
ficient for testing to avoid high variance error. According to this criterium, we establish a
relation of 80% of snapshots for training, and 20% for testing, in our algorithm. We trained
the model following a cross-validation scheme in k = 5 iterations.

Overall, the results obtained from the classification algorithm showed a good perfor-
mance. High accuracy was achieved by analyzing both global results as well as the error
obtained for each fluid individually (Table 3.2). With this result, we consider the model
valid for our problem, as well as for decision-making applications.

3.6 Observation: the cameramodel
Our physics perception is mainly developed from visual inputs. Hence, computer vision is
the experimental technique to collect real-world data. Images represent shapes of people
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Individual Accuracy

Water 99.17%
Glycerine 97.32%
Butter 92.88%
Blood 91.07%
Honey 91.07%
Mayonaise 91.07%
Chocolate 91.07%

Global Accuracy 95.93%
Precission 99.17%
Recall 99.17%

Table 3.2: Results obtained from classification after random forest training with k-fold
cross validation. Global accuracy is over 95%, and individually all remain over 90%.

and things captured by an eye, a mirror, an optic device, or a camera due to the reflected
light. As a result, we obtain a visual representation that we store as a source of information.
Interpretation of the information of visual inputs is a key point in our daily routines. For
example, stereopsis, known as the visual ability to see in three dimensions, makes us able
to perceive depth in the surroundings and interact with the environment. An appropriate
3D reconstruction contributes to a high quality of life and the understanding of reality.
Equally, there are some other human capacities related to visual inputs. It is because of
this information that we can distinguish objects, learn patterns, and enrich our cognition
and reasoning.

Computer vision is the branch of artificial intelligence in charge of studying the sense of
vision to replicate these interpretation capacities. This field has experienced a flourishing
decade where many applications have been developed in pattern analysis, tracking, and
scene reconstruction. In addition, several systems for physical scene understanding make
use of these methodologies [Schenck and Fox, 2016a] [Schenck and Fox, 2018a] [Nava
et al., 2021] [Yan et al., 2020].

Computer vision foundation is the pinhole camera model, represented in Fig. 3.5,
which consists in an approximation to correlate a point in the three-dimensional space
with its projection onto a 2D image plane considering that the rays are projected from a
common center of projection. As it is an ideal model, it does not consider distortions, blur,
and other effects due to the characteristics of the lenses and the aperture of the camera.
These are taken into account usually in a previous rectification step.

We consider a point in three-dimensional world coordinates (X,Y, Z) ∈ R3 expressed
as pw = (X,Y, Z, 1). This point has a projection in an image 2D plane (u, v) ∈ R2 repre-
sented asm(u, v, 1). The pinhole model enables the definition of a mappingΠ : R3 → R2

for this projection. If the 3D point is referenced to the local coordinate system of the cam-
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Figure 3.5: Scheme of the pinhole model. It represents the projection of the 3D world
onto 2D images.

era, the projection to the image plane is defined as:
(
u

v

)
= f

(
X/Z

Y /Z

)
.

Nevertheless, in a situation with multiple cameras and changing positions, the 3D posi-
tion of any point must be referenced to a global coordinate system that can be observed
by every camera. In this situation, the relationship between the 3D world and a 2D im-
age, and vice versa, is built from the so-called intrinsic and extrinsic parameters. Intrinsic
parameters relate the 2D position of a point, in pixel coordinates, with its 3D position to
the camera reference. Those parameters are the pixel spacing sx and sy , the center coor-
dinates of the camera (cx, cy), and focal length in x direction, fx = f/sx, and y direction,
fy = f/sy , directions. They form the calibration matrix K .

On the other hand, extrinsic parameters are those that represent the camera’s rotation
(R) and translation (t) around a reference coordinate system. With all this information, a
point can be mapped from the real world to the pixel coordinates, and vice versa.

Having prior knowledge of the camera’s calibration and position, the 3D estimation
of every point is performed through triangulation [Hartley and Zisserman, 2003]. As men-
tioned before, the camera outputs the intrinsic and extrinsic parameters at each frame. As
a result, we know the projection of the 2D features in the 3D real-world system to perform
any operation in the algorithm implemented,
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,

x̃s = K[R|t]pw.

The projection of a 3D point to an image is straightforward given the intrinsic and ex-
trinsic parameters of the camera for a known 3D position. However, there are situations
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where this information is partially or completely unknown. Given a 3D point observed
by two cameras, whose position and calibration are known, its 3D position can be re-
constructed through multi-view triangulation. In addition, bundle adjustment, whose
scheme is shown in Fig. 3.6 is a particular optimization algorithm used to solve this op-
timization problem when the position of the cameras is also unknown. Structure-from-
motion is the problem of reconstructing a 3D scene in the latter exposed conditions, and a
bundle adjustment is a standard algorithm for its resolution. Given a point cloud of match-
ing points, detected by a specific algorithm—see SIFT, for instance [Lowe, 1999]—, the
optimization will try to minimize the positions of the points as well as the rotation R and
translation t matrices.

p1 p2

p3 p4

p5

p6

p7

R1, t1
R2, t2 R3, t3

Figure 3.6: Bundle adjustment. Three cameras, whose rotation and translation informa-
tion are unknown, capture the same features of an object to perform the optimization
over the unknown data and perform the estimation of the cameras’ position and 3D co-
ordinates of the features of the object.

Some online applications require performing this estimation on-the-fly at the same
time the application is running. This problem is known as Simultaneous Localization And
Mapping (SLAM) [Durrant-Whyte and Bailey, 2006]. This localization is proposed to be
made based on sensored information [Gutierrez-Gomez et al., 2016] or feature extrac-
tion [Mur-Artal et al., 2015], to name a few. In this discipline, there is a sub-field called
Non-Rigid structure from motion, which stands for situations where the objects in the
scene also move and deform. In this type of environments [Recasens et al., 2021] [Badias
et al., 2021], as it happens with fluid, positioning and feature extraction becomes com-
plicated. However, the cameras employed in this work provide the intrinsic and extrinsic
parameters of the camera. In addition, it will remain in a fixed position.

The present work has been developed using the stereo camera Zed Mini model from
Stereo Labs (https://www.stereolabs.com/zed-mini/). This camera incorporates a
stereo system and an Inertial Measurement Unit, IMU. The camera can instantaneously
provide the user with its intrinsic K and extrinsic, R and t, parameters. This fact helps
to speed up the computation of the inputs and outputs of our digital twin, as well as its
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augmented reality reconstruction.

3.7 Data extraction from the scene
Next, we analyze data extraction with computer vision techniques to understand how we
perform scene understanding and connection with the twin. We place the camera in front
of the glass at a fixed position to evaluate in real-time the movement of the glass and the
free surface evolution of the liquid, as shown in Fig. 3.7.

pw(X,Y, Z)

ui ui

Oleft Oright
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Y Z

X

Y
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Figure 3.7: The picture shows the functioning of the stereo system in this work. We fix
the location of the camera, which is referenced to the origin position through the extrin-
sic parameters. The two images provided by the stereo system output the desired 3D
reconstruction of a point. The camera performs continuous triangulations and exports
the depth of each pixel from the 2D matches detected between the right and left lenses.

3.7.1 Feature detection and tracking

We are interested in the detection and tracking of the sloshing of liquids. They are usually
contained in glasses, vessels, and cups, that shape them and enable their manipulation.
The movement of the container in the manipulation triggers the slosh of the fluid. There-
fore, by tracking the container we can perform an estimation of the phenomenon under
study.

However, transparent objects, such as those made of glass, have always entailed ex-
treme difficulty for feature extraction algorithms due to their lack of texture. Only recently
techniques based on deep convolutional neural networks, CNN, have been developed to
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overcome this problem [Khaing and Masayuki, 2018] [Sajjan et al., 2019]. Instead of using
fiducial markers [Fujisawa and Kato, 2009], we decided to add texture to the glass to track
the features or relevant points as seen in Fig. 3.1. Little dots were painted on the glass
to create points of interest that the feature detector could select. From the detection of
these features, or points of interest, we localize the center of masses of the glass projected
to its bottom surface. We apply the Shi-Tomasi algorithm [Shi et al., 1994] for feature ex-
traction in the area where the glass is expected to be. It finds the strongest, and more
stable, features to track along the video sequence. The camera straightly provides the 3D
position of the selected points of interest. With those points, we compute the center of
masses of the glass projected to the bottom of the container. By tracking that point, we
obtain information on the position and velocity of the glass.

The presentation of results coming from the cognitive digital twin may be useful for
a potential user. In the use of simulation as the engine for physical scene understanding,
we have access to predictions of the state of the dynamical system, including quantities of
interest that are not accessible visually, such as the energy or the stresses, and that could
be useful in critical situations for decision making.

3.7.2 Simulation in the loop and twin representation

The workflow of the twin is defined as a logical sequence that allows going from an input
impulse to the physical container to the prediction of its effect in the virtual fluid. The re-
sulting simulation will then be superimposed on the glass image. Firstly, we estimate the
velocity of the glass based on feature extraction. The simulations of the database have
been obtained by defining different input velocities of the glass that triggered the slosh-
ing. Therefore, as a second step, we relate the initial state of the virtual fluid and the veloc-
ity of the container as an interpolation. This process converts the scene information into
an input interpretable for the model.

Finally, the result is presented to the user in the scene using augmented reality. The
augmented reality interface is an advantageous tool for result representation, as well as
for model interaction. It provides a user-friendly interface for control and understanding.
This technology is usually employed for rigid representation, i.e. the virtual object does
not interact with any real stimulus. Our twin is deformable and interacts actively with the
scene. We employ the tracking information previously obtained for the precise placing
of the augmented liquid. In consequence, it continuously updates and shows real-time
connection and interaction with the glass. AR representation shows the position of the
particles and the free surface. In addition, it can augment the representation of the liquid
by showing additional information, such as the velocity field simulated for the next time
steps.

The simulation loop performs as follows. We detect the velocity of the glass and inter-
polate the initial state of the fluid. The current vector of state variables is projected to a
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low-dimensional manifold where the calculations are performed. We obtain the predicted
new state of the fluid after 0.03 seconds of simulation in real-time. Then, the result is repre-
sented in the full order space and represented using AR. This process is repeated cyclically,
with the help of AR for human-machine interaction. As a result, we have a real-time digital
twin from the correlation between the movement of the glass and the state of the fluid.

3.7.3 Detection and data acquisition of the free surface

Some features of the algorithm also require data acquisition of the free surface. As part of
the fluid recognition stage, we also need to acquire data from the fluid. Due to its lack of
texture, or even transparency, obtaining information is problematic. The use of RGB Depth
cameras is commonly used for this purpose [Do et al., 2016] [Tosun et al., 2017]. However,
due to its lack of texture, it is a difficult task that could need to be supported with CNN for
accurate tracking [Schenck and Fox, 2016a].

We do not consider adding texture to the liquid since this action is difficult to control,
and would alter the material properties. Finally, we followed an approach similar to the
one employed in [Eppel, 2016]. We analyze the color gradient of the binarized frame (Fig.
3.8 and 3.9). There is a noticeable change between the free surface and the background.
Therefore, the points in the boundary where there is a color gradient are considered free
surfaces. These points are stored, tracked, and augmented in the image for user interac-
tion and verification.

3.8 Experimental validation of the twin
We have tested the online performance of the twin to evaluate the implementation of the
algorithm in conjunction with the computer vision techniques that we employ for data
extraction.

We obtained positive results in the merging of both elements. Trajectory generation
and augmented representation is done online and coupled with the video. As a result, we
perform real-time calculations and representation.

The replica of the liquid has been also compared with a glass filled with a liquid of the
same type. Both containers are subjected to the same forces. Qualitatively, liquids are
synchronized. Nevertheless, the movement of the digital twin seems to be a bit more am-
plified. While previous approaches in the field (notably [Schenck and Fox, 2016a] [Schenck
and Fox, 2018a] [Kennedy et al., 2019]) report qualitative performance measurements
only, we have also tried to provide quantifiable results to perform accurately the experi-
mental validation. We quantify the error in the reproduction of the free surface reconstruc-
tion, defined as the integral of the differences between the heights regarding a middle
line, see Fig. 3.10:

e =
1

l

∫

l

(∣∣hR(x)− hV (x)
∣∣) dx,
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Figure 3.8: Example of frame binarization. The picture is first transformed to gray scale
for gentle binarization. Noise is also filtered to detect a smooth surface.
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Figure 3.9: Free surface detection and tracking in video sequence. The points selected to
belong to the free surface are highlighted in red over the original frame for verification.

l

hV (x)

Virtual free surface

l

hR(x)

Real free surface

Figure 3.10: Representation of the quantifiable comparison of the real liquid and the
replica. The free surface is defined as a function of its height at different points. These
heights are compared in the same snapshot to evaluate the reconstruction error.

with R and V representing the real (physical) height and the virtual one, respectively.

The resulting errors are shown in Table 3.3. They remain adequate according to the
state-of-the-art in computer vision applications. The error grows with higher amplitudes
of slosh. Some sources of error could root in the approximation performed for velocity
estimation. Remember that the pseudo experimental data with which we have built the
model came also from a numerical approximation, SPH. Nevertheless, the resemblance is
sufficient for learning a model, as well as corrections that will improve its performance.

3.9 Conclusions
In this chapter, we have presented and described a digital twin able to learn the sloshing
dynamics occurring within a glass. We have shown that it satisfactorily reproduces the
dynamics that a real stimulus would cause. The merge of online and real-time data acqui-
sition, calculation, and result representation has enabled realistic interaction between the
two mediums.
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(a) Snapshot 1-glycerine (b) Snapshot 2-glycerine (c) Snapshot 3-glycerine

(d) Snapshot 1-water (e) Snapshot 2-water (f ) Snapshot 3-water

Figure 3.11: Snapshots employed for comparison between the real liquid and the digital
twin. The free surface reconstruction has been evaluated to compute the error.

WATER hR(0) hV (0) hR(l) hV (l) mean error (mm)
Snapshot 1 5.52 11.32 5.38 8.28 0.7572
Snapshot 2 4.77 7.58 3.089 11.35 1.5254
Snapshot 3 3.694 2.839 2.839 6.53 1.0031
GLYCERINE hR(0) hV (0) hR(l) hV (l) mean error (mm)
Snapshot1 3.56 3.845 3.56 3.418 0.119
Snapshot 2 4.20 5.95 3.18 8.85 1.7428
Snapshot 3 3.11 3.53 2.54 7.77 1.249

Table 3.3: Numerical results of the experimental validation. Absolute value measure-
ments are provided at h(0) and h(l) in mm for comparison. The error is also expressed
in mm.

The digital twin connects with the scene through computer vision techniques based
on feature extraction to obtain the velocity of the container. This is the input of the simu-
lations that we have performed to obtain synthetic data with which the model has been
built. Therefore, we establish a straight relationship between scene data and interpretable
inputs for the twin.

Real-time could not be achieved but by the use of model order reduction techniques.
k-PCA finds a space of 3−4dimensions where the dynamics are embedded to perform the
calculation with minimal loss of information. We have also proved the efficacy of GENERIC
to learn more complex behaviors, such as viscoelasticity, widening the options that the
twin offers.

While it has been difficult, in general, to obtain fully meaningful and quantitative com-
parisons with existing methods—that, in addition, focus on the pouring process, while we
are interested in the sloshing phenomenon—, our method guarantees by construction
the fulfillment of the laws of thermodynamics while bypassing the integration of Navier-
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Stokes equations. This has been shown to provide very accurate results.

Given these tools and the results obtained from the classification training, new capa-
bilities can be added to the twin. We expect to feed the algorithm with data from the free
surface of a real fluid to work in limited and small data regimes. Also, the model could be
corrected in case the liquid is unknown to go a step further and transform the model into
a hybrid twin.
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Chapter 4

On the use of thermodynamics
as an inductive bias for neural
networks

Physics perception very often faces the problem that only limited data or partial mea-
surements on the scene are available. In this chapter, we propose a strategy based on
neural networks to learn the full state of sloshing liquids from measurements of the free
surface. Our approach is based on recurrent neural networks (RNN) that project the limited
information available to a reduced-order manifold to not only reconstruct the unknown
information but also be capable of performing fluid reasoning about future scenarios in
real-time. To obtain physically consistent predictions, we train deep neural networks on
the reduced-order manifold that, through the employ of inductive biases, ensure the ful-
fillment of the principles of thermodynamics. RNNs learn from history the required hidden
information to correlate the limited information with the latent space where the simula-
tion occurs. Finally, a decoder returns data to the high-dimensional manifold, to provide
the user with insightful information in the form of augmented reality.

This work has been published in the next contribution:

• Moya, B., Badías, A., González, D., Chinesta, F., & Cueto, E. (2021). Physics percep-
tion in sloshing scenes with guaranteed thermodynamic consistency. arXiv preprint
arXiv:2106.13301. Accepted for publication in IEEE Transactions in Pattern Analysis
and Machine Intelligence.

4.1 Introduction
In the context of physics perception, world simulation is the emulation of the real world in
a virtual environment for machine understanding. Simulations provide an interpretation
of data inputs and provide an estimation of the consequences of actions. However, we do
not always have access to the whole set of state variables that the employed description
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may require. In this next step, we aim to connect with the real entity of a liquid to inter-
pret the sloshing behavior directly from the information of the fluid, and not that of the
container. As a result, the simulation engine must be able to work with the data acquired
from the stereo camera, which consists in measurements of the free surface.

Hence, the main constraint in this step is the availability of data. Techniques in mod-
eling fluid reasoning continue to expand, but there are access limitations to full sets of
experimental variables required in the proposed descriptions. That is the case with our
methodology. It operates from full-field descriptions of the dynamical state of the fluid,
i.e. evaluation of the state variables at each particle of the discretization of the fluid. We
do not consider sophisticated tools, such as PIV cameras, to make our approach applicable
to different scenarios. We solely work from the measurements available from our stereo
camera. Thus, we only have access to evaluations of the free surface in time.

This is not an isolated problem in fluid dynamics. Data-driven modeling is some-
times conditioned by the scarcity of these types of measurements. As a solution, some
works propose to build models upon the information available in images [Bai et al., 2017]
[Rodríguez-Ocampo et al., 2020] or sensors [Bieker et al., 2020]. For instance, [Flaschel
et al., 2021] developed an algorithm for physically-consistent model inference with infor-
mation about displacements and force. However, in some cases, this approach could jeop-
ardize the physical consistency of the method if the dynamical state is not reconstructed.
In contrast, we propose an image-based method to acquire data with computer vision
techniques and recover the dynamical features of the slosh to preserve the soundness of
the algorithm.

From this perspective, the strategy proposed could be seen as a self-supervised learn-
ing technique to overcome the lack of labeled data. Labeled data is a bottleneck for data-
driven model inference. Despite this, we can look for methods that achieve a deeper un-
derstanding of the data available to recover the required information. This problem is of
utmost importance in the field of scene perception and understanding [Schenck and Fox,
2018b] [Nair et al., 2017] [Nava et al., 2021] [Yan et al., 2020]. An appealing option is the de-
velopment of strategies that recover the dynamic information from the data acquired [Rao
et al., 2021]. Sensors are usually placed strategically to recover the solution field of inter-
est [Callaham et al., 2019] [Sun and Wang, 2020]. Deep neural networks are widely used
for this task. [Erichson et al., 2020] suggests the use of shallow neural networks for recon-
structing fluid flows. In a different approach, [Lye et al., 2020] perform an estimation of
the input parameters of fluid flows in a turbulent regime from measurable information.

In our approach, the algorithm is fully phrased with deep neural networks for this pur-
pose. We find these techniques convenient not only for modeling but also for recovering
the dynamical features from partial measurements. We first build a low-dimensional man-
ifold based on autoencoders. These are unsupervised learning techniques that achieve
compression of the information by learning a low-dimensional manifold of the data pro-
vided. Then we model the dynamics in the framework provided by GENERIC using the so-
called Structure-Preserving Neural Networks (SPNNs) [Hernández et al., 2021b] [Hernán-
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dez et al., 2021a]. This implementation consists in a perceptron constrained by the degen-
eracy conditions and the learning scheme provided as the inductive bias of the network.
Finally, we hypothesize that one single snapshot of the evaluation of the free surface may
not contain enough information to recover unveil the internal features of the dynamics.
However, the history of the free surface underlies the influence of the hidden variables
whose information we have to access. Recurrent neural networks are structures special-
ized in distilling information in sequences of data. Hence, we aim to find a correlation
with this type of network to find a mapping between sequences of the free surface of the
liquid and the low dimensional manifold learned from full-field evaluations of the state
variables.

Recent works have also learned dynamical descriptions inspired by the GENERIC for-
malism [Lee et al., 2021] [Zhang et al., 2021]. The main difference with SPNNs is the impo-
sition of hard constraints for learning the degeneracy restrictions, one of the prerequisites
in this formulation to have an adequate structure. In contrast, the proposed method opts
for the optimization of this criterium as a soft constraint that facilitates optimization and
convergence.

There exist other formulations based on thermodynamical priors [Vlassis and Sun,
2021]. Yu et al. [Yu et al., 2021] developed a learning scheme based on the Generalized
Osanger principle to describe the evolution of the system in terms of energy and entropy
potentials. The Generalized Osanger Principle is adapted to data-driven inference with a
Runge-Kutta scheme. Thermodynamically informed neural networks (TINNs) [Masi et al.,
2021] [Masi et al., 2020] define by automatic differentiation the derivatives of the network
solution with respect to the outputs to evaluate the fulfillment of the laws of thermody-
namics.

Although the algorithm is initially trained with computational data, the final goal is to
connect it with real liquids to close the perception loop. Detection and tracking of fluids,
as well as containers, may be difficult if they lack texture. The measurements obtained are
usually invalid or noisy because the surfaces are not Lambertian [Koppal, 2014]. We are
interested in the detection of fluids, particularly the free surface. [Schenck and Fox, 2016a]
and [Schenck and Fox, 2018a] propose the use of CNNs to perform tracking of the fluids.
In the work of [Do et al., 2016], the authors propose an algorithm for filling level detection
with RGD-D cameras. We propose an approach similar to the one presented in [Eppel,
2016]. We convert the color image into a binary image in black and white to detect the
color gradient that appears on the free surface.

4.2 Problem description
In this chapter, we introduce a learned simulator that, in contrast with similar recent strate-
gies, see [Wu et al., 2015] for instance, outputs augmented information that can quantita-
tively improve reality for decision making given partial measurements. The starting point
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is similar to the one stated in previous chapters. We perform computational simulations
under different initial velocities to trigger the slosh to prepare the dataset. Based on the
GENERIC formalism, we describe the fluid dynamics in terms of a set of state variables to
fully describe the thermodynamical state of the liquid. Therefore, we choose the 3D po-
sition, velocity, internal energy, and stress tensor of each particle at each time step of the
simulation to conform to the dataset.

Then, we propose a three-step strategy to build an algorithm that, coupled with the real
liquid, integrates the evolution in time of the slosh given measurements of the free surface
only. Particularly, we have access to the pixels of the free surface that we can project to
3D real-world coordinates. First, we learn a reduced-order representation of the dynamics
from the computational dataset by employing autoencoders to compress the information
of the initial dataset from full field state vectors, i.e. considering observable and nonob-
servable data. Secondly, we train the time integrator of the evolution of the dynamics in
the latent manifold based on the results just obtained. Finally, the encoder part of the au-
toencoder is substituted by a recurrent neural network (GRU specifically) to distill from the
time evolution of the free surface the dynamical insights necessary to project the current
state of the fluid to the latent manifold from limited data. Thus, the flow of information
consists in detecting the free surface of the fluid, assembling a sequence of snapshots, pro-
jecting the sequence to the low dimensional manifold, integrating the dynamics in time,
and projecting the simulation results to the high order space. The training of the RNN is
performed a posteriori, after the autoencoder has been trained, inferring the knowledge
acquired about the latent space.

The proof-of-concept proposed is a glass full of glycerine. It is worth noting that the
geometry of both the glass and the liquid are not a parameter of the problem and we
opt for the use use of fully connected neural networks instead of graph-inspired architec-
tures. Provided that we always have the same liquid volume, we always have the same
discretization. In addition, despite the evolution of the particles in the liquid simulations
based on SPH, their dynamics for the proposed fluid are not extremely chaotic. However,
the liquid particles, and especially the free surface, do experience variations that have to
be learned by the autoencoder and the physical model. In this stage, we are focusing on
the implementation of the physics algorithm and the limitations of data of the dynamics.
The snapshots of the sloshing solutions are assembled by assigning a tag to each particle
to propose a specific order for the state vector. The particles are referred to as a local coor-
dinate system located at the bottom of the cup. The final goal is to couple this algorithm
with the liquid and to perform real-time simulations of new, previously unseen, fluids.

4.3 Artificial Neural Network Theory
Artificial Neural Networks (ANNs) are widely employed in diverse areas such as speech
recognition, image classification, robotics, and quantum physics. However, they are a
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x

fi(x) = act(ωizi−1 + bi)

Activation function act

ReLu(x) = max{0, x}
Tanh(x) = ez − e−z/ez + e−z

σ(x) = 1/ 1 + e−z

f(z) = fn ◦ fn−1 ◦ ... ◦ f1(z)

Figure 4.1: Graphic representation of the mathematical elements in ANNs.

source of intense development and investigation due to their effectiveness at learning
predictions in dynamical approximation problems, and their use has been popularized
in recent years [Su and Yang, 2002] [Ghaboussi, 2010]. The progressively increasing em-
ployment of these methods is partially due to the Universal ApproximationTheorem, which
states the generality and universality of neural networks to approximate any function at
a prescribed level of accuracy [Hornik et al., 1989]. As it is an approximation, the solution
proposed may not be exact, but we can improve the solution by increasing the number of
layers and neurons to fit the problem. Then-layer neural network proposed for each prob-
lem represents a mathematical function f , which results from the combination of multi-
variate functions f1, f2, ..., fn and an output function g. f is a mapping f : RDin → RDout ,
with Din and Dout the dimensionality of the input and the output respectively. f , for n
layers, is defined as:

f = fn ◦ fn−1 ◦ ... ◦ f1,

where each fi is:
fi : RD

i−1 → RD
i ,

fi = act(wiz + bi),

beingwi and bi the weights and biases, i.e. the parameters θ subjected to the optimization,
and act, being the activation function that defines the nonlinearity. This scheme has been
displayed in Fig. 4.1 for the sake of clarity.

4.4 Method
The complexity of the algorithm just presented forces us to implement our system in three
different steps, see Fig. 4.2 for a graphical sketch of the implemented architecture. The
highly dimensional nature of the problem motivates the reduction of the dynamics to
carry out learning on an embedded space of a much lower dimension. In the case of
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Figure 4.2: Sketch of the construction procedure for the deep neural network. In the first
step (first row), we perform model order reduction with autoencoders. Then, we train a
structure-preserving neural network to integrate in time the state of the system. We do
not have access to the high-dimensional state of the system, only a portion of it, in red in
the input vector. The encoder is substituted by a RNN to find a mapping from the partial
measurements to the low-dimensional manifold.
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learning and predicting new situations from real-world data, a correlation needs to be
established between the available data (the free surface) and the latent space built from
full computational descriptions. We hypothesize the existence of features (distinctive at-
tributes) in data sequences of the free surface that relates the history of partial measure-
ments with internal variables of the fluid. An architecture based on recurrent neural net-
works can unveil those correlations, map the data acquired to the latent space, and output
the reconstructed state in the next time step.

To accomplish these requirements, we need to develop three different architectures.
Firstly, we have to project our computational data to a lower-dimensional manifold to
train the algorithm efficiently and achieve real-time performance in the implementation.
Secondly, we need to train a physics-informed integrator that will learn the evolution of
the dynamics in the latent space. Finally, we work over an algorithm based on recurrent
neural networks to substitute the encoder with a perceptron capable of projecting partial
measurements to the latent space. It is worth mentioning that we chose to train in two dif-
ferent steps the autoencoder and the RNN and apply transfer learning. In transfer learning,
we profit from the knowledge acquired in a new application. Sloshing dynamics is already
a complex problem to apply model order reduction, and working with limited information
from the free surface could complicate the process of learning a low-dimensional mani-
fold. Despite these considerations to optimize the algorithm, the need for deep neural
networks that learn the patterns of the dynamics remains.

4.4.1 Model order reduction with autoencoders

Despite the success of neural networks in modeling fluid dynamics, the convergence and
accuracy of the training could be put at risk due to the high dimensionality of the de-
scription of the discretized fluid. In addition, fluid dynamics are led by strong non-linear
structures hard to be learned by machine learning methods. Autoencoders are a specific
type of neural network architecture to apply model order reduction. As a method of un-
supervised learning, it learns a compression of the information provided to describe the
information in a latent manifold of much lower dimensionality than the original database.
The advantage of its use compared to other techniques rests, firstly, with the facility to con-
nect the different parts of the algorithm as a metamodel, understood as an algorithm that
works from inputs of different models connected. In addition, the levels of accuracy are
comparable to other non-linear model order reduction techniques. Autoencoders cap-
ture the nonlinear pattern that emerges in the database due to the deep of the network
and the nonlinear activations of the layers.

Autoencoders consists of two parts: an encoder that maps data to an embedded space,
and a decoder that reconstructs latent information to the original space. Fig. 4.3 shows a
graphical representation of an autoencoder. The output of the decoder ẑt = ẑ(t) has to

MechanicalEngineering



74 B. Moya

Input
data

Output
data

Encoded
data

Encoder Decoder

Latent
space

Figure 4.3: Graphical description of an autoencoder. The encoder learns a mapping to
a latent space where the information of the input is compressed to a low dimensional
representation. The decoder, usually symmetric to the encoder, undoes the process to
map the hidden state to the full space.

be equal to the input of the encoder zt = z(t),

Encoder φ : M ⊂ RD → Rd

z '→ x,

Decoder ψ : N ⊂ Rd → RD

x '→ ẑ.

We decided to specifically employ sparse autoencoders (SAE). They include a L1-norm
penalization so we enforce sparsity in the bottleneck to look for the intrinsic low dimen-
sionality of the latent manifold [Ng et al., 2011]. From the perspective of scientific machine
learning, this can be seen as a way of imposing parsimony—in other words, the simplest
and sufficient representation of the model, like Occam’s razor—to the learned model [Liu
and Tegmark, 2020].

We train the model through the backpropagation of the combination of two losses.
Given Nsnap snapshots introduced in the algorithm, the first loss term Lsae

mse refers to the
reconstruction error between the ground truth and the result of the decoder, evaluated
with the mean squared error (MSE)

Lsae
MSE =

1

Nsnap

Nsnap∑

i=1

(zi − ẑi)
2. (4.1)

The second term of the loss is a regularizer term Lsae
reg to impose the sparsity in the bottle-

Universidadde Zaragoza



Learned simulation as the engine of physical scene understanding 75

neck xi,

Lsae
reg =

Nd∑

i=1

|xi|, (4.2)

where Nd is the dimension of the low dimensional manifold learned by the autoencoder.
The size of the bottleneck is fixed a priori, and the number of non-vanishing entries (i.e.,
the intrinsic dimensionality of data) will be determined without user intervention during
the training period.

The contribution of the regularization is weighted with a coefficient λsae
reg to control its

influence in the training process,

Lsae = Lsae
MSE + λsae

regLsae
reg. (4.3)

Previous to this step, we normalized the dataset through escalation to have values in the
range of (−1, 1). However, we do not build a global autoencoder for the whole dataset,
but five individual SAEs for each group of state variables (position, velocity, internal en-
ergy, and stress tensor separated in normal σ and shear τ components). The goal is to
capture the features of each group with an independent autoencoder. The final bottle-
neck consists of the merge of the individual latent manifolds learned.

4.4.2 Structure-preserving neural networks

In previous chapters, GENERIC was learned as part of an optimization problem to infer the
constitutive manifold of the sloshing to interpolate the dynamical evolution embedded in
this manifold. However, deep neural networks learn the GENERIC evolution of the system
from a different perspective. They learn a nonlinear mapping to the aforementioned con-
stitutive manifold to output the constituents of the formulation to perform the integration
in time.

As in the previous approach, we start from the discretization of the employed formal-
ism and the degeneracy conditions to infer them from data

xn+1 − xn

∆t
= LnDEn + MnDSn, (4.4)

where L, M, DE and DS represent the discretized versions of L, M , ∇E and∇S, respec-
tively, x represent the state vector in the low-dimensional manifold, and the subscript n
refers to time t = n∆t and n+ 1 indicates time t+∆t, respectively.

Structure-preserving neural networks (SPNN) embed GENERIC into a deep neural net-
work to learn the value of the discretized gradients of energy and entropy, which are the
targets of the optimization in the present deep learning approach. Since we learn the con-
stitutive manifold in a reduced representation of the dynamics, L and M are also part of
the optimization. Thus, the proposed architecture unveils L, M, DE and DS from data. The
SPNN consists of fully-connected layers in a feed-forward flow that learns a mapping to the
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Ln

Mn

DEn

DSn

xn+1 = xn+1 +∆t(LnDEn + MnDSn)
...

xn xn+1

Figure 4.4: Scheme of structure-preserving neural networks (SPNN). We introduce
the vector of state variables xn, in the reduced space, into the network to learn
Ln,Mn,DEn,DSn and perform the time integration. The final output is the vector of state
variables xn+1, in the reduced space.

quantities of interest. This learning scheme is constrained by the degeneracy conditions
and the imposition of skew-symmetry and symmetry of L and M respectively.

We provide pairs of snapshots in t and t + ∆t to learn the integrator of the sloshing
dynamics. The input of the neural network is the input state vector in the reduced-order
manifoldxn. The net outputs a solution vector that contains the L, M, and gradients of en-
ergy and entropy associated to xn. Then, we have the elements to integrate the dynamics
in time. The flow of information following is presented in Fig. 4.4.

We guide the training with two losses that we backpropagate through the networks.
We first evaluate the performance of the time integration given the predicted gradients
and matrices comparing the ground truth xn+1 with the solution x̂n+1 with the L2-norm.
This loss is weighted with the hyperparameter λSPNN

MSE to control its influence in the global
loss function of the network. The second loss term penalizes the deviation from the de-
generacy conditions. This is evaluated as a sum of the squared values of the two contri-
butions, related to the energy conservation and entropy production

LSPNN
deg =

1

Nsnap

Nsnap∑

i=1

(LiDSi)
2 + (MiDEi)

2. (4.5)

4.4.3 Recurrent neural networks to recover dynamical information

A challenge in computer vision is the impossibility to evaluate dynamical internal vari-
ables required in physics-informed learning. In the present approach, the latent manifold
of the dynamics is trained from full-field data so that we applied the learning algorithm
in a thermodynamically admissible context for the proposed method. Even considering
complementary devices to support the acquired data, we still do not have direct access
to essential magnitudes in the description, such as the internal energy.

We work from a self-supervised learning perspective to unveil the information not pro-
vided about the dynamical state of the fluid. We propose to extract the dynamic features
that are involved in the evolution of the free surface from the study of its history. For this
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purpose, we suggest the use of a recurrent neural network that correlates the reduced-
order manifold of the dynamics with the partial measurements of the free surface. Recur-
rent neural networks learn from the sequences of information instead of individual snap-
shots. These architectures are commonly present in works of natural language processing,
speech recognition, or economics. Conversely, vanilla recurrent neural applied to more
complex problems usually experience vanishing and exploding gradients [Pascanu et al.,
2013]. As a solution to this problem, the community proposes two next-generation recur-
rent neural networks: Gated Recurrent Units (GRU) [Cho et al., 2014] and Long Short-Term
Memory (LSTM) units [Hochreiter and Schmidhuber, 1997]. They include additional flows
of information, known as gates, that preserve long-term dependencies and avoid learning
short-term features.

GRUs are similar to LSTMs networks, but they lack the forget gate that the latter has.
GRUs are thus simpler structures that involve fewer parameters. However, the perfor-
mance of both is comparable in certain cases. In addition, GRUs have proven to train faster
and more efficiently with smaller datasets and shorter sequences [Chung et al., 2014].

The basic idea behind the GRU architecture is to accumulate information from previous
layers, see Fig. 4.5. The hidden state ht represents a summary of the features identified in
previous sequences. gupdate

t is the output of the update gate. This gate selects which infor-
mation from the hidden state and the input sequence passes to the next step, modeled
with a sigmoid activation function. In contrast, the reset gate rt reflects the past infor-
mation that should be avoided. A new memory cell nt, defined as the reset information,
stores only the relevant information from the past. These layers are defined by the pa-
rameters U and W . The output is the final hidden state ht that accumulates the relevant
information of past states and features learned from the current input sequence:

gupdate
t = σ(xtU

z + ht−1W
z),

rt = σ(xtU
r + ht−1W

r),

nt = tanh(xtU
h + (rtht−1)W

h),

ht = (1− gupdate
t )ht−1 + gupdate

t nt.

The RNN input is a sequence of the vertical and horizontal positions of selected, equally
spaced, points of the free surface. We perform the training of the mapping with the com-
putational data available. We track the particles that belong to the free surface with an
algorithm that compares the height of the particles and their neighbors. Then, we interpo-
late the vertical displacement of selected points of the profile to compare the free surface
of different dynamical states with a uniform mesh. We select 21 points of the free surface
and assemble sequences of these snapshots. The batch of sequences is introduced in the
network to pass through GRU recurrent layers doing a projection from-many-to-one, i.e.,
introducing a sequence to obtain a single vector as output, that corresponds to the latent
space. The output vector of the GRU layers passes through a final forward fully connected
layer with linear activation. The result of this process x̂t must match the latent state vector
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σ σ

tanh
zt

ht−1

ht

Figure 4.5: Representation of a GRU cell. The three main paths indicated represent the
update and reset gates, the new memory cell, and their connection to update the new
hidden state transmitted to the next later.

corresponding to the last snapshot xt of the given sequence. The loss LGRU
mse evaluates the

MSE between the predicted latent state and the ground truth,

LGRU
MSE =

1

Nsnap

Nsnap∑

i=1

(xi − x̂i)
2. (4.6)

4.5 Computational training and validation

We split the computational dataset of glycerine, composed of 1600 snapshots, into two
subsets: 80% of the snapshots are employed for training and the remaining 20% for test-
ing. As a reminder, we have four sloshing simulations of 2 seconds discretized in time in-
crements set to 0.005 seconds. This time increment is the one defined for the integration
algorithm. We use the same train and test datasets for the three networks developed.

The results from one training are transferred to the next training. Finally, the networks
are assembled to build the simulation loop of the dynamics from the partial measure-
ments of the liquid, to the output of the next state of the fluid including the reconstructed
fluid and the velocities, stress, and energy fields.

4.5.1 Hyperparameters and training details

Each input vector includes the position, velocity, internal energy, and stresses (shear and
normal) evaluated of each particle of the SPH discretization. Each particle has a label, and
the state vector is assembled according to this order. The fluid consists of 2134 particles.
As a result, the full dimensionality of the state vector is 27742.

Each of the five SAEs (one for each variable group) is initialized following the Kaiming
method. In this approach, the weight initialization follows a Gaussian, and biases of the
network are set to zero [He et al., 2015]. Encoder and decoder have symmetric structures,
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lr wd λsae

Position (q) 10−4 10−6 10−3

Velocity(v) 10−4 10−5 10−3

Internal energy (e) 10−4 10−5 10−4

Normal stress (σ) 10−4 10−5 5 · 10−3

Shear stress (τ ) 10−3 10−6 5 · 10−3

Table 4.1: Training parameters for each SAE.

and we apply in both ReLU activation for the hidden layers, a linear activation of the in-
put and output layers. We use Adam optimizer, and update the learning rate at 1000 and
3000 epochs of training. The hyperparameters (learning rate lr, number and size of lay-
ers, weight decay wd and sparse weights λsae) are defined independently for each group
of state variables provided its complexity and proper features. Learning rates and weight
decays selected are displayed in Table 4.1. We set low learning rates due to the complexity
of the patterns of the state variables:

• Position: Input size is D = 6402 and output size d = 20. It is composed by Nh = 2

hidden layers of size 120.

• Velocity: Given the complexity of the velocity, we built a net of input size D = 6402,
output size d = 20, Nh = 4 hidden layers, and hidden size 200.

• Internal energy: In the case of energy, input size isD = 2134, output size d = 10, and
there are Nh = 3 hidden layers which consist of 40 neurons each.

• Normal stress: The normal stress tensor components are identical. Thus, the input
shape of the net is D = 2134, the output shape is d = 20, and it is composed of
Nh = 3 hidden layers of 200 neurons.

• Shear stress: This net had input size D = 6402, Nh = 3 hidden layers of 200 neurons,
and output size d = 20.

We train for 10000 epochs. At this point, all the autoencoders converge to an optimal
result. The dimensionality of each bottleneck is truncated by the sparsity imposed. The
final dimensionality of the latent spaces of each autoencoder is: dposition = 3, dvelocity = 3,
denergy = 2, dσ = 3 and dτ = 2. We merge the bottleneck of each reduced-order manifold,
which results in a global manifold of dlatent space = 13 dimensions. This result is the input of
the learned simulator and the output of the recurrent neural network in the meta-learning
approach proposed. From this result, the SPNN and the RNN are trained simultaneously.

The SPNN is defined to output a vector including information of L and M and gradi-
ents of energy and entropy corresponding to the current latent vector of the dynam-
ics. Providing that L and M are skew-symmetric and symmetric, respectively, we only
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learn the upper elements of the main diagonal. Thus, instead of learning the full ma-
trices of dimension d × d, we learn d · (d − 1)/2 elements for L and d · (d + 1)/2 ele-
ments for M. Therefore, considering that the gradients have size d, the final output size is
dout = d · (d − 1)/2 + d · (d + 1)/2 + d + d = 195. Working in a low-dimensional space
is expected to favor the convergence of the network. However, the dynamical evolution
is still complex. Consequently, the SPNN consists of Nh = 13 hidden layers, whose size is
set to 195. Kaiming is the initialization method of the network, and we apply linear acti-
vation and ReLU activations to the output and hidden layers respectively. We define the
learning rate and weight decay as lr = 10−3, wd = 10−5. We employ Adam optimizer
for training the network, and the learning rate is updated at epochs 1500, 2400, and 4000.
The reconstruction MSE loss is weighted by a factor λspnnmse = 103 to prioritize the accuracy
of the reconstruction in the backpropagation. The train finishes after 5000 epochs. At this
point training and test losses are 3.2 · 10−3 and 1.42 · 10−2, respectively.

Although the time step of the discretization of the simulation is 0.005 seconds, the cam-
era acquires data at 60 Hz, which is approximately 0.015 seconds. We decide to assemble
the sequences and train the GRU according to this restriction for ease of coupling the al-
gorithm with the real replica. The GRU consists of three recurrent layers of this type, of
26 neurons with ReLU activation, and a final fully connected layer, with linear activation,
to accomplish the many-to-one scheme. We employ Adam optimizer and learning rate
and weight decay are set to lr = 10−3, wd = 10−5. The learning rate is updated by a
scheduler at 1000 and 3000 epochs. After testing with different sequences lengths, 16 was
found to be the minimum number of snapshots required to find a mapping between the
evaluations of the free surface and the low dimensional space.

4.5.2 Computational validation

The network is assembled after training and validated by providing a single input se-
quence from the dataset of glass velocity v = 0.2m/s to trigger the slosh. The information
is mapped to the low dimensional manifold to perform the time integration of the dynam-
ics and output the reconstruction of the fluid and quantities of interest until we reach the
steady state of the simulation. We could provide a sequence of data at each new time of
the discretization. However, we test the stability and capacity of continuing the time inte-
gration if no more information is provided (due to occlusion, connection problems, ... for
instance) by considering only that first snapshot.

Table 4.2 shows the MSE of the autoencoder proposed to reconstruct each group of
state variables. These results have been compared with those obtained with POD [Ly and
Tran, 2001] taking 10 modes, and k-PCA with 4 modes [Schölkopf et al., 1998]. Modes are
selected concerning the evolution of the eigenvalues obtained from each method. The
AE achieves the same or improved levels of accuracy as POD and k-PCA. Fig. 4.6 plots the
simulation results in the reduced-order space. The initial state has been projected to the
latent manifold to emulate the evolution of its behavior. Fig. 4.7 plots the time evolution
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Figure 4.6: Simulation results. Learning of the dynamics in the latent manifold. Dashed
lines represent the time evolution of the latents that aimed to be emulated. Lines in blue
represent the result of the SPNN in the latent manifold.

of some state variables in the high-dimensional space for 21 randomly selected particles.
Finally, Fig. 4.8 shows the comparison between the ground truth and the projection of the
results to the high order manifold in three steps. This figure also includes the RMSE error
of the reconstruction of each snapshot and the Hausdorff distance between the ground
truth and the result. The Hausdorff distance (HD) evaluates the closeness of two sets by
analyzing the largest distance between one set of points to another [Huttenlocher et al.,
1993]. If the HD is low, it resembles a high degree of similarity

HD = max
{

sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)

}
,

being X and Y the two sets to be compared. In this context, the HD evaluates how well
the shape of the result matches the shape of ground truth to have an indicator of the
accuracy in the reconstruction. Thus, it compares the maximum (sup) distance from the
ground truth to the output supx∈X d(x, Y ), and vice versa supy∈Y d(y,X). Of these two
distances, the maximum is the HD of the mismatch. After analyzing the results obtained
in the computational phase, we decide to test the loop in a real scenario for the recon-
struction of real fluids.

4.6 Coupling with the real liquid twin
Given the results obtained from the computational validation, the simulation loop is im-
plemented to be coupled with the real entities of the liquids. The data acquired by the
RGB-D camera is assembled into sequences to initiate the simulation of the time evolu-
tion of the liquid. As a result, we output the reconstruction of the fluid and the velocity,
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Figure 4.7: Time evolution of selected state variables evaluated at 21 random particles.
The graph shows a comparison between the simulated fields with the ground truth for
the validation simulation of the algorithm.

Error AE Error POD Error kPCA

q 0.149 · 10−4 0.257 · 10−4 0.141 · 10−4

v 4.1 · 10−4 19 · 10−4 6.25 · 10−4

e 0.472 · 10−4 0.64 · 10−4 0.342 · 10−4

σ 5.1 · 10−4 20 · 10−4 3.371 · 10−4

τ 0.798 · 10−4 19 · 10−4 3.36 · 10−4

Table 4.2: Loss comparison among SAE, kPCA and POD.

stress, and energy fields that cannot be measured with the camera, adding information to
the user of a manipulation system.
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Figure 4.8: Comparison of the reconstruction of the integration provided by the SPNN
(right) with the ground truth (left). The selected snapshots correspond to peaks of the
sloshing dynamics of glycerine. Specifically, we present the comparison for snapshots 1,
33, and 64 of the collection. The height of the cup is 7 cm, and it is filled up to 5.6 cm
approximately.

4.6.1 Computer vision

The first step is to develop a computer vision strategy that tracks the free surface
and reconstructs the position of those points from pixel to real-world coordinates. In
this case, we use the camera RealSense D415 (https://www.intelrealsense.com/
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depth-camera-d415/), which also provides the extrinsic and intrinsic parameters. The
camera outputs the depth field of the scene and the projection to 3D is straightforward.
Nevertheless, the camera does not provide good enough measurements of the position
of the cup and the liquid. Measurements related to transparent objects are often invalid
or noisy since their surfaces are not Lambertian, which is the main assumption of the mea-
surement algorithm incorporated in the stereo camera. In other words, instead of reflect-
ing light evenly in all directions, they also refract light, resulting in unmeasurable condi-
tions for the technique defined.

The camera provides depth estimation of the detected point cloud. The theoretical
limitation in depth estimation of the camera at the operation distance is given by the fol-
lowing correlation for the resolution measurement (RMS) error:

RMS(mm) =
Distance(mm2) × subpixel

Focal Lenght (pixels)× baseline(mm)
,

Focal Length(pixels) =
1

2

Resolution(pixels)
tan HFOV

2

,

where HFOV is the horizontal field of view. The majority of these parameters are given
by the camera specifications, and the calculation of these parameters allows to evaluate
the precision in the depth estimation. In well-textured targets, the theoretical error can
be RMS < 1 mm. However, liquids and no texture scenes pose a problem for estimation
that requires fine-tuning of the camera parameters.

Our approach consists in applying some filters to enhance depth streaming. Firstly, we
apply a decimation filter to reduce the complexity of the measurements to foster stabil-
ity. Then, the frame is mapped to a disparity map where the spatial filter, to preserve the
edges, and the temporal filter, to promote data persistency, are applied. This result is pro-
jected back to the depth map where the hole-filling filter is finally applied. The filtered
depth map outputs a full depth field from which we can evaluate the position of the fea-
tures of the glass and the free surface (see Fig. 4.9). This procedure is fully detailed in the
camera web documentation1.

Once we have a continuous depth field, we detect and track the free surface. We con-
vert the color image of the camera to black and white. Under appropriate fine-tuning of
the conversion, the free surface can be detected as a gradient from black to white, as seen
in Fig. 4.10. We alleviate the searching time of the gradient by defining an area for per-
forming this analysis where the free surface is likely to be. The points of the free surface are
detected, tracked, projected from frame coordinates to 3D, and stored for the metamodel.

4.6.2 Results

The video stream for validation consists of 800 frames, which is a recording of 12 seconds.
1https://dev.intelrealsense.com/docs/depth-post-processing
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Figure 4.9: Color and depth stream before (up) and after (down) applying filters to recon-
struct the depth map

Figure 4.10: Representation of the color frame and its conversion to a binarized image to
seek the free surface. The area defined for searching is represented in the color frame as
well as the points of the free surface detected in the black and white image.
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Figure 4.11: Results for a 12 seconds video of a glass of glycerine. Eight snapshots of the
sloshing sequence were selected for comparison. The selected snapshots have indexes
560, 565, 568, 572, 578 from left to right. The second row corresponds to the fluid recon-
struction and prediction provided in the previous snapshot. From rows three to ten we
show the additional information obtained from the reconstruction and simulation (veloc-
ity, energy, and stress fields, respectively).
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Figure 4.12: Detail of the comparison of glycerine (left) and water (right) with the predic-
tion. The third column of both liquids compares the predicted fluid volume (in blue), the
free surface of the liquid volume (green) and the target free surface (in red). The RMSE and
the Hausdorff distance (HD) that correspond to each snapshot are indicated.

Fig. 4.11 shows the results of the algorithm compared to the real video streaming. We
perform the reconstruction and integration over the whole sequence, i.e. no cuts were
applied to the streaming and the method is applied continuously. We apply the three
steps (RNN projection, integration, and decoding) over the full video in 3.42 seconds on
an ordinary laptop (Macbook Pro 2013-3 GHz Intel Core i7), achieving (much more than)
the real-time performance proposed. Some snapshots of the sloshing were selected and
plotted in the first row of Fig. 4.12. The snapshots shown represent the peaks, which
are the most critical states in manipulation, and some intermediate states between the
peaks. The rest of the pictures correspond to the augmented information obtained with
this method, which has been possible thanks to the physics-aware simulation framework.

All results of the integration are stable, realistic, and close to the real result. We analyze
objectively the results by evaluating the root mean squared error (RMSE) between the
real y and the predicted ŷ free surfaces in n snapshots of the video streaming. Ultimately,
we feed the algorithm with the free surface in t (from the video), and we compare the
integration result (t+ 1) with the free surface in t+ 1 (from the video),

RMSE =

√√√√ 1

n

n∑

t=1

(ŷt − yt)2.

The evolution of the error along the video is represented in Fig. 4.13. The error remains
under 5 mm in the whole sequence of the length of the video and stays lower than 3 mm
in the vast majority of it. We also evaluate the HD between the free surface that comes
from the camera and the simulation. These results reflect the closeness between the free
surfaces, for which there is not a larger deviation than 4− 5 mm, even in the higher peaks
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of the sloshing. In some cases, higher deviations in the HD come from distortions in the
detection of the free surface (like in the first snapshot of water presented).

Figure 4.13: Evolution of the mean squared error during the perception process of slosh-
ing in a glass of glycerine.

Fig. 4.14 showcases finally the compliance of the principles of thermodynamics in the
predictions. The time derivative of energy makes little oscillations due to the numerical
approximation around zero, which means that we ensure the conservation of energy. In
addition, the time derivative of entropy remains always positive, fulfilling its production.

4.7 Conclusions
This theory opens another challenge: the smart data paradigm. We can see an oppor-
tunity in the abundance of data nowadays. We have information available from cutting-
edge sensors and data acquisition systems located in any possible location. Conversely,
the data required is not always accessible. In addition, gathering all the data required to
build a sufficiently general and trustable system would be unaffordable. Physics knowl-
edge and manifold learning are claimed as powerful solutions on this matter. Introducing
physics priors as learning biases in machine learning has been a turning point for effi-
ciently learning new models. Among the strategies to be followed, thermodynamics is
presented as an appealing bias to adapt to different dynamical cases, including those that
go beyond equilibrium.
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Figure 4.14: Time derivatives of energy and entropy along the video. The time derivative
of energy oscillates around zero, ensuring energy conservation. Entropy production is also
ensured since the time derivative is always positive.
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Chapter 5

Perceiving and reasoning
about previously unseen
scenarios

In this chapter, we propose a physics-informed reinforcement learning strategy for fluid
perception and reasoning from observations. Starting from full-field and high-resolution
synthetic data for a particular fluid, we develop a method for the tracking (perception)
and analysis (reasoning) of any previously unseen liquid whose free surface is observed
with a commodity camera. This approach demonstrates the importance of physics and
knowledge not only in data-driven (grey box) modeling but also in the correction for real
physics adaptation in small data regimes with partial observations of the dynamics. The
method here presented is extensible to other domains for the development of cognitive
digital twins, able to learn from observation of phenomena for which they have not been
trained explicitly.

The work presented in this section can be consulted in:

• Moya, B., Badías, A., González, D., Chinesta, F., & Cueto, E. (2022). Physics-informed
Reinforcement Learning for Perception and Reasoning about Fluids. arXiv preprint
arXiv:2203.05775.

5.1 Introduction

We have developed a system for physical scene understanding based on simulation with
neural networks to establish a connection with the real fluid with measurements of the
free surface. Now, we consider the case where the twin encounters a new fluid that has
not been considered in the training database.

Despite the great advances achieved in the field of artificial intelligence, and particu-
larly in the branch of physics perception, solutions are still designed for specific problems
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and restricted environments. However, there is still scope for the development of high-
level reasoning skills for a machine to be able to adapt to new situations. For instance,
considering this hypothesis, a machine would be capable of perceiving and reasoning
about a new complex system with some knowledge previously acquired.

A first approach would suggest assembling narrow artificial intelligence instances that
focus on little tasks. By combining them, a machine could be able to perform a wider range
of actions to solve general problems. Nevertheless, a more natural approach consists in,
given some piece of information, adapting to new environments and situations from the
maximization of a reward that leads to the desired objective.

Reinforcement learning (RL) is the branch of artificial intelligence that focuses on learn-
ing from the machine-environment interaction. The main idea is to establish a correlation
between states, such as the dynamical state of an element in the environment of the state
of the agent itself, and actions that lead to the achievement of a certain goal. This map-
ping between the states and the action is learned as an optimization problem where we
seek the maximum reward for a series of decisions. For this reason, reinforcement learning
is considered a goal-oriented algorithm.

Model-based reinforcement learning relies on models of the physical world when the
collection of data is difficult, or the required information is inaccessible [Wang et al., 2019a]
[Ke et al., 2019]. This information is thus completed by a model that recreates the percep-
tion of real physics to make decisions about future events. Given the high complexity of
the physics involved in real events, RL optimization usually relies on data-inspired model-
ing techniques of the dynamics to achieve high adaptivity and perform the optimization
of the model and control policies all at once. Works include examples based on linear re-
gression [Parr et al., 2008], the use of diverse neural networks [Hester and Stone, 2012] [Oh
et al., 2015] and Gaussian processes [Deisenroth et al., 2013]. Conversely, current pro-
posals introduce physics-informed machine learning into the model’s inference [Liu and
Wang, 2021].

Although physics-informed simulators reach higher generalization than unconstrained
models, there are still difficulties to match the model outputs with an evolving real physi-
cal environment [Atkeson and Schaal, 1997]. For this reason, the learned simulator can be
formulated as a reinforcement learning optimization problem to adapt to new scenarios
through continuous observation. In addition, the imposition of inductive biases could be
found advantageous in the correction process to reduce error bounds and adapt to new
scenarios more efficiently [González et al., 2019a]. Examples of model discovery with re-
inforcement learning include the Burger’s equation as a common benchmark [Benosman
et al., 2021] [Bassenne and Lozano-Durán, 2019] [Wang et al., 2019b], or the Kuramoto-
Sivashinsky equation [Bucci et al., 2019]. In this context, this strategy also targets turbu-
lence and flow control problems, where the object of the optimization is also the physics
simulator [Rabault and Kuhnle, 2019] [Ren et al., 2021] [Verma et al., 2018] [Garnier et al.,
2021] [Novati et al., 2021].
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In this chapter, we develop a method for tracking of the free surface and perception of
the fluid and reasoning (providing the user with full-field information—velocity, stress,...)
about the physical state of a sloshing fluid. While previous works employ simulation as
the engine of physical scene understanding (see [Allen et al., 2020] or [Battaglia et al.,
2013], for instance), thus needing previous knowledge of the physics of the scene and
a pre-defined simulator, our method constructs the learned simulator on the fly. This
learned simulator is built by resorting initially to synthetic full-field data, possibly coming
from different fluids as described in Fig. 5.1. It then makes use of reinforcement learning
in a thermodynamics-informed setting to correct systematic deviations of the observed
reality from its predictions. Our approach ensures the compliance to first principles—
conservation of energy, non-negative entropy production—of the resulting simulations,
even if they are constructed from partial observations of the reality (in our case, the ob-
servation of the free surface of the fluid).

This intention is strongly aligned with that of hybrid twins [Chinesta et al., 2018]. If
digital twins gap the frontier of simulation and reality to connect the machine and the
real-world, hybrid twins lead to the self-correction of the inner model to optimize the ac-
curacy of the solution in new scenarios that the user does not control. Both reinforcement
learning and hybrid twins arise in response to the need for a smart data paradigm: profit
data to overcome adaptation based on acquired knowledge to promote healthy use of
data.

The development of this method revolves around the convergence of the aforemen-
tioned reinforcement learning strategy and transfer learning [Taylor and Stone, 2009].
Along the same lines of reinforcement learning, transfer learning profits from a model al-
ready learned to apply the gained knowledge to new tasks. This technique has also been
considered in the a-posteriori correction of models such as manifold learning in reduce or-
der modeling of fluids [Mohebujjaman et al., 2019] and dynamical optimization [Laroche
and Barlier, 2017] [Goswami et al., 2020] [Guastoni et al., 2021].

The success of the proposed method is conditioned by the characteristics of the dy-
namics learned in the source model. If the features are sufficiently general, and the algo-
rithm has correctly captured the patterns of the fluid dynamics, the reinforcement learning
scheme will smoothly transition to the new perceived liquid. Therefore, this method relies
on the capacity of GENERIC as an inductive bias algorithm to learn the major insights in
data, regardless of the amount or the level of description of the data provided.

5.2 Method
In this section, the basic concepts of reinforcement learning and its application in model
discovery are introduced for a correct understanding of the method proposed. A more
detailed description of the method and different typologies can be found in [Sutton and
Barto, 2018]. RL is described as a Markov Decision Process problem, and optimization
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Figure 5.1: Original simulation engine trained for one liquid. It will be the starting point
for the reinforcement learning algorithm.
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focuses on learning explicitly a correlation between the actions and the states. This is
known as a policy-based method.

5.2.1 Reinforcement learning background

Reinforcement learning is composed of certain elements that define the interaction and
learning scheme of this approach. An agent, in this case, a computer, plans how to reach
a goal in a potentially complex environment by learning to make sequences of decisions.
The environment can be understood as a real scenario or a computationally recreated en-
vironment.

The reinforcement learning formulation is inherited from Markov Decision Processes,
which proposes a modeling framework for some decisions to be made, where the evolu-
tion of the control object is conditioned by the actions of the user. Given the state s of a
process at a specific time, the user or agent may choose an action a concerning the state
of the process. The next step in the process state sn+1 depends on the previous state and
the action chosen, but not on previous states and actions to s and a. This condition sat-
isfies the Markov property. The optimization is performed based on a series of states and
decisions:

τ = (s1,a1, s2,a2, ...., sn,an).

S stands for the state space and A is the action space of the process. r is the reward ob-
tained from the transition from sn to sn+1 given the action a. The reward will prize the ac-
tions that result in better decisions to reach an objective. In classical reinforcement learn-
ing, we distinguish two main parts: the agent’s policy and the reward function. The policy
π(s,a) is the cause-effect relationship required to learn the control system, while the goal
of the reward function is to, as a whole, retrieve the actions that result in more promising
solutions driving towards the state to the system in the following time step sn+1. The goal
is thus to find a correlation, or policy π, that reflects the interaction between the states
and the actions. This loop is represented in Fig. 5.2.

In reinforcement learning, the transition probability P and total reward R are not
known, and the agent must infer from the interaction the appropriate series of decisions
based on an optimization theory. For the proposed case, the method employed is policy-
based. In this framework, we develop an explicit correlation or mapping from the current
state for the action to be taken. For this purpose, we formulate an objective function from
the expected rewards of the decisions taken:

J(θ) = E
τ∼πθ

[R(τ )],

where θ are the policy parameters that are optimized in the reinforcement learning algo-
rithm:

θ = arg max
θ

E[R(τ )].
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Figure 5.2: Reinforcement learning scheme. Given the partial observation of the free sur-
facezn at time t = n×∆tour method estimates the full state of the fluid ŝn+1. Its similarity
with the next state sn+1 is evaluated to update the model. To preserve the patterns pre-
viously learnt, only a few layers are activated (in yellow) for backpropagation of the error
and correction of the model.

5.2.2 Model adaptation from observation

The realization of this work requires the formulation of the proposed problem in the re-
inforcement learning framework. The methodology is applied to model discovery. Thus,
the agent is the computer, or more precisely, the algorithm that we train, to learn a cor-
rect perception and reasoning model of the sloshing dynamics. The interaction with the
medium is achieved by coupling the algorithm with a computer vision system that feeds
it with observations. The goal of reinforcement learning is the optimization of the policy
that correlates the state of the fluid with the actions. In this specific case, the states are
the representation of the dynamics, and the actions of the model, or more precisely, the
GENERIC parameters, that enable an accurate time integration of the slosh.

The sloshing dynamics is the real event of the environment we are interested in. It is
described by its dynamical state sn ∈ S , where S represents the state space where the
dynamics are embedded. Nevertheless, we only have access to a partial observation of
that statezn ∈ S , which is the profile of the free surface. Those measurements are a partial
subset of sn. The free surface is detected and tracked with computer vision techniques
that recreate the interaction with the environment.

The slosh then goes to the next state st+1. The actions a will lead to the prediction
of the new state of the fluid. Specifically, the action refers to the proposal of the correct
Ln,Mn,DEn,DSn considering the current state of the dynamics. The policy π(a|s) is the
most convenient learned correlation to output accurate results that globally reward the
reconstruction of the free surface from a recording of the slosh. The optimization is per-
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formed based on the parameters θ of the neural network.
The free surface is the object of study of liquid motion and, at the same time, the in-

formation available from the video recording of the real fluid. For this reason, the reward
is formulated to guarantee its accurate reconstruction. The accuracy of the results is eval-
uated employing an L2-norm. Since the dynamical insights of data, as well as the phys-
ical consistency, must be preserved during the correction, the reward includes a second
term that penalizes the unfulfillment of the degeneracy conditions. The reconstruction
is prioritized in the reward by including a weight factor in it, converting the degeneracy
conditions into a soft constraint:

rπ = λ
1

N

∑

N

‖zn − ẑn‖2 +
1

N

∑

N

‖LnDSn‖2 + ‖MnDEn‖2 .

We perform reinforcement learning as detailed in Algorithm 1. Each liquid has a dataset
of N sequences available for training. We have a database of snapshots that we have
assembled into N sequences for the RNN, which are associated to N snapshots of the
state of the liquid. This information is used for updating the behavior policy. The process
is repeated as many times as necessary to improve the accuracy and achieve convergence.

Algorithm 1 General Reinforcement learning pseudocode
Require: Free surface information zn ∈ Z as a subset of the full dynamical state sn ∈ S,

and the source model as initial behavior policy πθ
Ensure: Next dynamical states in time sn+1

for Iterations until convergence do
for n=1 to N sequences do

Encoder xn ← φ(zn);
Compute forward propagation and determine action an ← πθ(xn), being an the

tuple an = [Ln,Mn,DEn,DSn];
Determine next integration step x̂n+1 ← ∆t(LnDEn + MnDSn) + xn;
Decoder ŝn+1 ← ψ(x̂n+1);

end for
Compute reward rπ ;
Backward propagation and update RL policy πθ;

end for
return RL optimized policy πθ

In the reinforcement learning loop, we collect and provide data coming from observa-
tions to output the actions awith which we perform the time integration of the dynamics.
The results are used to compute the reward that optimizes the network. Back-propagation
is only applied to a selection of layers of the network of the source model. We not only
alleviate the computational cost of the training but also ensure the preservation of the dy-
namical insights already learned in the source model to overcome the limitations of partial
observations and low data regimes.
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5.3 Results

5.3.1 Computational validation

The final goal is to develop the proposed methodology for real scenarios. However, we
first test the method in a virtual environment with data coming from computational sim-
ulations. With this type of data, we will profit from precise error measurements to perform
an initial evaluation of the scope of the method. The algorithm must correct the off-line
trained source model for glycerine to adapt to new liquids with different properties and
sloshing behaviors. The chosen liquids show different behaviors and rheology from higher
to lower viscosity and density. Specifically, the three liquids selected are water, blood, and
butter.

Training

The employ of pseudo-experimental data coming from simulations allows us to compute
precise error measurements on the different adaptation strategies and their effect on di-
verse quantities of interest. Given a learned simulator trained off-line for glycerine data,
we first apply the RL methodology to learn three different liquids presenting rather di-
verse behaviors: water and butter as Newtonian fluids, and blood, simulated as a non-
Newtonian liquid. We employ synthetic data consisting in snapshots taken from four sim-
ulations for each liquid performed under different velocity conditions to trigger diverse
sloshing results. From this information, we prepare the dataset with sequences of the po-
sitions of the particles that belong to the free surface. I.e., we track the free-surface parti-
cles, take their position, and prepare sequences of 16 snapshots for each time step∆t (the
time instant of interest and the 15previous states of the free surface). The length of 16was
found to be the minimum length of the sequences to find an embedding of the free sur-
face measurements on each fluid’s latent manifold, already computed off-line. The dataset
of water has 750 snapshots in total, and butter and blood, 480. Synthetic data is available
at a sampling frequency of 200 Hz, which stands for a time step of ∆t = 0.005 seconds.
Therefore, the source model was built for this availability of data and time step. Neverthe-
less, the snapshots are sampled at every frequency of 60 Hz, or equivalently ∆t = 0.015

seconds, which matches the performance frequency of the commodity camera that will
be employed in the real scenario. Hence, the change in the time step has also an effect on
the model that should be corrected. The sequences of the dataset are randomly split into
two subsets: 80% for training and 20% for testing.

We carry out the RL correction in the integration scheme and the embedding onto a
lower-dimensional manifold. The correction is accomplished by activating the backprop-
agation in the last layer of the GRU network, and the 4 last layers, out of 13, of the SPNN.
Since those are precedent layers of the decoder, and we train the network as a whole, we

Universidadde Zaragoza



Learned simulation as the engine of physical scene understanding 99

achieve the desired reconstruction with no need of altering the final structure of the net-
work. The adaptation converges after 2000 epochs, at a small learning rate lr = 0.0005

and weight decay wd = 0.00001. We choose Adam optimizer [Kingma and Ba, 2014].
The reconstruction is weighted by a factor λ = 2000. Fig.5.3 shows the transition from the
original manifold, trained off-line, to the new latent space that fits the emulated dynamics.
Since the liquids bear a resemblance with the original liquid, glycerine, their manifolds do
not show drastic changes in their structure compared to the initial solution. This fact also
highlights the generality of the patterns of the dynamics learned in the source glycerine
simulator.

Results

The proposed algorithm has achieved the desired correction of the liquids in the virtual
environment. Fig 5.3 displays the changes in the low dimensional manifold where the dy-
namics are embedded. Since the liquids bear resemblance with glycerine, the liquid em-
ployed in the source model, the new manifolds do not show abrupt changes compared to
the manifold that would be obtained with the source encoder. This result also emphasizes
the generalization achieved in the source model through the patterns learned.

The main objectives to achieve in the adaptation are the improvement of the recon-
struction of the free surface, included in the reward function, and the reconstruction of
the maximum height, in particular for control systems that seek sloshing-free solutions.
The coordinate system to fix the height reference is placed at the bottom of the vessel.
Hence, the relative error is computed around this reference. We detect the points of the
free surface to interpolate the profile of the free surface divided into equally spaced con-
trol points to calculate the error:

error =
1

N

√√√√
N∑

n=1

z2
n − ẑ2

n

z2
n

,

N being the number of samples of the dataset, and zn and ẑn the ground truth and sim-
ulated free surfaces respectively. This error is displayed in Fig. 5.4. We appreciate an im-
provement in the reconstruction error of the free surface that showcases the performance
of the corrected network. We present the reconstruction error for each liquid consider-
ing the full dataset. In other work, we evaluate the reconstruction for the snapshots of
the training and test subsets together. We can distinguish the four simulations of each
database in the graphs. The higher error occurs in the peaks of the slosh, where the de-
formation of the profile is more pronounced. However, the error remains in low ranges.

Water is less viscous than glycerine, and thus its slosh is higher and out of the ranges
of the source model database. For this case, the maximum error drops from up to 12% to
4− 6%, remaining at an average of no more than 3%. The reconstruction error for butter
is reduced from 6% to less than 2%. Finally, the algorithm adapts to the non-Newtonian
description considered for blood, where the maximum relative error goes from7% to3.5%.
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Figure 5.3: Representation of the correction of the latent manifold of the position. The
latent representation evolves to match the features of the new liquid.
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Some small errors come from the interpolation of the free surface profile. We employ
a meshless method and, despite the resemblance of the reconstruction, the differences
between the ground truth and simulation particle distributions result in slightly different
interpolated free surfaces. This could be improved by smoothing out the profile, consid-
ering a different interpolation method, or a finer selection of points. However, given the
current real resemblance and low errors, we do not consider the application of these tech-
niques.

The maximum height of the free surface is one of the objects of study of sloshing free
control problems. For this reason, we also analyze the performance of the correction by
evaluating the similarity of the sloshing peaks with the maximum height of the points
of the free surface between the simulation and the ground truth. The graph has been
augmented to properly appreciate the reconstruction of the highest point during the dy-
namics while preserving as much as possible the length scale without distortion. The am-
plitude of the slosh before correction seems dimmer than the ground truth. Conversely,
the correction replicates the real, and higher, amplitude, as well as the time occurrence.
Before the correction was applied, some peaks appeared delayed or did not appear at all.

Fig 5.5 shows a qualitative representation of the results obtained. This demonstrates
that, after applying reinforcement learning, we maintain the shape of the fluid volume
and it can be recognized as a liquid. In the correction, we could risk the shape of the fluid
by imposing hard conditions in the reward. However, the whole fluid volume adapts to
the new free surface.

5.3.2 Testing in real scenarios

The ultimate goal of the present work is the adaptation and recreation of the dynamics of
real liquids. In this real-life environment, the algorithm has to learn models to mimic pre-
viously unseen liquids of different characteristics, properties, and thus dynamics, whose
behavior is reflected in different amplitude and frequencies of slosh. Information comes
in form of images from the video recordings. These images were employed to detect and
track the free surface of real fluids employing computer vision to perform the correction
and posterior validation of the method. Data is acquired with depth evaluation of the
points of the free surface, which are detected from the black-white gradient in binary im-
ages, see Fig.5.6.

This problem showcases various challenges such as errors in depth estimation, the dif-
ficulty to detect and track the free surface, the complexity of real liquids to capture all the
dynamical features from the recorded videos, and user actuation. The last statement refers
to the direction of the movement of the liquid. In this work, we limit the experiment to a
plane movement in two possible directions (move the glass to the left or the right), but we
can experience slight deviations in the actuation. We impose this restriction to bound the
problem to a case where we can evaluate properly the free surface from a fixed position
of the camera with the detection method employed.
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Information about the free surface is acquired unevenly. As represented in Fig. 5.7, we
perform interpolation of the given data to have information of the free surface at equally
spaced points.

Training

We evaluate four real liquids to evaluate the scope of the method, presenting different
properties and behaviors. We have considered water, honey, beer, and gazpacho (a typi-
cal Spanish cold soup made of tomato). These are daily liquids that can be found in an or-
dinary routine, and thus their importance. Although water properties are widely known,
the other three liquids are subjected to the production process and small variations in
their composition result in slightly different dynamics. In addition, the changing environ-
mental conditions can affect their properties. The liquids are contained in the same glass
presented in previous sections, and it is filled to the same level approximately. The geo-
metric changes of the liquid are not considered in this application.

We perform two recordings per liquid. One is used for training, in which only 80% of its
snapshots are used for this purpose, and to avoid overfitting. The second recording is used
for validation of the learned correction. Reinforcement learning is applied individually. For
each liquid, we initialize the algorithm by transferring the information of the source model
and start the correction with new observations.

Similar to the previous computational case presented, we apply transfer learning by de-
activating back-propagation in the model to only allow it in selected layers of the model.
We activate the last layer of the GRU network and 5 layers at the end of the SPNN to per-
form the correction. Here we had to activate one more layer in the SPNN to achieve suffi-
cient adaptation and reduction of the error. This problem, due to its increased complexity,
required more flexibility. On the other hand, we still had to ensure the preservation of the
features of the dynamics learned previously. We complement the design of the method-
ology with a small learning rate, lr = 0.0001 , and weight decay wd = 0.00001. The
reconstruction contribution in the reward is weighted by a factor λ equal to 2000. Like in
previous pieces of training in this dissertation, the optimizer employed is Adam.

Results

Fig. 5.8 showcases the results of the correction in training and test recordings of the four
liquids. The four exhibit an improvement in the sloshing reconstruction compared to the
performance of the source model before correction. In addition, the temporal integration
with data from the test datasets presents a noteworthy performance considering that this
information is new to the network. The training recordings are shorter than 10 seconds,
and only three or four sloshes are captured in these datasets. However, the new model
learns the new target behavior. Even though we work in a low-data regime to perform
the correction of complex liquids, the method successfully reproduces the training and
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Figure 5.5: Reconstruction before and after correction of water, blood and butter.
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Figure 5.6: Representation of surface tracking. Each color frame is converted to a binary
frame where the surface is detected (shown in red in the correspondent color frame). The
depth map is built upon these points. For transparent liquids, like the glass of water shown
in the picture, the depth map is of lower quality resulting in an incomplete detection of
the surface.

Figure 5.7: Representation of the interpolation method for data acquisition. Given some
detected points from the free surface, we interpolate the height at equally spaced loca-
tions to describe the free surface in an homogeneous reference to facilitate comparison
and learning.
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test benchmarks. These results are obtained because of the inductive biases learned and
preserved in the algorithm, leading to an efficient correction from limited data and partial
measurements, in this case only considering the free surface for the reconstruction. Water
and gazpacho present slightly higher errors than the other liquids in the test dataset. This
is probably due to the difficulties experienced in the data acquisition and the noise of the
samples in the experiment. Additionally, water has higher slosh frequencies and longer
slosh time. Therefore, more varied sloshes would be needed to reduce the error, still be-
ing a low-data regime. Despite this, the method already performs the adaptation over
train and test information correctly. Fig. 5.9 represents the reconstruction of state vari-
ables during simulation. The algorithm employs information of the free surface to correct
the simulator and perform the simulation of the dynamics in time. The simulation is per-
formed in the low dimensional space with the latent representation of the whole set of
state variables that GENERIC employs for the description of the fluid evolution. As a re-
sult, the algorithm additionally outputs a reconstruction of these state variables (velocity,
stress, and energy fields). Finally, Fig. 5.10 shows renders of the simulation results be-
fore and after correction compared to the snapshot that they predict in time. The time
is indicated to correlate each render to the error in Fig. 5.10. Despite the correction, the
algorithm outputs a matching shape with the real entity. As a result, giving only the free
surface of the observed fluids, the networks integrate in time the dynamical evolution of
the liquid and provide a three-dimensional reconstruction of the fluid volume. The par-
ticle discretization represents a fluid volume that can be translated to the user using ren-
derization and augmented reality. This representation bridges the gap between reality
and the virtual environment to provide augmented information to the machine, and the
user, for decision making.

5.4 Conclusions
The present chapter shows a reinforcement learning methodology guided by GENERIC
as an inductive bias for perception and reasoning about fluid sloshing. The algorithm
learns from observations to accurately mimic new fluid behaviors from the sole observa-
tion of the free surface. The method provides a tool for model inference with real data
from partial observations of complex dynamics. The correction of physics perception en-
ables the machine to adapt and learn previously unseen liquids present in daily tasks with
unknown properties. We start from a source model trained with computational data to
learn a physically sound simulator of the sloshing dynamics upon GENERIC to ensure the
physical consistency and generalization of the results. The calculation is performed in a
low-dimensional manifold to ensure real-time performance. Thus, we obtain real-time
interaction with the environment in which the model, or digital twin of the real liquid,
operates to have response capacity.

We illustrate the benefits of physics-informed deep learning for reinforcement learn-
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Figure 5.9: Reconstruction of state variables during time integration for beer. The recon-
struction of the vertical velocity, energy and normal stress of the particles is shown at four
integration snapshots

ing and correction. Given an off-line learned simulator for one particular fluid (glycerine,
in our case), our method manages to evolve to a new representation of the dynamics to
match the behavior of previously unseen liquids. The recordings employed are limited to
10 seconds approximately. In this low-data regime, the method adapts to the new dy-
namics perceived. The good performance of the method can be observed also in the test
recording, which has not been seen by the network before. The success is attributed to the
insights learned in the source model with simulation data, and the inductive bias imposed
by GENERIC, which ensures the fulfillment of the principles of thermodynamics. These are
sufficiently general and precise to allow the simulator to evolve smoothly to new liquids.

A challenge in physics perception is the balance between adaptivity and the risk of
learning noise coming from the experimental nature of the data acquisition technique.
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Liquids and vessels are non-Lambertian, i.e., they do not have a diffusely reflecting sur-
face, or matter, convenient for depth estimation. Despite the fine-tuning of the camera,
the measurements include noise and invalid measurements from which the free surface
has to be reconstructed. By applying transfer learning and performing slow training we
have prevented the network from learning meaningless information coming from mea-
surements. Moreover, the patterns already learned help reconstruct the information to
learn the new behaviors accurately.

Despite the accuracy observed in the reconstruction of train and test recordings, the
performance of the method could be further improved over the last model learned by
retraining with new datasets acquired by the same means. Hence, it can perform correc-
tions to not only persist in the improvement of the reconstruction but also to adapt to the
evolving nature of the scenario.

The results observed can be a starting point to adapt the method to new geometries
and include this new parameter in the optimization from the application of geometric
deep learning. In addition, this problem could be further extended with more general
liquid detection techniques capable of analyzing transparent and not textured elements
from different perspectives [Sajjan et al., 2020] [Do et al., 2016].
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Figure 5.10: Render of the volume reconstruction before and after correction. The al-
gorithm outputs a particle discretization of the fluid that can be presented as a three-
dimensional render of the volume for visualization and interpretation. The figure shows
the peaks of the dynamics observed in a piece of the recordings.
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Chapter 6

Conclusions

6.1 Introduction

This chapter of the dissertation intends to provide an overview of the main results of this
work that leads to their main conclusions. In addition, a review of future research lines will
be presented, as well as the dissemination plan followed and complementary material and
activities of the candidate to give a full view of the work done along the research process.

6.2 General conclusions

The dissertation provides a framework for physical scene understanding, focused on the
sloshing dynamics of liquids. It states a challenge in both computational and computer
vision fields due to its complexity. We set the basis of a data-driven approach guided by
physics to describe the dynamics and learn meaningful insights for a deeper understand-
ing of the phenomenon that will enable reasoning and decision-making with data coming
from observations.

The thesis has explored the different steps of the perception and reasoning loop. Start-
ing from learning a model of the dynamics in which we are interested, we have progres-
sively evolved towards the development of a digital twin of a real liquid that provides an
interpretation of the real dynamics with small and limited data. Finally, the digital twin be-
came a hybrid twin, a system capable of correcting and adapting to new behaviors from
its experience to learn with limited data. It is worth noting that this work was conceived
and envisioned from the field of computational modeling and mechanical engineering,
and it aimed to propose a solution combining methods from different fields to create a
global solution for the perception problem proposed.

We deeply explored machine learning techniques to cover a far-reaching set of appli-
cations to work over the stages that form perception, which includes simulation and pre-
diction, data acquisition and interpretation, and reasoning and knowledge application.
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The project revolved around supervised learning to prove the effectiveness of the
GENERIC formalism as a bias for model inference. First and foremost, this approach guar-
antees compliance with the conservation of energy and entropy production in the algo-
rithm where it has been implemented. This characteristic makes it suitable to learn de-
scriptions of complex dynamics with unresolved degrees of freedom and inherent dissi-
pative nature. Notably, in the case of learning from measurements of the real world, we
cannot rely on perfect approximations that assume no dissipation. Secondly, GENERIC can
be obtained numerically, and the flexibility for its implementation in regression problems
is convenient.

It is worth mentioning that it has been employed in two different approaches for learn-
ing the behavior of the sloshing dynamics. First, we follow the approach of slowmanifold
construction. Secondly, we learned a correlation with ANNs. Third, it shows a good re-
sponse for its implementation in conjunction with model order reduction techniques. Fi-
nally, the numerical discretization by finite differences is not severely conditioned by the
time step employed in the discretization as long as it samples correctly the manifold of
the dynamics.

Manifold learning was satisfactorily applied for sloshing understanding. However,
ANNs provided a higher degree of generalization of the method. Then, instead of per-
forming interpolation in submanifolds of the manifold to perform the integration with
the interpolated values of the GENERIC elements, this process is learned and optimized
with neural networks. This approach was especially convenient for correction since we
performed the optimization directly over the approximated function of the source model.

Model order reduction, considered part of the field of unsupervised learning, was a key
asset in the development of physics simulators. The particle discretization was favorable
for data extraction and computational simulation, but MOR extracted the features under-
lying the movement of the particles to achieve a deeper understanding of the dynamics of
this phenomenon. Results supported the use of non-linear model order reduction tech-
niques to learn the non-linearities that characterize the sloshing dynamics. POD required
a higher dimensionality to define the low dimensional manifold than LLE, TDA, k-PCA,
and autoencoders with all the features of the dynamics necessary to learn GENERIC and
extrapolated to simulations out of the database.

Autoencoders were chosen in the last steps of the implementation for consistency of
the ANN approximation proposed and also to perform correction in the reinforcement
learning loop. It achieved good performance compared to TDA and k-PCA. TDA, although
accurate, required more computational resources than the other two methods. In addi-
tion, the autoencoder worked over each set of state variables (position, velocity, energy,
normal stress, and shear stress), capturing more information of each group individually.
A final argument in favor of autoencoders is their speed of computation. The method
proposed in the second chapter fulfilled real-time constraints performing a simulation of
1.7 seconds in 1.6404 seconds. However, the method developed with ANNs performed a
simulation of 12 seconds in 3.42 seconds, outperforming the previous approach.
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MOR techniques were also exploited for manifold learning of fluid dynamics. k-PCA
unveiled a 3D low dimensional manifold where dynamics were embedded. We discov-
ered the liquids to be clustered and following a structure as a function of their properties
and the dynamical state. This result was the inception of the development of other appli-
cations, such as classification with a structure of random forest.

Data acquisition established the connection with the real physics that was to be em-
ulated. The proposed algorithms were successfully connected to the real glass and the
real liquid entity, overcoming measuring limitations with appropriate fine-tuning of the
camera to perform not only the integration of the dynamics but also the correction of the
emulation in a reinforcement learning loop.

Access to data can be expensive or not possible. In the case of this thesis, the cam-
era provided only evaluations of the free surface but there was no option to measure the
energy, for instance. However, a specific set of state variables was required to define the
GENERIC of the sloshing dynamics. Self-supervised learning offered a framework to con-
ceive the ideas to develop a method to reconstruct information. We hypothesized the
possibility of learning the features of the dynamics from the evolution of the free surface
to recover the dynamical state of the fluid.

Reinforcement learning has been applied in the last step of the cognitive twin to
achieve the highest degree of adaptivity and reasoning. Just like robots learn actions
based on reinforcement learning, reasoning can be trained from a reward to approximate
our goal: a good approximation of the prediction of future dynamics.

Here, two main challenges were addressed. First, the source model to perform adapta-
tion must have learned sufficiently general features to evolve towards the new solution. If
not, reaching a new solution in the re-training will be inefficient, and arduous. In this case,
we proved the benefits of model order reduction and learning biases in the context of re-
inforcement learning. The cognitive digital twin had been previously developed upon a
known reality, which is the dynamics of glycerine. We proposed transferring this knowl-
edge for learning new fluids, where the process is conditioned to the insights learned in
both the low dimensional manifold and in the integrator. Finally, the results supported
the coherence and robustness of these methods for a smooth transition.

Secondly, reinforcement learning by itself could not be enough for optimization. If it
has to guide the evolution of the optimization, the reward has to be explanatory to be
meaningful. In other words, in our case the reward must ensure that the algorithm learns
to reproduce the evolution of the free surface and the physics, fulfilling the laws of ther-
modynamics. Although the reward is focused on the reconstruction of the dynamics of
the free surface, we also proposed to define the reward with an additional term to main-
tain the thermodynamical compliance of the description. In this way, the structure of the
reinforcement learning algorithm becomes more relevant in the optimization of an opti-
mal solution. As a result, we successfully trained cognitive hybrid twins that learned from
a short video sequence a new behavior that they were able to reproduce with new data,
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improving the performance compared to the source model. In addition, it reconstructs an
approximation of the solution field (velocity, energy, and stress) for any fluid manipulated.

6.3 Thesis contributions
This work contributed to the development of a fully operative perception system capable
of predicting dynamics in real-time and mimicking previously unseen fluids with knowl-
edge of physics. In addition, the simulation is completed with the reconstruction of so-
lution fields when only partial measurements are available for any known or new fluid.
However, this major contribution has been possible with the accomplishment of specific
tasks:

• Exploration of manifold learning techniques applied to the slosh for regression prob-
lems. POD has been compared with LLE, TDA, k-PCA, and autoencoders proving the
efficacy of non-linear MOR for capturing the insights of the dynamics.

• Development of a model order reduction method based on TDA. This method has
been implemented to propose an approach to preserve the topology of the full order
manifold in the low dimensional representation.

• Application of machine learning methods based on the GENERIC formalism in re-
gression for fluid dynamics simulation. This formalism has been employed in two
approaches: manifold learning, and ANNs.

• Preparation of a tracking system for the container of the liquid and coupling to the
simulation algorithm.

• Digital twin implementation and visualization of the solution in real-time by means of
augmented reality to provide interpretation of the results and connection between
virtual and real worlds.

• Study of a low-dimensional manifold of sloshing dynamics for a set of fluids. Explo-
ration and analysis of clustering properties, and training of a classification system to
distinguish fluids.

• Preparation of a data-acquisition system for free-surface detection, tracking, and
depth estimation.

• Development of a RNN strategy for connecting partial measurements with the low
dimensional manifold of the sloshing dynamics. Provided this projection, the full
solution field of the fluid can be reconstructed in the current of next time steps.

• Development of a RL loop for correction and adaptation to new, previously unseen,
fluid, with information of the free surface. A posteriori reconstruction of an approxi-
mation of the full solution field (velocity, energy, and stress) for new fluids, simulated
in time.
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6.4 Future research lines
The present work proposes advances in the field of fluid perception and reasoning. How-
ever, the exceptional advances experienced in the research community make patent the
scope for enhancement of these systems. The proposals can be grouped into three cate-
gories concerning the three fields merged in the thesis.

6.4.1 GENERIC into learning

The implementation of GENERIC as a learning bias arouses curiosity in the community due
to the characteristics highlighted before. However, its implementation can be seen from
different perspectives, as seen in [Zhang et al., 2021] [Lee et al., 2021], where authors show
alternatives for formulating the degeneracy conditions into the networks. In our approach
we consider the application of the degeneracy conditions as a soft constraint convenient
for training, assuming a low numerical error during this process.

Sobolev learning refers to algorithms that target a value function and its derivatives
as part of the training. In our context, we would gain control over the approximated
functions that are learned ensuring the regularity of the energy functionals. It has been
recently formulated for a series of works, and its implementation in the sloshing prob-
lem could make the problem take a step forward in the development of physics-informed
learning for fluids evaluating its performance in reduced order manifolds.

Other formulations have been hypothesized to simplify the learning process. Contact
geometry can lay the foundations for an algorithm that learns only one potential. How-
ever, entropy S is usually one of the variables employed in the formulation and we can-
not measure it. As a solution this alternative formulation could be coupled with the RNN
proposed that recovers the information from the observable variables of the dynamical
system.

6.4.2 Fluidmodeling

The descriptions obtained from the method output accurate simulations of the integra-
tion of the dynamics in time. Nevertheless, the fluid problem is bounded to a specific
geometry. We could consider different filling levels, which can be evaluated by computer
vision methods [Do et al., 2016], and employ different liquid descriptions that adapt to
different vessel geometries. An adaptive algorithm of this kind should also be permuta-
tion invariant. Fluid particles evolve in time, but the movement was not extremely chaotic
and we could employ a fully connected neural network with this approximation provided
the exposed hypothesis. Permutation invariant networks would not be affected by the or-
dering of the particles when processed in the network, and the algorithm would respond
properly to changes in the geometry. Point nets belong to the field of geometrical deep
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learning as a generalization of neural networks to different types of geometries to exploit
and fulfill their invariances. They would provide the adaptivity required in the case just
exposed.

Although these methods have been used for fluid dynamics [Sanchez-Gonzalez et al.,
2020], they do not include learning biases combined with the relational or geometric
biases already implemented. In addition, its application in a low-dimensional manifold
should be explored. The computational cost of training graphs and point nets could be
more elevated than in other approaches such as the one presented in this thesis. In addi-
tion, we are still constrained by the real-time prerequisites for digital twins and augmented
reality connections. Hence, MOR is a step to be taken in graph learning for this type of ap-
plication.

Also, we think of more general problems such as contact with other elements —a
spoon, for instance— or different actions, like pouring. By offering combinations of ac-
tions we lay the foundations for widening the range of applicability of the digital twin.

6.4.3 Virtual interaction and representation

SPNNs were trained to operate in a parallel online phase with the camera, but they were
not fully coupled. This new system could provide full online integration and reinforcement
learning as proposed in [Moya et al., 2020b].

In addition, we decided to facilitate depth estimation of the glass and liquid by po-
sitioning the camera in front of the glass. In a more realistic setting, the camera should
be able to move, of the liquid could be placed in other positions in the scene. This pro-
posal would then become a non-rigid structure from motion. Works in the field have been
developed in the case of deformable objects [Badias et al., 2021]. However, we still are
conditioned by the lack of texture of the liquid and the container. The system developed
could be complemented by a method trained for appropriate recognition and tracking of
transparent objects and, with this information, perform non-rigid structure from motion.

6.5 Publications and contributions

6.5.1 Journal contributions

1. Moya, B., González, D., Alfaro, I., Chinesta, F., & Cueto, E. (2019). Learning slosh dy-
namics by means of data. Computational Mechanics, 64(2), 511-523.

2. Moya, B., Alfaro, I., González, D., Chinesta, F., & Cueto, E. (2020). Physically sound, self-
learning digital twins for sloshing fluids. PloS one, 15(6), e0234569.

3. Moya, B., Badías, A., Alfaro, I., Chinesta, F., & Cueto, E. (2020). Digital twins that learn
and correct themselves. International Journal for Numerical Methods in Engineering.
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4. Moya, B., Badías, A., González, D., Chinesta, F., & Cueto, E. (2021). Physics percep-
tion in sloshing scenes with guaranteed thermodynamic consistency. arXiv preprint
arXiv:2106.13301. Accepted in IEEE Transaction and Pattern Analysis and Machine
Inelligence.

5. Moya, B., Badías, A., González, D., Chinesta, F., & Cueto, E. (2022). Physics-informed
Reinforcement Learning for Perception and Reasoning about Fluids. arXiv preprint
arXiv:2203.05775.

6. Moya B., Pichi F., Hesthaven J., A convolutional graph neural network approach to
model order reduction to non-linear parametrized PDEs. In preparation.

6.5.2 Book chapters

1. Chinesta, F., Cueto, E., Grmela, M., Moya, B., Pavelka, M., & Šípka, M. (2020, July). Learn-
ing physics from data: a thermodynamic interpretation. In Workshop on Joint Struc-
tures and Common Foundations of Statistical Physics, Information Geometry and In-
ference for Learning (pp. 276-297). Springer, Cham.

6.5.3 Oral communications in conferences and workshops

International

1. Hybrid twins based on physically sound incremental learning. MMLDT-CSET 2021-
Oral Communication San Diego, US; ONLINE.

2. Deep learning of fluid dynamics from free surface data for full state reconstruction
and correction. Eccomas Young Investigators Conference-Oral Communication Va-
lencia, Spain; ONLINE.

3. Physically sound deep learning development of digital twins from partial measure-
ments of real-world data. Coupled Problems in Engineering 2021-Oral Communica-
tion Chia Laguna, Italy; ONLINE.

4. Thermodynamics-based learning of fluid dynamics from partial information. Joint
European Thermodynamics Conference 2021-Oral Communication Prague, Czech
Republic; ONLINE.

5. Hybrid twins for fluid applications. World Congress in Computational Mechanics -
Oral Communication Paris, France; ONLINE.

6. Manifold Learning of complex fluid behavior for real-time simulation. Eccomas
Young Investigators Conference-Oral Communication Krakow, Poland.

7. Data-driven learning of slosh dynamics. Congress on Numerical Methods in
Engineering-Oral Communication Guimaraes, Portugal.
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8. Data-driven, reduced-order modeling and simulation of free-surface flows. Coupled
problems in Engineering-Oral Communication Sitges, Spain.

9. Data-based manifold learning of sloshing dynamics. DataBest2019-Oral Communi-
cation Paris, France.

National

1. Hybrid twins in the field of intuitive physics. Mechanical Engineering Day-Oral par-
ticipation Zaragoza, Spain.

2. Learning slosh dynamics by means of data. Mechanical Engineering Day-Oral parti-
cipation Zaragoza, Spain.

3. Learning slosh dynamics by means of data. Fluid Mechanics Symposiums (University
of Zaragoza)-Oral participation Zaragoza, Spain.

6.5.4 Poster communications in conferences and workshops

International

1. Digital twins of fluid dynamics for real-time interaction. C2D3 Virtual Symposium
2020 Cambridge, UK; ONLINE.

2. Data-driven learning of slosh dynamics. Congress on Numerical Methods in Engi-
neering Guimaraes, Portugal.

National

1. Data learning of fluid dynamics for physically informed digital twins. IX Young Inves-
tigators Day (Aragon Institute of Engineering Research) Zaragoza, Spain.

2. Aprendizaje automático de dinámica de fluidos mediante modelos de datos. VIII
Young Investigators Day (Aragon Institute of Engineering Research) Zaragoza, Spain.

6.5.5 Symposium organization

1. Model reduction and artificial intelligence techniques for surrogate and data-assisted
models in computational engineering Eccomas Young Investigators Conference
2021 Valencia, Spain; ONLINE. Co-organized session with Alberto Badías and Matteo
Giacomini July 2021.
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6.5.6 Outreach communications

Results presented in this dissertation have been publicly published as Youtube videos that
can be visualized at

• Self-learning digital twins for sloshing fluids. https://www.youtube.com/watch?
v=d1JyhPNkLkU&t=1s

• Physics perception in sloshing scenes. https://www.youtube.com/watch?v=
Qlb1VpWRVaQ

• Physics-informed Reinforcement Learning for perception and reasoning about fluids.
https://www.youtube.com/watch?v=ikPgZMpsCFk&t=4s

Also, the work has been shown to a wider audience in seminars, radio interviews, and
outreach articles published in a local newspaper—see appendix B.

6.5.7 Free software

Any person interested in the presented work can check the databases employed in the
following GitHub account under general commons license in the following link https:
//github.com/beatrizmoya.

• Computational fluids. https://github.com/beatrizmoya/sloshingfluids

• Real fluids. https://github.com/beatrizmoya/RLfluidperception

6.6 Research stay
The training was completed with a research stay in a foreign university to expand the
knowledge already acquired and make a contribution to the hosting group. A summary
of the work is detailed below.

• Supervisor: Prof. Jan S. Hesthaven.

• École Polytechnique Federal de Lausanne (EPFL).

• Dates: from September 1st, 2021 to February 28th, 2022 (181 days).

• Summary of stage:

The Chair of Computational Mathematics and Simulation Science at the School of Ba-
sic Sciences (MCSS) at EPFL, Lausanne, Switzerland, focuses on the application and
evaluation of computational methods for time-dependent and parametrized partial
differential equations in high-order problems. This research includes works in model

MechanicalEngineering

https://www.youtube.com/watch?v=d1JyhPNkLkU&t=1s
https://www.youtube.com/watch?v=d1JyhPNkLkU&t=1s
https://www.youtube.com/watch?v=Qlb1VpWRVaQ
https://www.youtube.com/watch?v=Qlb1VpWRVaQ
https://www.youtube.com/watch?v=ikPgZMpsCFk&t=4s
https://github.com/beatrizmoya
https://github.com/beatrizmoya
https://github.com/beatrizmoya/sloshingfluids
https://github.com/beatrizmoya/RLfluidperception


120 B. Moya

order reduction, discontinuous Galerkin and spectral methods, multiscale problems,
fractional differential equations, and the use of machine learning. The latter works
combine artificial intelligence with physics knowledge to accelerate and optimize ex-
isting techniques. The application problems are rather diverse, mainly related to real
applications (electromagnetics, plasma physics, combustion or geoscience). More
information can be found at https://www.epfl.ch/labs/mcss/.

The research proposal was related to the study and development of techniques for
advanced reduced-order modeling, with the combination with techniques from ma-
chine learning. Finally, works have been oriented towards model order reduction
of complex problems phrased in unstructured domains with machine learning tech-
niques that adapt to the geometrical conditions of the problem. This has been a
collaboration with a current postdoc at MCSS, Federico Pichi, to work on bifurcation
problems. The main areas of activity have included

– Study of current state of art methods on Convolutional Neural Networks, and
their application to structured and unstructured descriptions.

– Analysis and application of new methods for unstructured grid.

– Study of geometrical deep learning, and specifically graph neural networks.

– Proposal of a MOR algorithm based on graph neural networks.

– Quantification of the method and application to complex physics and domains.

– Work at a report of the results.

Additionally, the candidate participated in EPFL activities and workshops:

• Digital twins days.

• Swiss Numerics Day

• Participation in group talks, with a final presentation of the candidate’s work.

The collaboration has resulted in several new results, in particular with an emphasis on
graph neural networks in the context of reduced-order models. The results of the work
are presented in a report to study a possible contribution based on this work. The plan
is to continue the collaboration and complete a high-quality publication based on the
candidate’s work.
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Appendix A

Conclusiones

A.1 Introducción

Este capítulo pretende dar una revisión general sobre los principales resultados obtenidos
durante la realización del trabajo, y que han llevado a sus principales conclusiones.
Además, se expondrán posibles de líneas de investigación futuras, así como el plan de
diseminación seguido y formación para dar una perspectiva general del trabajo realizado
por el candidato a lo largo del proceso de investigación.

A.2 Conclusiones

La tesis propone un marco desde el que plantear métodos para la comprensión del en-
torno físico observado mediante una secuencia de video. Este problema supone un reto
tanto en el campo computacional como para la visión por computador debido a la com-
plejidad de la dinámica de fluidos. El trabajo asienta las bases de métodos basados en
datos y guiados por la física para describir la dinámica y aprender estructuras significa-
tivas. Estas aportarán una comprensión más profunda de los fenómenos que permita el
razonamiento y la toma de desiciones sobre ellos con datos de observaciones reales.

El trabajo explora los pasos del ciclo de percepción y razonamiento. Empezando por el
aprendizaje de una aproximación de la dinámica en la que estamos interesados, el método
ha evolucionado progresivamente hacia el desarrollo del gemelo digital cognitivo de un
líquido para dar interpretación de la dinámica de fenómenos reales con poco datos y me-
didas parciales. Finalmente, el gemelo digital se ha convertido en un gemelo híbrido, un
sistema capaz de corregirse y adaptarse a los nuevos comportamiento percibidos basado
en su experiencia y con datos limitados. Merece la pena destacar que este trabajo se
ha concebido y visionado desde el campo del modelado computacional y la ingeniería
mecánica, y que pretende proponer una solución que combine métodos de diferentes
campos para crear una solución global al problema de percepción propuesto.
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El aprendizaje profundo aplicado a la simulación conlleva afrontar varios retos.
Además, se desea obtener soluciones generales que a su vez aseguren la consistencia de
los resultados, pero hay una gran dependencia en los datos que se utilizan en estas aplica-
ciones. La preparación de los datos puede ayudar en el proceso de entrenamiento, y una
de las posibles técnicas a aplicar es la reducción de modelos. Los métodos de reducción
de orden (MOR) encuentran representaciones de los datos en espacios menor dimensio-
nalidad no sólo para acelerar el tiempo de entrenamiento y cálculo sino en la eficiencia
del entrenamiento, teniendo un gran impacto en el de desarrollo de métodos basados en
datos, como en aplicaciones de regresión y clasificación.

A lo largo de este trabajo se han explorado varias técnicas de aprendizaje automático
para cubrir un amplio rango de aplicaciones a lo largo de las distintas etapas que entraña
la percepción, que incluye la simulación y predicción, la adquisición de datos y su inter-
pretación, y el razonamiento y corrección.

El proyecto gira en torno a métodos de aprendizaje supervisado para probar la eficacia
del uso del formalismo GENERIC como sesgo inductivo en el aprendizaje de modelos. En
primer lugar, este enfoque garantiza el cumplimiento de las leyes de la termodinámica,
asegurando la conservación de la energía y la disipación de la entropía. Esta caracterís-
tica hace que el algoritmo sea aplicable a dinámicas complejas con grados de libertad no
resueltos y con inherente naturaleza disipativa. Esta característica es especialmente im-
portante en casos en los que se simulan fenómenos reales, para los cuales no podemos
confiar en aproximaciones perfectas sin disipación. En segundo lugar, GENERIC se puede
discretizar y aprender con datos, y se puede implementar desde enfoques de aprendizaje
distintos. Esto se ha comprobado en el uso GENERIC en dos enfoques diferentes; en el
aprendizaje de la variedad de la dinámica, y en su aplicación en redes neuronales.

En tercer lugar, GENERIC muestra una respuesta satisfactoria combinado con méto-
dos de reducción de modelos. Finalmente, la discretización por diferencias finitas no está
fuertemente condicionada por el incremento temporal si dicha discretización permite se
describe correctamente la dinámica.

Las redes dotan al algoritmo de un mayor grado de generalización ya que estas apren-
den una correlación para cualquier nueva entrada del algoritmo. Esta característica es
especialmente conveniente para la corrección y adaptación a nuevos comportamientos.

Los métodos de reducción de orden, considerados parte del campo del aprendizaje no
supervisado, fueron la clave en el desarrollo de los simuladores físicos. Se ha empleado
una descripción del fluido en partículas para su simulación, que se ha complementado con
el uso de los métodos MOR para al aprendizaje de las estructuras dinámicas que se encon-
traban en los datos, alcanzando una comprensión mayor del fenómeno. Los resultados
apoyan el uso de métodos no lineales que se adapten a las características de la dinámica
de la oscilación de los fluidos. POD requiere un mayor número de modos para describir
una evolución, mientras que LLE, TDA,k-PCA, y autoencoders requieren un menor número
de dimensiones para aprender satisfactoriamente la estructura GENERIC.
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Se han empleado autoencoders en los últimos pasos de la implementación de este
proyecto por dos motivos; su rapidez de cálculo y las ventajas que ofrece para la fase de
corrección. Su comportamiento es bueno, similar al obtenido con TDA y k-PCA. El método
TDA, aunque preciso, consumía un alto grado de recursos computacionales, más que los
otros dos métodos. Además, el autoencoder se aplica sobre grupos de variables de estado
(posición, velocidad, energía y tensiones), capturando más información de cada grupo. El
argumento final a favor de su aplicación es el tiempo de simulación. El primer método
propuesto, en el segundo capítulo, satisface las restricciones de cálculo en tiempo real
realizando una simulación de 1.7 segundos en 1.6404 segundos. Sin embargo, las redes
neuronales realizan una simulación de 12 segundos en 3.42 segundos, mejorando la eje-
cución respecto al método anterior.

Las técnicas MOR también se han explotado en el aprendizaje de variedades del con-
junto de líquidos empleados en este trabajo. El método k-PCA aprende un espacio re-
ducido de tres dimensiones en el que se aprecia un agrupamiento de líquidos según sus
propiedades y estado dinámico, conveniente para el desarrollo de otras aplicaciones. En
este caso, los resultados sirvieron para aprender un clasificador de tipo árbol de decisión
que clasificaba el líquido según los datos de entrada.

La adquisición de datos establece una conexión entre el gemelo digital y el líquido
real. El algoritmo propuesto obtiene datos satisfactoriamente tanto del vaso real como del
líquido. Se ha realizado un ajuste de los parámetros de la cámara para mejorar la precisión
de la adquisición de datos usados no sólo en la integración temporal de la dinámica, sino
también la corrección.

Hoy en día hay una incuestionable disponibilidad de datos. Sin embargo, no siempre
se tiene acceso a los datos necesarios para las descripciones propuestas. En el caso de esta
tesis, la cámara sólo tiene acceso a datos de la superficie libre, pero no a variables internas
como la energía, que son necesarias para realizar una descripción basada en GENERIC.
El aprendizaje semi-supervisado propone un marco para la concepción de ideas para la
reconstrucción de la información. Para ello se propone un método que, a partir del análisis
de la evolución temporal de la superficie libre, reconstruya el estado dinámico del líquido.

Se ha aplicado aprendizaje por refuerzo en el último paso de desarrollo del gemelo digi-
tal cognitivo para alcanzar un mayor grado de adaptación y razonamiento. Al igual que se
aprenden acciones por refuerzo en robótica, el razonamiento también se puede entrenar
de esta manera, premiando acciones de nuestro aprendizaje que predigan correctamente
la evolución dinámica del líquido.

En este trabajo se afrontan dos retos. En primer lugar, el modelo fuente debe haber
aprendido previamente unas características suficientemente generales sobre la dinámica
para realizar la corrección. Si no, la optimización será dificultosa e ineficiente. En este caso,
se ha probado que el uso de técnicas de reducción de orden y el uso de sesgos inductivos
benefician la transición en el contexto del aprendizaje por refuerzo. El gemelo digital cog-
nitivo se ha desarrollado respecto a un líquido conocido: la glicerina. Se propone la trans-
ferencia de este conocimiento para el aprendizaje de nuevos líquidos, condicionado por
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las características ya aprendidas en el autoencoder y el entrenamiento del integrador. Los
resultados apoyan la coherencia y robustez de esta teoría para una transición suave que
reproduzca con exactitud nuevos líquidos percibidos.

En segundo lugar, el aprendizaje por refuerzo no es suficiente por sí mismo para garan-
tizar la optimización. La evaluación que condiciona la recompensa en el aprendizaje por
refuerzo debe incluir todo lo que se quiere aprender, en nuestro caso la evolución de la
superficie libre y la física. Aunque la recompensa está centrada en la reconstrucción de la
superficie libre se propone la inclusión de un término adicional para mantener la consis-
tencia termodinámica de la descripción. De esta manera, la estructura del algoritmo de
aprendizaje por refuerzo se vuelve relevante en la optimización para la búsqueda de una
solución óptima.

Como resultado se obtiene un gemelo híbrido cognitivo que aprende nuevos compor-
tamientos de fluidos con secuencias de video cortas, y que es capaz de reproducir simu-
laciones con datos nuevos no percibidos previamente. Además, se consigue reconstru-
ir una aproximación del campo solución completo (velocidad, energía y tensiones) para
cualquier nuevo fluido que se manipule.

A.3 Contribuciones de la tesis
Este trabajo ha contribuido al desarrollo del un sistema completo y operativo de percep-
ción capaz de predecir la dinámica de la oscilación en tiempo real, e imitando el com-
portamiento de fluidos nuevos, con sesgos inductivos. Además, la simulación se comple-
menta con la reconstrucción de los campos solución con observaciones parciales de la
superficie libre. Este trabajo se realizado a través de la realización de las siguientes con-
tribuciones:

• Exploración de técnicas de manifold learning aplicadas a la dinámica de la salpi-
cadura para problemas de regresión. Se ha comparado la técnica POD con LLE, TDA
k-PCA y autoencoders, probando la eficacia de las técnicas no lineales para capturas
las características de la dinámica.

• Desarrollo de un método de reducción de modelo basado en TDA. Este método ha
sido implementado para proponer un enfoque que preservase la topología del sis-
tema completo en el espacio de orden reducido.

• Aplicación de técnicas de aprendizaje automático basadas en el formalismo GENERIC
para el aprendizaje por regresión de la dinámica de fluidos. Este formalismo ha sido
empleado en dos enfoques: manifold learning, y redes neuronales.

• Preparación de un sistema de seguimiento para el vaso del líquido acoplado a un
algoritmo de simulación.
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• Implementación de un gemelo digital y un sistema de visualización de la solución
mediante realidad aumentada para dar una interpretación de los resultados y co-
nectar mundos virtual y real.

• Estudio de espacios de orden reducido para el conjunto de fluidos. Exploración y
análisis del agrupamiento según sus propiedades, y entrenamiento de un clasificador
para distinguir fluidos.

• Preparación de un sistema de adquisición de datos, estimación de profundidad,
seguimiento y detección de la superficie libre.

• Desarrollo de una red recurrente para conectar medidas parciales con el espacio re-
ducido de la dinámica de la salpicadura. Dada esa proyección, la solución completa
puede ser reconstruida en el momento actual o en pasos de tiempo posteriores.

• Desarrollo de un algoritmo de aprendizaje por refuerzo para la corrección y
adaptación a fluidos nuevos no vistos previamente por el sistema con información de
la superficie libre. Reconstrucción posterior de la aproximación de la solución com-
pleta (velocidad, energía y tensiones) para los nuevos fluidos simulados en tiempo.

A.4 Líneas de trabajo futuras
El presente trabajo propone avances en el campo de la percepción y razonamiento de
fluidos. Sin embargo, la aparición de nuevas teorías de aprendizaje permite la evolución
en el desarrollo de estos métodos. Las propuestas se pueden agrupar en los tres campos
en los que se divide la tesis.

A.4.1 GENERIC en el aprendizaje

La implementación de GENERIC como sesgo inductivo ha suscitado curiosidad en la co-
munidad debido a las características expuestas previamente. No obstante, su imple-
mentación puede verse desde distintas perspectivas, proponiendo diferentes formula-
ciones para las condiciones de degeneración. En este trabajo se ha considerado la apli-
cación de las condiciones de degeneración como una restricción suave en el aprendizaje,
asumiendo un error numérico bajo en el entrenamiento.

El llamado aprendizaje Sobolev se refiere a aquellos algoritmos que entrenan sobre la
función objetivo y sus derivadas. En nuestro contexto, este tipo de aprendizaje permi-
tiría ganar control sobre las funciones aprendidas, así como asegurar la regularidad de los
funcionales de energía. Se ha aplicado recientemente en trabajos de este campo, y su
implementación en el problema de la oscilación de fluidos podría suponer avances en el
desarrollo de métodos de aprendizaje guiados por la física, evaluando su comportamiento
en espacios de orden reducido de dichos fenómenos.
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Se ha propuesto el uso de diferentes formulaciones para simplificar el proceso de
aprendizaje. La geometría de contacto podría establecer las bases para un algoritmo que
aprenda únicamente un potencial. No obstante, la entropía S es parte de la formulación
de variables de este potencial, y no puede ser medido. Como solución, esta formulación
alternativa se podría complementar con una red recurrente que recupere información no
observable mediante el análisis de la historia de los sistemas con las variables observables.

A.4.2 Modelado de fluidos

Las descripciones obtenidas con el método propuesto proporcionan simulaciones pre-
cisas de la dinámica. Sin embargo, se podrían considerar diferentes niveles de llenado,
que serían detectados mediante técnicas de visión por computador [Do et al., 2016], y
emplear distintas descripciones que se adaptaran a geometrías de vaso diferentes para
hacer este método más general.

Un algoritmo adaptativo de estas características debería ser invariante a la per-
mutación. Las partículas de la discretización del fluido evolucionan en el tiempo, pero
su movimiento no es extremadamente caótico y podemos emplear una red simple con
esta hipótesis. Una formulación invariante a la permutación no se vería afectada por el
orden de las partículas cuando las procese la red, y el algoritmo respondería a cambios en
la geometría. Point nets pertenecen al campo del aprendizaje profundo geométrico como
generalización de las redes neuronales para adaptarse a diferentes geométricas y explotar
y cumplir con sus invarianzas. Estos métodos dotarían de adaptabilidad necesaria en el
caso expuesto.

A pesar de ser ampliamente utilizados en dinámica de fluidos, estos métodos empiezan
a incluir sesgos de aprendizaje y física de manera incipiente. Además, su aplicación en
espacios reducidos aún no se ha explorado en profundidad. El coste computacional de
entrenamiento de grafos y point nets podría ser más elevado que en otros métodos, como
el presentado en esta tesis. También cabe destacar que en este caso el aprendizaje sigue
limitado por las condiciones de respuesta en tiempo real. Por lo tanto, se emplearían téc-
nicas MOR como paso necesario en el aprendizaje de grafos tanto para reducir el coste
computacional en el entrenamiento como la realizar la simulación.

El problema se ha limitado a una única dirección de oscilación, y un siguiente paso con-
sistiría en la ampliación de rangos de movimiento. También se han planteado nuevos ca-
sos en los que hay interacción fluido-sólido, como el uso de una cuchara, u otras acciones,
como el vertido de líquidos. La combinación de pequeñas habilidades puede asentar las
bases para la ampliación del rango de aplicaciones de los gemelos digitales.

A.4.3 Interacción virtual y representación

Las redes SPNNs se han entrenado para operar en paralelo en una fase online con la cá-
mara, pero no están completamente acopladas.
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El desarrollo del sistema totalmente conectado supondría la integración completa de
la simulación y el proceso de aprendizaje propuesto en [Moya et al., 2020b].

Además, se decide facilitar la estimación de la profundidad del vaso y el líquido fijando
la cámara enfrente de ellos. En un contexto más realista, la cámara debe poder moverse,
y el líquido puede encontrarse en cualquier punto de la escena. Entonces, esta propuesta
se comportaría como un problema non-rigid structure from motion. Se han desarrollado
trabajos en este campo para casos de objetos deformables [Badias et al., 2021]. Sin em-
bargo, seguimos condicionados por la falta de textura de los líquidos y el vaso. El sistema a
desarrollar podría ser complementado por un método entrenado para el reconocimiento
y detección de este tipo de objetos y, con esta información, se desarrollaría la aplicación
propuesta.

A.5 Publicaciones y contribuciones

A.5.1 Publicaciones en revista científica

1. Moya, B., González, D., Alfaro, I., Chinesta, F., & Cueto, E. (2019). Learning slosh dy-
namics by means of data. Computational Mechanics, 64(2), 511-523.

2. Moya, B., Alfaro, I., González, D., Chinesta, F., & Cueto, E. (2020). Physically sound, self-
learning digital twins for sloshing fluids. PloS one, 15(6), e0234569.

3. Moya, B., Badías, A., Alfaro, I., Chinesta, F., & Cueto, E. (2020). Digital twins that learn
and correct themselves. International Journal for Numerical Methods in Engineering.

4. Moya, B., Badías, A., González, D., Chinesta, F., & Cueto, E. (2021). Physics percep-
tion in sloshing scenes with guaranteed thermodynamic consistency. arXiv preprint
arXiv:2106.13301. Accepted in IEEE Transaction and Pattern Analysis

5. Moya, B., Badías, A., González, D., Chinesta, F., & Cueto, E. (2022). Physics-informed
Reinforcement Learning for Perception and Reasoning about Fluids. arXiv preprint
arXiv:2203.05775.

6. Moya B., Pichi F., Hesthaven J., A convolutional graph neural network approach to
model order reduction to non-linear parametrized PDEs. En preparación.

A.5.2 Capítulos de libro

1. Chinesta, F., Cueto, E., Grmela, M., Moya, B., Pavelka, M., & Šípka, M. (2020, July). Learn-
ing physics from data: a thermodynamic interpretation. In Workshop on Joint Struc-
tures and Common Foundations of Statistical Physics, Information Geometry and In-
ference for Learning (pp. 276-297). Springer, Cham.
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A.5.3 Participación en congresos

Internacionales

1. Hybrid twins based on physically sound incremental learning. MMLDT-CSET 2021-
San Diego, EE.UU.; ONLINE.

2. Deep learning of fluid dynamics from free surface data for full state reconstruction
and correction. Eccomas Young Investigators Conference- Valencia, España; ONLINE.

3. Physically sound deep learning development of digital twins from partial measure-
ments of real-world data. Coupled Problems in Engineering 2021- Chia Laguna, Italia;
ONLINE.

4. Thermodynamics-based learning of fluid dynamics from partial information. Joint
European Thermodynamics Conference 2021-Praga, República Checa; ONLINE.

5. Hybrid twins for fluid applications. World Congress in Computational Mechanics -
París, Francia; ONLINE.

6. Manifold Learning of complex fluid behavior for real-time simulation. Eccomas
Young Investigators Conference- Cracovia, Polonia.

7. Data-driven learning of slosh dynamics. Congress on Numerical Methods in
Engineering- Guimaraes, Portugal.

8. Data-driven, reduced-order modeling and simulation of free-surface flows. Coupled
problems in Engineering- Sitges, España.

9. Data-based manifold learning of sloshing dynamics. DataBest2019- Paris, Francia.

Nacionales

1. Hybrid twins in the field of intuitive physics. Jornadas de Ingeniería Mecánica 2021
Zaragoza, España.

2. Learning slosh dynamics by means of data. Jornadas de Ingeniería mecánica 2019
Zaragoza, España.

3. Learning slosh dynamics by means of data. Seminarios de Mecánica de Flui-
dos(Universidad de Zaragoza)-Zaragoza, España.

A.5.4 Participaciones con póster en conferencias y workshops

Internacionales

1. Digital twins of fluid dynamics for real-time interaction. C2D3 Virtual Symposium
2020 Cambridge, Inglaterra; ONLINE.
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2. Data-driven learning of slosh dynamics. Congress on Numerical Methods in Engi-
neering Guimaraes, Portugal.

Nacionales

1. Data learning of fluid dynamics for physically informed digital twins. IX Young Inves-
tigators Day (Aragon Institute of Engineering Research) Zaragoza, España.

2. Aprendizaje automático de dinámica de fluidos mediante modelos de datos. VIII
Young Investigators Day (Aragon Institute of Engineering Research) Zaragoza, Es-
paña.

A.5.5 Organización de sesiones en congresos

1. Model reduction and artificial intelligence techniques for surrogate and data-assisted
models in computational engineering Eccomas Young Investigators Conference
2021 Valencia, España; ONLINE. Sesión coorganizada con Alberto Badías y Matteo
Giacomini en julio de 2021.

A.5.6 Diseminación general

Los resultados de esta tesis se han mostrado públicamente como vídeos en la plataforma
Youtube:

• Self-learning digital twins for sloshing fluids. https://www.youtube.com/watch?
v=d1JyhPNkLkU&t=1s

• Physics perception in sloshing scenes. https://www.youtube.com/watch?v=
Qlb1VpWRVaQ

• Physics-informed Reinforcement Learning for perception and reasoning about fluids.
https://www.youtube.com/watch?v=ikPgZMpsCFk&t=4s

Además, el trabajo ha sido diseminado para una audiencia más amplia en seminarios,
entrevistas de radio, y artículos publicados en prensa local (ver anexo B).

A.5.7 Software libre

Cualquier persona interesada puede consultar las bases de datos empleadas en la sigu-
iente cuenta de GitHub bajo licencia general commons en el siguiente enlace https:
//github.com/beatrizmoya.

• Fluidos computacionales. https://github.com/beatrizmoya/sloshingfluids

• Fluidos reales. https://github.com/beatrizmoya/RLfluidperception
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A.6 Estancias de doctorado

La formación se ha complementado con una estancia de doctorado en un centro ex-
tranjero para expandir los conocimientos adquiridos, así como hacer una contribución
al grupo receptor. A continuación se detalla un resumen del trabajo realizado.

• Supervisor: Dr. Jan S. Hesthaven.

• École Polytechnique Federal de Lausanne (EPFL).

• Fecha: desde el 1 de septiembre de 2021 hasta el 28 de febrero de 2022 (181 días).

• Resumen de la estancia:

El departamento de matemática computacional y simulación de la escuela de cien-
cias básicas (MCSS) en la universidad EPFL, Lausana, Suiza, centra su actividad en la
aplicación y evaluación de métodos computacionales para problemas dependientes
del tiempo y parametrizados en derivadas parciales de alto orden. Esta investigación
incluye trabajos en métodos de reducción de orden, Galerkin discontinuo y méto-
dos espectrales, problemas multiescalada, ecuaciones diferenciales fraccionadas, y
el uso de aprendizaje automático. El último se combina con inteligencia artificial y
conocimiento de la física para acelerar y optimizar técnicas existentes. La aplicación
a problemas es diversa, principalmente relacionada con aplicaciones reales (electro-
magnetismo, física de plasma, combustión o geociencia). Puede encontrarse más
información en https://www.epfl.ch/labs/mcss/

La propuesta de investigación estaba relacionada con el estudio y desarrollo de técni-
cas avanzadas de reducción de modelos combinadas con técnicas de machine learn-
ing. Finalmente, el trabajo se orientó a la reducción de modelos en físicas comple-
jas expresados en mallas no estructuradas con técnicas de machine learning que se
adaptan a las condiciones geométricas del problema. Este trabajo ha sido una co-
laboración con un trabajador en un post-doctorado en el grupo, Federico Pichi, para
trabajar en problemas de bifurcación. Las tareas principales han sido:

– Estudio del estado del arte con énfasis en redes convolucionales, y su aplicación
en problemas cartesianos.

– Análisis y aplicación de métodos nuevos en mallas desestructuradas.

– Estudio de métodos de aprendizaje profundo con sesgos geométricos, específi-
camente redes de grafos.

– Propuesta de una técnica de reducción basada en grafos.

– Evaluación del método en dominios físicos complejos.

– Preparación de informed de resultados.
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Además, el candidato ha participado en varias actividades y workshops en la universidad
EPFL:

• Digital twins days.

• Swiss Numerics Day.

• Participation en charlas del departamento, con una presentación final del trabajo del
candidato.

La colaboración produjo varios resultados, en particular haciendo hincapié en las redes
de grafos en el contexto de la reducción de modelos. Los resultados de este trabajo son
presentados en un resumen para estudiar una posible contribución a revista basada en
dichos resultados.
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Appendix B

Artículo de divulgación:
Aprender a razonar, el ser o no
ser de la robótica

• Aprender a razonar, el ser o no ser de la robótica. Heraldo de Aragón, suplemento
Tercer Milenio. 20 noviembre 2021.

Los niños aprenden cómo funciona el mundo observando, experimentando y jugando.
Así desarrollan la intuición y el razonamiento. ¿Podría llegar a hacer esto un robot? Las
máquinas autónomas son uno de los grandes desafíos científicos del siglo XXI. Para su
desarrollo es necesario diseñar sistemas que les ayuden a percibir y entender el mundo
que les rodea de una manera parecida a la humana. Parte de la estrategia en inteligen-
cia artificial de la Universidad de Zaragoza orienta su trabajo hacia el desarrollo de estos
sistemas.

Ver, razonar y aprender son tres habilidades inherentes de las personas. El cerebro hu-
mano procesa cada imagen captada por los ojos en 13 milésimas de segundo y con ellas
hace una foto de la realidad y sus leyes físicas. Este mecanismo nos permite aprender
cuando somos niños, y se mantiene activo en la edad adulta: “¿Se caerá la torre de blo-
ques? ¿Qué ocurre si lanzo una pelota?”.

Para hacer estas predicciones, nuestro cerebro realiza rápidas simulaciones basadas en
la información que ha aprendido y los principios físicos que ha deducido. El desarrollo de
esta intuición es también de gran interés en la robótica. El objetivo de estos trabajos es
crear robots que sean independientes y aprendan a razonar sobre el mundo que los rodea.

Para que los robots interactúen con el entorno no solo queremos controlar sus propios
movimientos, sino también las consecuencias de sus actos, y eso se consigue evaluándolas
en tiempo real con una simulación del mundo que imite sus sentidos y la percepción de
lo que ocurre a su alrededor. Desde el laboratorio en Inteligencia Artificial del Instituto
de Investigación en Ingeniería de Aragón se desarrolla una investigación para convertir
los valores de los píxeles de las imágenes en información que entienda un ordenador. El
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objetivo es predecir el comportamiento de líquidos, muy presentes en tareas de cuidado y
procesos industriales, para poder tomar decisiones informadas. ¿Pero qué distingue esta
tecnología de otras?

Los trabajos existentes tienen dos problemas: la carencia de física, que puede resultar
en situaciones incongruentes, y sus largos tiempos de cómputo para tomar decisiones.
Esta investigación afronta esos retos para dar una solución que, además de estar dentro
de los límites de la física, pueda dar una respuesta en tiempo real.

¿Qué son los gemelos digitales?

Para que un robot comprenda el mundo es necesario simularlo, es decir, crear una copia
virtual para traducirlo al lenguaje de un ordenador. Los gemelos digitales son copias de
máquinas, productos o servicios que se comportan de manera idéntica a su parte real.
Con ellos aprendemos la respuesta de un sistema sin necesidad de alterar la copia ori-
ginal. Por ejemplo, podemos probar la acción de un medicamento en el gemelo digital
de un corazón humano para comprobar si va a ser efectivo. Entre los gemelos digitales,
distinguimos los gemelos vivos, que son aquellos que reaccionan a la vez o incluso más
rápido que la parte real. Esta tecnología permite adelantarse a posibles problemas y dar
soluciones preventivas. Diseñando gemelos vivos de líquidos, un robot interpreta lo que
está manipulando.

¿Cuál es el próximo reto de los robots inteligentes?

Lejos de ser sustitutos, los robots independientes se crean para asistir a las personas en
tareas que van desde lo cotidiano hasta lo peligroso, pero aún quedan grandes retos a los
que hacer frente en su desarrollo. A pesar de tener acceso a grandes cantidades de datos,
en ocasiones los que necesitamos son inaccesibles o difíciles de conseguir. Por tanto, es
necesario crear sistemas que recuperen la información importante y que no sea medible
para avanzar en el desarrollo de aplicaciones.

A su vez, aunque los modelos de percepción existentes pueden ser precisos, pueden
darse situaciones fuera de su rango de aprendizaje. Los sistemas inteligentes deben evolu-
cionar hacia modelos adaptativos capaces de detectar que el modelo no se ajusta comple-
tamente a la realidad que percibe y corregirse. Esto es lo que se llama un gemelo híbrido.

¿Hasta dónde llega la ciencia de datos?

En la era del internet de las cosas existen millones de datos que podemos aprovechar,
pero también es necesario aprender a trabajar con este volumen de información: ¿Qué
información dan los datos? ¿Qué conocimiento esconden?

Un modelo es la réplica matemática de un fenómeno real con el cual queremos traba-
jar. Los modelos aprendidos a partir de datos, en nuestro caso imágenes, son cada vez
más comunes y se han visto fuertemente influenciados por las últimas tendencias en in-
teligencia artificial.

En particular, las redes neuronales son estructuras que imitan las conexiones cerebrales
en el proceso de aprendizaje. A pesar de su poder, existen inconvenientes en su uso. Las
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Figure B.1: Representación del ciclo cognitivo para la interpretación de dinámica de flui-
dos

redes encuentran una solución buena con la información de la que disponen, pero puede
no ser la más óptima. Incorporar conocimientos de la física adquiridos durante siglos de
avances científicos es la clave para guiar el aprendizaje de aquello que intentamos mo-
delar. Pero trabajar con esta cantidad de datos podría ser computacionalmente inviable.
Entre las técnicas matemáticas que forman la ciencia de datos se encuentran las llamadas
técnicas de reducción de modelos, que analizan la información real que dan los datos para
reducir su complejidad y aprender un sistema más sencillo pero con la misma información.
Así podemos lograr tiempos de respuesta en tiempo real.

Publicado en https://www.heraldo.es/noticias/aragon/2021/11/20/
aprender-a-razonar-el-ser-o-no-ser-de-la-robotica-1534983.html
Published in https://www.heraldo.es/noticias/aragon/2021/11/20/
aprender-a-razonar-el-ser-o-no-ser-de-la-robotica-1534983.html
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Figments of reality

The following picture, named Figments of reality, was finalist in the Arts and Science con-
test in the World Congress in Computational Mechanics 2020:
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Appendix D

Abbreviations

• AE: autoencoder

• AI: Artificial Intelligence

• AGI: artificial general intelligence

• ANN: Artificial Neural Network

• AR: Augmented Reality

• AV: Augmented Virtuality

• CNN: Convolutional Neural Network

• DMD: Dynamic mode decomposition

• EIM: Empirical Interpolation Method

• fps: frames per second

• GPU: Graphics Processing Unit

• IA: Intelligence Augmentation

• k-PCA: kernel Principal Component Analysis

• k-PGD: kernel Principal Generalized Decomposition

• LDA: Linear Discriminant Analysis

• ML: Machine Learning

• MOR: Model Order Reduction

• MR: Mixed Reality

• NRSfM: Non-rigid Structure from Motion

• PCA: Principal Component Analysis
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• PDE: Partial Derivative Equation

• PGD: Proper Generalized Decomposition

• PINNs: Physically Informed Neural Networks

• RB: Reduced Basis

• RL: reinforcement learning

• RMSE: Root Mean Square Error

• RNN: Recurrent Neural Network

• RR: Real Reality

• rs-PGD: regularized Proper Generalized Decomposition

• SINDy: Sparse identification of non-linear dynamics

• s-PGD: sparse Proper Generalized Decomposition

• s2-PGD: doubly sparse Proper Generalized Decomposition

• SPNN: Structure-Preserving Neural Networks

• SfM: Structure from Motion

• SLAM: Simultaneous Localization And Mapping

• SVD: Singular Value Decomposition

• VR: Virtual Reality
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