155,481 research outputs found

    Gesture based human-computer interface for 3D design

    Get PDF
    modeling are amongst the most important fields of interest in current computer vision research. However, traditional hand recognition systems can only operate in constrained environments using coloured gloves or static backgrounds and do not allow for 3D object manipulation. The goal of this research is to develop real-time camera based solutions to control 3D modeling applications using natural hand gestures

    Vision-based hand gesture interaction using particle filter, principle component analysis and transition network

    Get PDF
    Vision-based human-computer interaction is becoming important nowadays. It offers natural interaction with computers and frees users from mechanical interaction devices, which is favourable especially for wearable computers. This paper presents a human-computer interaction system based on a conventional webcam and hand gesture recognition. This interaction system works in real time and enables users to control a computer cursor with hand motions and gestures instead of a mouse. Five hand gestures are designed on behalf of five mouse operations: moving, left click, left-double click, right click and no-action. An algorithm based on Particle Filter is used for tracking the hand position. PCA-based feature selection is used for recognizing the hand gestures. A transition network is also employed for improving the accuracy and reliability of the interaction system. This interaction system shows good performance in the recognition and interaction test

    Toward natural interaction in the real world: real-time gesture recognition

    Get PDF
    Using a new hand tracking technology capable of tracking 3D hand postures in real-time, we developed a recognition system for continuous natural gestures. By natural gestures, we mean those encountered in spontaneous interaction, rather than a set of artificial gestures chosen to simplify recognition. To date we have achieved 95.6% accuracy on isolated gesture recognition, and 73% recognition rate on continuous gesture recognition, with data from 3 users and twelve gesture classes. We connected our gesture recognition system to Google Earth, enabling real time gestural control of a 3D map. We describe the challenges of signal accuracy and signal interpretation presented by working in a real-world environment, and detail how we overcame them.National Science Foundation (U.S.) (award IIS-1018055)Pfizer Inc.Foxconn Technolog

    USING HAND RECOGNITION IN TELEROBOTICS

    Get PDF
    The objective of this project is to recognize selected hand gestures and imitate the recognized hand gesture using a robot. A telerobotics system that relies on computer vision to create the human-machine interface was build. Hand tracking was used as an intuitive control interface, as it represents a natural interaction medium. The system tracks the hand of the operator and the gesture it represents, and relays the appropriate signal to the robot to perform the respective action, in real time. The study focuses on two gestures, open hand, and closed hand, as the NAO robot is not equipped with a dexterous hand. Numerous object recognition algorithms were compared and the SURF based object detector was used. The system was successfully implemented, and was able to recognise the two gestures in 3D space using images from a 2D video camera

    3D Hand Pose Estimation with Neural Networks

    Get PDF
    We propose the design of a real-time system to recognize and interprethand gestures. The acquisition devices are low cost 3D sensors. 3D hand pose will be segmented, characterized and track using growing neural gas (GNG) structure. The capacity of the system to obtain information with a high degree of freedom allows the encoding of many gestures and a very accurate motion capture. The use of hand pose models combined with motion information provide with GNG permits to deal with the problem of the hand motion representation. A natural interface applied to a virtual mirrorwriting system and to a system to estimate hand pose will be designed to demonstrate the validity of the system
    corecore