22,372 research outputs found

    Multisensor Poisson Multi-Bernoulli Filter for Joint Target-Sensor State Tracking

    Full text link
    In a typical multitarget tracking (MTT) scenario, the sensor state is either assumed known, or tracking is performed in the sensor's (relative) coordinate frame. This assumption does not hold when the sensor, e.g., an automotive radar, is mounted on a vehicle, and the target state should be represented in a global (absolute) coordinate frame. Then it is important to consider the uncertain location of the vehicle on which the sensor is mounted for MTT. In this paper, we present a multisensor low complexity Poisson multi-Bernoulli MTT filter, which jointly tracks the uncertain vehicle state and target states. Measurements collected by different sensors mounted on multiple vehicles with varying location uncertainty are incorporated sequentially based on the arrival of new sensor measurements. In doing so, targets observed from a sensor mounted on a well-localized vehicle reduce the state uncertainty of other poorly localized vehicles, provided that a common non-empty subset of targets is observed. A low complexity filter is obtained by approximations of the joint sensor-feature state density minimizing the Kullback-Leibler divergence (KLD). Results from synthetic as well as experimental measurement data, collected in a vehicle driving scenario, demonstrate the performance benefits of joint vehicle-target state tracking.Comment: 13 pages, 7 figure

    Real-time Multiple People Tracking with Deeply Learned Candidate Selection and Person Re-Identification

    Full text link
    Online multi-object tracking is a fundamental problem in time-critical video analysis applications. A major challenge in the popular tracking-by-detection framework is how to associate unreliable detection results with existing tracks. In this paper, we propose to handle unreliable detection by collecting candidates from outputs of both detection and tracking. The intuition behind generating redundant candidates is that detection and tracks can complement each other in different scenarios. Detection results of high confidence prevent tracking drifts in the long term, and predictions of tracks can handle noisy detection caused by occlusion. In order to apply optimal selection from a considerable amount of candidates in real-time, we present a novel scoring function based on a fully convolutional neural network, that shares most computations on the entire image. Moreover, we adopt a deeply learned appearance representation, which is trained on large-scale person re-identification datasets, to improve the identification ability of our tracker. Extensive experiments show that our tracker achieves real-time and state-of-the-art performance on a widely used people tracking benchmark.Comment: ICME 201

    Simple yet efficient real-time pose-based action recognition

    Full text link
    Recognizing human actions is a core challenge for autonomous systems as they directly share the same space with humans. Systems must be able to recognize and assess human actions in real-time. In order to train corresponding data-driven algorithms, a significant amount of annotated training data is required. We demonstrated a pipeline to detect humans, estimate their pose, track them over time and recognize their actions in real-time with standard monocular camera sensors. For action recognition, we encode the human pose into a new data format called Encoded Human Pose Image (EHPI) that can then be classified using standard methods from the computer vision community. With this simple procedure we achieve competitive state-of-the-art performance in pose-based action detection and can ensure real-time performance. In addition, we show a use case in the context of autonomous driving to demonstrate how such a system can be trained to recognize human actions using simulation data.Comment: Submitted to IEEE Intelligent Transportation Systems Conference (ITSC) 2019. Code will be available soon at https://github.com/noboevbo/ehpi_action_recognitio
    • …
    corecore