
Split-and-Match: A Bayesian Framework for
Vehicle Re-identification in Road Tunnels
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Abstract

Vehicle re-identification is key to keep track of vehicles monitored by a multi-
camera network with non-overlapping views. In this paper, we propose a prob-
abilistic framework based on a two-step strategy that re-identifies vehicles in
road tunnels. The first step consists of splitting the re-identification problem by
connecting groups of vehicles observed in different cameras using certain motion
and appearance criteria. In the second step, we build a Bayesian model that
finds the optimal assignment between vehicles of connected groups. Descrip-
tors like trace transform signatures, lane change, and motion discrepancies are
used to derive our probabilistic framework. Experimental tests reveal that con-
nected groups derived from the first step are composed of 4 vehicles on average.
This allow us to constrain the number of candidate matches and increase the
chances of getting the correct match. In the second step, our Bayesian model
succeeds in matching vehicles among candidates with very similar appearance
and under uneven illumination conditions. In general, our system reports a re-
identification accuracy of 92% using a nearest-neighbor matcher, and 98% using
a one-to-one matcher. These results outperform previous works and encourage
us to further develop our solution for other re-identification applications.

Keywords: Vehicle matching, Multicamera tracking, Tunnel surveillance,
Non-overlapping cameras, Trace transform.

1. Introduction

Tunnel surveillance is of utmost importance for transportation authorities
because the risk of being killed in a tunnel accident is twice as high as in open
roads (Naussbaumer, 2007). One factor that increases the fatalities in tunnels
is the risk of crashing into the tunnel walls. Another factor is the risk of fire
because the chances of death by suffocation and burning increases in confined

∗Corresponding author: Tel.:+3292644226, Fax: +3292644295.
Email address: Andres.FriasVelazquez@telin.ugent.be (Andrés Fŕıas-Velázquez)
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Figure 1: Example of a multicamera setup for tunnel surveillance with non-overlapping views.
Vehicle re-identification is needed to correctly associate each of the vehicles across different
cameras installed in the tunnel.

spaces. To improve the security in tunnels, multicamera surveillance systems
have been extensively deployed to monitor traffic activity. The intention is
to provide valuable information to security and emergency corps on hazardous
situations in a timely fashion.

A downside of a multicamera surveillance system is the considerable amount
of video data generated and its storage. As a tunnel length may reach up to
25 km, hundreds of cameras and human operators are needed to have a full
coverage of the tunnel. To minimize the cost of the multicamera network, its
maintenance, and data flow, the camera array is placed with non-overlapped
Fields of View (FoV), as shown in Fig. 1. In exchange to these benefits, the
identity of the vehicles is lost while passing through the blind zone due to the
lack of tracking information. Consequently, it is necessary to perform an identity
handover or re-identification to associate the tracking information from corre-
sponding vehicles. In practice, this re-identification is key to detect incidents in
areas not covered by cameras. For example, collisions and broken-down vehicles
can be detected when a vehicle is seen by one camera, but not by the next one
after a certain time. Re-identification is also crucial to keep track of vehicles
that pose a high risk to the tunnel safety, such as trucks carrying dangerous
goods. By knowing the position of dangerous vehicles in the tunnel, proper
measures can be taken in case of accident.

Even though vehicle matching has been extensively studied in the last dec-
ade, dealing with strong illumination and appearance variations remain major
challenges. In road tunnels for example, illumination is not isotropically dis-
tributed, causing shades and drastic changes on the appearance of the vehicles.
Moreover, head and rear lights are normally turned on, which introduce lo-
cal illumination changes in the scene. All these disturbances turn the vehicle
re-identification into a very challenging problem, as illustrated in Fig. 2.

In this work, we propose a Bayesian framework that jointly exploits the
appearance and motion information of vehicles to perform a fast and robust
re-identification. A simple example illustrating our re-identification approach
is presented in Fig. 3. The proposed framework is basically composed of two
steps: The first step, called Matching Problem Decomposition (MPD), splits
the re-identification problem into several matching subproblems based on a sta-
tistical hypothesis test. Each subproblem represents the assignment problem
of a group of vehicles observed in different cameras. The second step, called
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Figure 2: Illustration of the re-identification challenges faced in a tunnel. The first three rows
of each column show images of the same vehicle captured in three different cameras. The last
row shows vehicles that look quite similar to their counterparts found in every column, but
they come from a different vehicle. We name these distractors masqueraders. In columns A,
B, and C we can see the similarity between corresponding images and masqueraders, which
may lead to false alarm matches. Moreover, in columns D and E we can see that scale and
pose changes may also cause mismatches. Finally, in columns F and G we can observe the
impact of vehicle lights on the appearance of the vehicles.
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a3 a4
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b1 b2 b3 b4
b5

Cam 1

Cam 2

(a) Step 1: Matching problem decomposition

a1 a3
a2 a4

a5

b1 b3 b2 b4
b5

Cam 1

Cam 2

(b) Step 2: Vehicle assignment

Figure 3: A simple example of our two-step strategy performing the vehicle re-identification
between adjacent cameras. In Fig. 3(a) we can see a graph that shows the first step of our
strategy, called matching problem decomposition. The vertices labeled as a and b represent
the vehicles observed in camera 1 and 2, respectively. The edges of the graph represent the
candidate matches resulting from a statistical hypothesis test. With this information, we find
the connected components of the graph like those formed with solid and dashed edges that we
call matching subproblems. In Fig. 3(b) we can see another graph that represents the second
step of our strategy, referred to as vehicle assignment. In this stage, a MAP estimation is
used to get the best bijective assignment for each matching subproblem.

Vehicle Assignment (VA), finds the best bijective assignment for each matching
subproblem using a Maximum-a-Posteriori (MAP) estimation. The posterior
probability is built with descriptors based on appearance and motion cues.

Considering the challenging illumination conditions in tunnels, the fusion of
appearance and motion information plays a key role in obtaining an optimal re-
identification performance. The proposed spatio-temporal model is described in
terms of several motion features related to the entry and exit points of the fields
of view like lane change, speed, displacement, and transition time. Moreover, we
assume that vehicles move from camera to camera following a linear acceleration
model. This assumption holds for the traffic dynamics encountered in road
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tunnels, since the flow is normally unidirectional and the road between cameras
is usually straight. To evaluate the consistency of the motion data with the
kinematic model, we propose a descriptor called spatial discrepancy. With this
descriptor we expect to discard unlikely matches and reduce the number of
possible assignments.

Our appearance model is based on trace transform signatures (Petrou and
Kadyrov, 2004). These image descriptors robustly deal with illumination and
affine pose variations. The signatures, also called circus functions, are compared
between images to yield a similarity measure. Also, we propose an appearance
descriptor based on corner point detection to measure the shape complexity of
the vehicles. This feature intends to describe the type of vehicle, either car or
truck, to prevent matching vehicles of different kind. Color information is not
available in the videos analyzed in this paper, but if available, color descriptors
such as the hue histogram and color names (Van de Weijer et al., 2009) can be
easily integrated into the appearance model.

The major contributions of this paper are the following: (i) Descriptors
based on spatial discrepancies and vehicle type information that verify the mo-
tion and appearance consistency of candidate matches. (ii) A preclassification
scheme that divides the re-identification problem into several matching sub-
problems. Thanks to this step, we can process each matching subproblem inde-
pendently and increase the chances of getting the correct match. (iii) A MAP
formulation that finds the optimal vehicle assignment for each matching sub-
problem. By fusing features like circus functions, spatial discrepancy, and lane
change, our re-identification method outperforms previous works based on Haar
features (Rios-Cabrera et al., 2012) and Radon-like signatures (Jelača et al.,
2013).

The rest of the paper is organized as follows: in Section 2, we present an
overview of the related work. Some insights about matching problem decompo-
sition are presented in Section 3. A detailed description of our two-step strategy
is presented in Section 4. In Section 5, an evaluation of our method and a com-
parison with previous work is presented. Finally, the conclusions of this work
are stated in Section 6.

2. Related Work

In general, the re-identification problem is considered part of the more gen-
eral multicamera tracking problem. A review of early works related to multicam-
era tracking for overlapping and non-overlapping views can be found in Javed
et al. (2008). A more recent and comprehensive review of the state-of-the-
art is presented by Wang (2013). This survey analyzes several multicamera
tracking methods in terms of their camera overlapping, network topology, mo-
tion/appearance model, and target application. We refer the reader to these
surveys to get a broad overview of the multicamera tracking literature. In the
rest of this section, we will focus on reviewing re-identification methods for
traffic surveillance with non-overlapping view cameras.
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2.1. Re-identification methods based on appearance models

Under moderate appearance variations, vehicle re-identification is posed as
a same-different classification problem by many methods based on appearance
descriptors (Ferencz et al., 2005; Shan et al., 2005a,b). That is, the discrim-
inatory information is not only extracted from the vehicle image itself, but
also from the similarities and differences among other vehicles. For instance,
Shan et al. (2005a) proposed a feature vector composed of edge-map distances
between a given vehicle and some exemplars within the same camera. Then,
feature vectors of same and different vehicles from distinct cameras are used
to build the same-different classifier. On the other hand, Ferencz et al. (2005)
built a same-different classifier based on image patches of same and different
vehicles. Features like position, edge contrast, and patch energy are used to
implement the classifier. In a previous paper (Fŕıas-Velázquez et al., 2012), we
performed an initial exploration of the vehicle re-identification problem using
trace-transform signatures (Petrou and Kadyrov, 2004). In particular, these im-
age descriptors are robust to illumination changes and affine transformations,
although some of them yield redundant information. Therefore, we performed
a feature selection analysis to identify the set functionals that return the most
salient signatures. Then, we verified them with a simple identification test by
using an unsupervised matching scheme, which is based on the similarity be-
tween signatures. In conclusion, this study served as a baseline to develop the
appearance model of the present work.

Re-identification methods based on 3D models (Guo et al., 2008; Hou et al.,
2009) better deal with large variations of pose and illumination than approaches
based on a single-view image. In a first step, the 3D methods estimate the pose
and appearance of the reference and target vehicles using 3D models. In a second
step, the vehicles are rendered in a normalized 3D space making the comparison
of the vehicles geometrically invariant. In particular, Hou et al. (2009) not only
performed the pose normalization, but also estimated the albedo to compare
the vehicles under the same illumination conditions. Note that these methods
are computationally too demanding for most real-time applications due to the
precision constraints imposed by the 3D models and the computation of the
pose estimation.

2.2. Re-identification methods based on the fusion of appearance and spatio-
temporal models

Statistical models represent a natural framework to combine multiple cues
and to pose the re-identification problem in a probabilistic fashion. For in-
stance, Javed et al. (2008) presented a multicamera tracking system based on
Maximum Likelihood (ML) estimation using space-time and appearance cues.
The appearance cues are derived from a subspace of brightness transfer func-
tions, while the space-time cues depend on physical constraints that the tracked
objects may encounter on their way. By using both appearance and motion cues,
the identification rate significantly improves in comparison with the performance
of each feature. Although this approach was not tested for traffic applications,
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it has served as inspiration to methods intended for traffic surveillance (Dixon
et al., 2009; Choe et al., 2010; Matei et al., 2011).

Multicamera vehicle tracking in large-scale networks, like those installed in
urban areas, has attracted a lot of interest in recent years. An example of
this multicamera setup is described by Dixon et al. (2009), which exploits the
structure of the urban environment to convert the 2D tracking problem into a
1D problem by generating tracklets. Then, a MAP formulation is used to infer
connected tracklets as the vehicles switch fields of view. Similarly, Matei et al.
(2011) developed a multicamera tracking method based on Multi Hypothesis
Tracking (MHT) (Reid, 1979) by incorporating appearance information into
the predictive motion model. In Choe et al. (2010), a method to analyze the
traffic flow in an urban area with low-frame rate cameras is presented. The
traffic analysis is based on detecting and tracking key vehicles to evaluate the
traffic conditions of the network. Significant contextual information such as
position, lane, orientation, and speed is fused with local image descriptors to
match the vehicles. Kogut and Trivedi (2001) presented a method for tracking
groups of vehicles in a metropolitan area. The method relies on color data and
the spatial organization of vehicles to find corresponding groups of vehicles.

Multicamera tracking for tunnel surveillance was explored by Rios-Cabrera
et al. (2012). This work aimed to detect, track, and re-identify vehicles by
sharing the same Haar features on each processing stage. These features are
primarily used by an AdaBoost cascade classifier to detect the vehicles. Then,
the features are reused to build another classifier for the identification step, but
in this case to generate a binary descriptor named vehicle fingerprint. This
descriptor is compared between vehicles yielding a similarity feature, which is
later used by a matching voting system to perform the assignment.

In our earlier work (Niño Castañeda et al., 2011), we also studied multi-
camera tracking in tunnels. In a first step, we performed the vehicle detection
and classification with an Adaboost classifier using Haar features. In a second
step, we used the vehicle detections and optical-flow data to track the vehicles
with a Kalman filter. Finally, the vehicles were matched between cameras by
comparing 1D signatures from every vehicle image. This last step was further
developed by Jelača et al. (2013). More concretely, the re-identification step is
based on Radon-like signatures to describe the appearance of the vehicles. Four
signatures were computed by finding the projections of each vehicle image at
four different angle orientations (0◦, 45◦, 90◦, 135◦). Then, the signatures of ve-
hicles observed in different cameras were compared to yield a similarity measure.
A confusion matrix was filled in with the similarity measure of every matching
combination, and the Hungarian algorithm (HA) was used to optimally solve
the one-to-one assignment.

The main differences between the re-identification methods proposed in the
present and previous paper (Jelača et al., 2013) are the following: In the present
paper, the re-identification problem is modeled with a probabilistic framework
using a hypothesis test for the split step, and a MAP estimation for the matching
step. The statistical model is built with context-rich features that verify the
motion and appearance consistency of matching vehicles. These features provide
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evidence to reduce the number of candidate matches and increase the chances
of getting the correct match. By contrast, in our previous paper, we matched
vehicles by simply comparing their image features without any probabilistic
support. These image features are composed of Radon-like signatures, which are
less robust to illumination and pose changes than the trace-transform signatures
used in the present work. Therefore, by relying only on appearance features,
the matching chances are lower than combining motion and appearance cues,
as many vehicles have similar appearance. This last statement is verified in
Section 5.3.2.

3. Insights about Matching Problem Decomposition

To effectively use a re-identification system for multicamera tracking, corre-
sponding vehicles need to be re-identified shortly after being detected in con-
secutive cameras. This kind of implementation involves additional tasks before
performing the vehicle assignment. On the one hand, we have to ensure that
corresponding vehicles have been observed in consecutive cameras at the mo-
ment of the assignment. We refer to this problem as the observation delay
problem, which arises because vehicles take some time to pass from one camera
to other. On the other hand, we have to split the re-identification problem into
smaller subproblems to restrict the possible matches and to quickly perform the
assignment. In practice, this decomposition can be performed on the basis of
time slots or batches of vehicles. Unfortunately, by splitting the re-identifica-
tion problem, corresponding vehicles may end up in different groups of vehicles
causing mismatches. Therefore, the decomposition method has to minimize this
type of mismatches, while allowing a fast re-identification with small groups of
vehicles.

In Fig. 4, we show with graphs a high-level representation of the decompo-
sition methods proposed in previous works and in this paper. In particular, the
method proposed by Rios-Cabrera et al. (2012) is depicted in Fig. 4(a). This
figure shows a fully connected graph where a matching window slides over the
graph applying a voting mechanism to perform the vehicle assignment. The win-
dow length is carefully chosen to ensure that corresponding vehicles are duly
included in the matching window. In practice, the optimal window length is
found offline by selecting the one that yields the highest re-identification rate.
In conclusion, this window-based re-identification is mostly effective if vehicles
move at a constant speed and keep a strict ordering between cameras, which is
unlikely to happen in real situations.

In Fig. 4(b), we present a graph that illustrates the method proposed in
our earlier paper (Jelača et al., 2013). Unlike Fig. 4(a), this graph is not fully
connected because a candidate match selection is applied to discard unlikely
matches. The criterion for the candidate selection establishes that every vehicle
observed in a given camera can be potentially matched with vehicles observed
within certain time frame in the previous camera. This time frame is estimated
with the maximum and minimum delay between cameras to deal with the ob-
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Figure 4: Example graphs representing the re-identification methods proposed in: (a) the
paper of Rios-Cabrera et al. (2012), (b) our previous work (Jelača et al., 2013), and (c) this
paper. The vertices labeled as a and b represent the vehicles observed in camera 1 and 2,
respectively. Every line connecting two vertices represents a candidate match. These links are
drawn with different colors to enhance their visualization. In Fig. 4(a), no candidate match
selection is used yielding a highly connected graph. In Fig. 4(b), a candidate match selection
based on the elapsed time between cameras is applied, thus reducing the number of edges of
the graph. In both Fig. 4(a) and Fig. 4(b), a matching window that slides over the graph
is used to split the re-identification problem. In Fig. 4(c), the labels C and T next to the
vertices stand for car and truck, respectively. A candidate selection using a statistical test
generates a sparsely connected graph by linking vehicles that are consistent with the motion
model and of the same type. This strategy splits the graph into smaller bipartite graphs, as
shown with dashed lines, that we call matching subproblems. Finally, the vehicle assignment
is performed once the composition of each subproblem remains stable over time.

servation delay problem. To perform the assignment, this method also uses the
sliding window and voting mechanism described in Rios-Cabrera et al. (2012).

In Fig. 4(c), we present a graph that represents the method proposed in
this paper. First, as vehicles are detected in consecutive cameras, a candidate
match selection based on a statistical test is applied. This test verifies that the
candidate matches are consistent with the motion model, and of the same type
of vehicle. The aim is to discard numerous unlikely matches while minimiz-
ing the risk of rejecting true matches. Then, vehicles with common candidate
matches are dynamically clustered to form matching subproblems. Since these
subproblems may change their composition as new vehicles are detected, the
vehicle assignment is performed once a subproblem remains stable over time
using a MAP estimation. In comparison with previous work, our method evalu-
ates each subproblem independently, and infers the correct match more robustly
than with a voting mechanism.

4. Proposed Method

In this section, we derive the two steps of our Bayesian framework to solve
the vehicle re-identification problem. The first step, called matching problem
decomposition, is described in section 4.1. The second step, called vehicle as-
signment, is explained in section 4.2.

4.1. Matching Problem Decomposition

The matching problem decomposition consists of first selecting candidate
matches for every vehicle based on features like spatial discrepancy and vehicle
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type information. This procedure will be described in section 4.1.1. Then,
based on the candidate selection, we group vehicles with common candidate
matches to compose the matching subproblems. This step will be detailed in
section 4.1.2.

4.1.1. Candidate Match Selection

A candidate match is established when a pair of similar type of vehicles
provide motion data that agree with a linear acceleration model. To evaluate
whether a given pair of vehicles is a candidate match or not, we propose a sta-
tistical hypothesis test. The null H0 and alternative H1 hypotheses are defined
as follows:

H0: The pair of vehicles is a candidate match.

H1: The pair of vehicles is not a candidate match.

The decision rule of this test is based on a candidate match probability, denoted
as Pc. This probability is derived from two probability functions that evaluate
certain motion and appearance criteria. The probability function Pκ verifies the
consistency of the motion data of a pair of vehicles with a kinematic model. On
the other hand, the probability Pa verifies that the paired vehicles are of similar
type. The subscripts κ and a refer to the kinematic and appearance evidence
on which the probabilities are based. As a result, we state that Pc = PκPa by
assuming that motion and appearance features are independent to each other.
Finally, the decision rule that determines the best hypothesis H is stated as
follows

H = Pc

H0

R
H1

Υ, (1)

where Υ is a probability threshold. In the following paragraphs we will derive
the density functions Pκ and Pa to estimate Pc.

Motion Gating Function Pκ

In order to derive Pκ, we propose a feature called spatial discrepancy. Let
us introduce the spatial discrepancy by considering Fig. 5. This figure shows
the position-time graph that relates any vehicle i observed at the exit point in
camera r with any other vehicle j observed at the entry point in camera r + 1.
The motion variables involved are the displacement sij , elapsed time tij , exit
velocity vi, and entrance velocity vj . According to the constant acceleration
model, these variables are related to each other as follows

sij =
1

2
(vi + vj)tij , (2)

and measured using the intracamera tracking information. The spatial discrep-
ancy ε evaluates the fitness between the displacement estimate sij and the
actual distance between cameras d as stated in (3). According to the error
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Figure 5: Position-time (s-t) graph showing the motion variables that relate vehicle i and
j observed in camera r and r + 1, respectively. The variables vi and vj denote the speed
of the vehicles i and j. Meanwhile sij and tij represent the displacement and elapsed time,
respectively.

analysis (Taylor, 1996), the displacement estimation can be also expressed as

sij = d̂ij + δsij , where d̂ij is the best estimate of d, and δsij is the margin of
error. By substituting this equation into (3), we rewrite the spatial discrepancy
as shown in (4).

εij = sij − d (3) εij = d̂ij − d+ δsij (4)

Note that the spatial discrepancy essentially depends on the margin error δsij
when the displacement is computed for corresponding vehicles (true matches).
Distinct vehicles (false matches), on the other hand, are expected to have dis-
crepancy values of larger deviation. These statements can be verified in Fig. 6,
where the conditional densities of the spatial discrepancy given the occurrence of
a true match (m = T ) and false match (m = F ) are presented. In both instances,
the probability density is modeled with a normal distribution N (ε;µ, σ2) of
mean µ and standard deviation σ. Note that the false match density resembles
to a uniform distribution due to its large standard deviation. The parameters
of the distributions are estimated with data from our training set, which is de-
scribed in Section 5.1. Prior probabilities of true and false matches are also
derived from our training set. The rate of true and false matches is obtained
from all matching combinations with an observation delay between 0 and 6
seconds. The lower bound verifies that the paired vehicles are chronologically
consistent. The upper bound is the maximum delay between cameras by trav-
eling at the minimum speed of 50 km/h established for the monitored tunnel.

Having established the parametric distributions of the spatial discrepancy
for true and false matches, we use the Likelihood Ratio (LR) (5) to derive the
motion gating function Pκ (6).

LRκ =
Pκ

1− Pκ

,
P (ε | m = T )P (m = T )

P (ε | m = F )P (m = F )
(5)
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Figure 7: Motion gating function Pκ.

Pκ =
LRκ

1 + LRκ
(6)

The distribution of Pκ can be observed in Fig. 7. This graph shows that the
probability of having a true match increases as the spatial discrepancy tends to
zero. Based on this probability, we can define a criterion of motion consistency
to establish candidate matches. The criterion of consistency should at least
verify that the candidate matches are chronologically consistent, that is tij > 0,
which implies that εij > −d. In section 5.2, we will evaluate the performance of
the motion gating function and its impact on the re-identification performance.

Appearance Gating Function Pa

The probability Pa aims to evaluate the vehicle type similarity between
vehicles observed in consecutive cameras based on descriptors like the size and
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the bodywork complexity of the vehicles. The size of every vehicle was estimated
with the area of its bounding box detected at the entrance of the FoV. Therefore,
we expected the area of a truck to be much larger than the one of a car. On the
other hand, the complexity descriptor Cx intends to quantify the texture and
structure of the bodywork of a vehicle by using corner detection information.
Before estimating the complexity, we applied to every image an illumination
normalization procedure (Zuiderveld, 1994) to cope with the lighting changes.
Then, the complexity was computed as the weighted mean of the Nc distances
between the position q of each corner detection and the centroid g of the vehicle
detection. In mathematical terms, it follows that

Cx =

Nc∑

n=1

wn‖qn − g‖, (7)

where w is the normalized corner score returned by the corner detector (Rosten
and Drummond, 2006). Note that as the size of a vehicle increases, the body-
work tends to be more textured and structurally more complex. Therefore,
the complexity descriptor increases with the vehicle size because the number of
corners and their dispersion around the centroid increases.

In order to derive a compact appearance descriptor, we reduced the feature
space composed by the area and complexity descriptor into a 1D feature ξ
by applying Non-parametric Discriminant Analysis (NDA)(Fukunaga, 1990).
In Fig. 8, we can see the conditional distribution of ξ given the occurrence of a
car (ν = 0) and truck (ν = 1). The distribution of the car type was modeled with
a Log-Logistic (LL) density function of median α and shape parameter β. On the
other hand, the distribution of the truck type was modeled with a Generalized
Gamma Distribution (GGD) of scale ag, shape bg, and free parameter cg. The
kernels LL(ξ;α, β) and GGD(ξ; ag, bg, cg) are described in Walck (2007), and
their parameters were estimated with data from our training set. In Fig. 8, we
can see the good separability between these distributions, which suggests a low
risk of misclassification.

To derive Pa, let ξ
r
i and ξr+1

j be the appearance descriptors of vehicle i and
j in camera r and r+1, respectively. Moreover, let ha = {0, 1} be the random
variable that states whether vehicles i and j are of the same type (ha = 1) or
not (ha = 0). Based on all these variables, we defined the likelihood ratio as in
(8) to later express Pa as in (9).

LRa =
Pa

1− Pa

,
P (ξri , ξ

r+1
j | ha = 1)P (ha = 1)

P (ξri , ξ
r+1
j | ha = 0)P (ha = 0)

(8)

Pa =
LRa

1 + LRa
(9)

The conditional distributions required by the likelihood ratio (8) can be ex-
pressed in terms of the car and truck distributions referred above by assuming
that ha = (νi ∧ νj) ∨ (¬νi ∧ ¬νj). Consequently, the conditional distribution
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Figure 9: Contour plot of the appearance gating function Pa. The probability that two vehicles
are of the same type increases as their appearance features lie within the reddish isolines.

P (ξri , ξ
r+1
j | ha = 1) when the vehicles i and j are of the same type is defined

as follows

P (ξri , ξ
r+1
j | ha = 1) = λP (ξri | νi = 0)P (ξr+1

j | νj = 0)

+ (1− λ)P (ξri | νi = 1)P (ξr+1
j | νj = 1), (10)

where λ is defined as

λ =
P 2(ν = 0)

P 2(ν = 0) + P 2(ν = 1)
. (11)

Furthermore, when ha = 0, the conditional distribution is determined as follows

P (ξri , ξ
r+1
j | ha = 0) =

1

2
P (ξri | νi = 0)P (ξr+1

j | νj = 1)

+
1

2
P (ξri | νi = 1)P (ξr+1

j | νj = 0). (12)
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B︷ ︸︸ ︷
b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

A





a1 1 1

a2 1 1

a3 1 1

a4 1 1 1 1

a5 1 1 1 1

a6 1 1 1 1

a7 1 1

a8 1 1 1 1

a9 1 1 1

a10 1 1

a11 1 1

a12 1 1

(a) Connection matrix

B︷ ︸︸ ︷
b1 b4 b5 b6 b8 b9 b2 b3 b7 b10 b11 b12

A





a1 1 1

a4 1 1 1 1

a5 1 1 1 1

a6 1 1 1 1

a8 1 1 1 1

a9 1 1 1

a2 1 1

a3 1 1

a7 1 1

a10 1 1

a11 1 1

a12 1 1

(b) Connected components

Figure 10: Example of a connection matrix that relates two sets of vehicles observed in dif-
ferent cameras (Fig. 10(a)), and its bundled form after finding the connected components
(Fig. 10(b)). The cells filled with ones denote the candidate matches after applying the crite-
rion defined in (1) to all possible matching combinations. The empty cells, on the other hand,
denote the unlikely matches. Note that in Fig. 10(a), the candidate matches are scrambled in
the matrix, making it difficult to recognize the connected components. In Fig. 10(b), we show
in different colors the connected components obtained with the algorithm described in Tarjan
(1972).

The prior probabilities referred in (8) are defined as P (ha = 1) = P 2(ν =
0) + P 2(ν = 1) and P (ha = 0) = 2P (ν = 0)P (ν = 1). In Fig. 9, we present
the contour plot that shows the isoprobability lines of the appearance gating
function (9). Note that a high probability is returned when the features ξri and
ξr+1
j most likely come from vehicles of the same type. This probability progres-
sively decreases as the features approach to the intersection of the distributions
depicted in Fig. 8. Finally, the chances practically vanish when the features
most likely come from different type of vehicle.

4.1.2. Matching Subproblems

Based on the candidate match selection, we can now group vehicles with
common candidate matches to compose the matching subproblems.

In Fig. 10(a), we can see the connection matrix that represents the bipar-
tite graph of a given set of vehicles A and B detected in camera r and r + 1,
respectively. Specifically, this matrix denotes the pairwise relationship between
vehicles after applying the hypothesis test defined in (1). Note that many un-
likely matches have been discarded thanks to the hypothesis test, yielding a
sparse connection matrix. Based on this matrix, we find the connected compo-
nents, as shown in Fig. 10(b), by using the algorithm proposed by Tarjan (1972).
Note that each connected component represents a matching subproblem.

To dynamically determine the matching subproblems, a connection matrix
keeps record of the candidate matches as the vehicles are detected. If we com-
pute the connected components of that matrix at a given time, some components
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Algorithm 4.1: StableComponents(G, cc)

comment:Determine the Stable Components SC from the
connection matrix G with connected components cc.

initialization: Get the initial connected components ccold
from the connection matrix Gold

loop



wait till detect a new vehicle in cam r + 1
assign Gold to Gnew and include the new vehicles
ccnew = ConnectedComponents(Gnew)
if exist common components between ccold and ccnew

then





compute the buffering time τb
for each common component

do





compute the stability time τs
if τs / τb ≥ ζ

then

{
remove SC from ccnew, Gnew

return (SC)
Gold = Gnew

ccold = ccnew

might not be complete due to the observation delay between cameras. These
components are called unstable, since their composition changes with the arrival
of new detected vehicles. Consequently, after finding the connected components,
it is necessary to resolve which of them remained stable over time. To identify
a stable component, we measure its stability period τs. Also, we measure the
elapsed time between the first and last vehicle included in the connection matrix,
called buffering time τb. Then, we consider a stable component if τs / τb ≥ ζ.
For our tunnel setting, we have experimentally found that a threshold ζ of
0.7 is a suitable point of operation. This procedure to dynamically split the
re-identification problem is detailed in Algorithm 4.1.

4.2. Vehicle Assignment

The optimal vehicle assignment for each matching subproblem is performed
with a Maximum-a-Posteriori (MAP) estimation. The features on which the
posterior probability is based are presented in section 4.2.1, while the model
itself is described in section 4.2.2.

4.2.1. Features

A fusion of appearance and motion features builds the MAP estimation that
finds the best bijective assignment. These features are described as follows:
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Table 1: Lane change distribution of true and false matches

Matching case (m) Number of lane changes (ℓ)
0 1 2 3

% True match 94.96 4.91 0.13 0.00
% False match 21.74 43.25 24.6 10.41

Appearance feature

According to Petrou and Kadyrov (2004), the Trace transform is a general-
ization of the Radon transform that allows one to construct image features that
are invariant to a chosen group of image transformations. Signature descrip-
tors based on the trace transform, also called circus functions, are global fea-
tures invariant to affine transformations and global illumination changes. These
features have been successfully applied in different recognition tasks (Zarpalas
et al., 2007; Kadyrov and Petrou, 2001; Goudelis et al., 2011). By comparing
the signatures Si and Sj computed from the vehicle i and j, we can evaluate
their appearance distance θij as follows

θij =
2

π
√
Ns

√√√√
Ns∑

n=1

(
arccos

(
ρmax(Si

n, S
j
n)
))2

, (13)

where ρmax indicates the maximum correlation coefficient, andNs represents the
number of signatures. The distribution of θ is modeled with a Correlation Angle
Distribution CAD(θ;ϑ, η), where ϑ and η represent the population and sample
parameters, respectively. This distribution is the arccosine transformation of
the correlation coefficient distribution described by Hotelling (1953).

The appearance feature ξ was not considered in the vehicle assignment step
because its discriminatory capabilities are more effective to distinguish between
cars and trucks rather than to re-identify vehicles directly. The fast computation
of this feature allows us to perform a quick candidate match selection, and leave
the heavier computation of the trace transform for the vehicle assignment step.
Moreover, experimental tests revealed that the re-identification results did not
improve by including the feature ξ in the assignment step.

Spatio-temporal features

Let ℓij be the discrete random variable that describes the number of lane
changes between the vehicle i and j observed in different cameras. The distri-
bution of this feature is presented in Table 1, which is estimated with data from
our training set. In this table, we can see that most vehicles do not change
lane between cameras. This behavior is expected, since most drivers remain in
the same lane for safety reasons, and few vehicles can change lane in a blind
zone not greater than 100 m. As a result, 95% of the true matches stay in
the same lane, while 78.26% of the false matches change at least one lane. In
conclusion, the lane change provides valuable evidence to discriminate among
potential matches.
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In addition to the lane information, we have also included the spatial dis-
crepancy descriptor ε into the MAP estimation. Recall that this feature conveys
important information about the motion consistency of a pair of vehicles with
the kinematic model. In section 4.2.2, we will show that the combination of
features like the spatial discrepancy and the number of lane changes creates a
strong synergic effect in solving the correspondence problem.

4.2.2. Model

In general, an assignment problem can be mathematically described by a
permutation function. Therefore, a matching subproblem with K vehicles can
be described by the permutation function φ as follows

φ =

(
1 2 · · · K
p1 p2 · · · pK

)
, (14)

where every vehicle i in camera r is assigned to vehicle pi in camera r + 1.
In order to find the best assignment, we derive a MAP estimation based on
the multivariate random variable Oφ = (O1p1

, O2p2
, ..., OKpK

) that assembles
the observation vectors Oij = (θij , εij , ℓij) of every correspondence in the as-
signment φ. Similarly, Mφ = (m1p1

,m2p2
, ...,mKpK

) gathers the binary states
mij = {T, F} that denote whether vehicle i matches (T ) or not (F ) to vehicle j.
Meanwhile, Hφ collects the candidate match hypotheses of every correspondence
in the assignment φ.

Having defined the random variables involved in our problem, we estimate
the optimal assignment φ̂ with the following MAP formulation

φ̂MAP = argmax
φ∈S

(
P (Mφ =

#”

T | Oφ,Hφ =
#”

H0)
)
, (15)

where the statements Mφ =
#”

T and Hφ =
#”

H0 imply that the K correspondences
in φ are true matches and candidate matches, respectively. The solution space
S represents the set of possible permutations. By assuming that the correspon-
dences are conditionally independent to each other, we can express the posterior
probability of (15) as follows

P (Mφ =
#”

T | Oφ,Hφ =
#”

H0) =

K∏

i=1

P (mipi
= T | Oipi

, H = H0). (16)

Then, by applying the logarithm to (16), we can rewrite (15) in its equivalent
log-posterior form as follows

φ̂MAP = argmax
φ∈S

K∑

i=1

Piφ(i), (17)

where Piφ(i) = log (P (mipi
= T | Oipi

, H = H0)). Note that the MAP estima-
tion in (17) is posed as a Linear Sum Assignment Problem (LSAP) (Burkard
et al., 2009), which can be solved with the LAPJV algorithm proposed by Jonker
and Volgenant (1987).

18



Data Distribution

In Fig. 11(a)-(d), we present the scatter plots of true and false match samples
in terms of the appearance distance, spatial discrepancy, and number of lane
changes. Note that these graphics were obtained with data from our training
set. By analyzing the scatter plots, we can see that most true matches have
a spatial discrepancy between −15 and 15. By contrast, false matches are
distributed in a larger range of discrepancy values. The distribution of samples
along θ shows that the distance between true and false matches decreases as
ℓ increases. This means that the differences between corresponding vehicles
increase due to the pose variations when changing lane. On the other hand, the
distribution of samples for different number of lane changes shows that many
true matches do not change lane, whereas most false matches change at least
one lane, as previously noted in section 4.2.1. Finally, it is worth to remark that
in Fig. 11(a) our three descriptors show a synergic effect on the separability of
true and false matches. That is, the population of false matches significantly
decreases in the range of −15 ≤ ε ≤ 15 while most true matches are found in
the same interval. Moreover, the appearance feature enhances the separability
of the distributions along θ.

Probability Map

The probability maps sketched in Fig. 11(e)-(h) show the posterior prob-
ability for different number of lane changes. Note that the probability maps
for ℓ = 2 and ℓ = 3 were estimated with density functions derived from an
imputation technique (Little and Rubin, 1986) due to the scarce number of true
matches. The imputation consists in applying a regression method to estimate
the parameters of missing densities using all the observed data.

By analyzing the probability maps along ε, we can see that the largest prob-
abilities occur when −15 ≤ ε ≤ 15. Therefore, our statistical inference gives
a higher matching probability to candidates with a strong motion consistence.
Regarding the inference along θ, the matching probability generally increases
as the appearance distance tends to zero. However, note that in Fig. 11(e)-(f)
there are regions with a large appearance distance that yield a high matching
probability. In these specific cases, the evidence provided by the spatial discrep-
ancy dominates over the appearance distance. Finally, the statistical inference
shows that the matching probability quickly decreases as the number of lane
changes increases.

5. Experimental Results

In this section we present an evaluation of our vehicle re-identification sys-
tem. First, a description of the experimental setup is presented in section 5.1.
Then, an assessment of the matching problem decomposition is presented in
section 5.2. Finally, an overall analysis of the re-identification performance is
conducted in section 5.3.
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(a) Scatter plot for ℓ = 0.
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(b) Scatter plot for ℓ = 1.
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(c) Scatter plot for ℓ = 2.
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(d) Scatter plot for ℓ = 3.
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(e) Posterior probability for ℓ = 0.
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(f) Posterior probability for ℓ = 1.
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(g) Posterior probability for ℓ = 2.
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(h) Posterior probability for ℓ = 3.

Figure 11: Scatter plots and probability maps for different number of lane changes ℓ =
{0, 1, 2, 3}. The scatter plots are depicted in the top figures, showing samples of true matches
(circles) and false matches (dots) for each instance of ℓ. In the bottom figures, we can see the
corresponding probability maps. 20



(a) Camera 1 (b) Camera 2 (c) Camera 3

Figure 12: Non-overlapping views of three consecutive cameras installed in a tunnel. The
green and red lines represent the entry and exit checkpoints of the field of view, respectively.

5.1. Experimental Setup

The video collection is composed of three sequences of 11 minutes each.
These videos are retrieved by three non-overlapping view cameras separated
83m on average, as shown in Fig. 12. A ground plane camera calibration
method (Cathey and Dailey, 2006) based on road marks is used to translate
speed and displacement measurements from image coordinates to physical units.
In relation to the video properties, the decoded frames have a spatial and tem-
poral resolution of 720 x 576 pixels and 25 fps, respectively. The color depth is
8-bit gray-scale. Regarding the traffic statistics, the number of vehicles amounts
to 564, each of them observed in the three cameras. Moreover, the traffic flow
in the tunnel was estimated at 52.18 vehicles/min.

In order to evaluate our method, we partitioned the set of 564 manually
annotated vehicles into training and testing set. The training set is composed
of 377 vehicles with their corresponding observations in each camera. This
group of vehicles was used for the estimation of the gating functions and the
posterior probability of our MAP estimation, as described in sections 4.1.1 and
4.2.2. Consequently, the remaining 187 vehicles were used for testing. In order
to also evaluate our method using automatic detections, we generate them with
the vehicle detector proposed in Fŕıas-Velázquez et al. (2011).

Before extracting the appearance descriptors, every image was preprocessed
to compensate lighting changes between cameras with an illumination normal-
ization method (Zuiderveld, 1994). The circus functions were computed using
the functionals proposed in Petrou and Kadyrov (2004). As a result, 7 T -
functionals and 3 P -functionals returned in total Ns = 21 different signatures
per vehicle. On the other hand, the complexity descriptor, based on corner de-
tections, was computed with a 9-point FAST detector (Rosten and Drummond,
2006). This detector was chosen due to its outstanding corner repeatability
between warped images.

5.2. Assessment of the Matching Problem Decomposition

In this section we evaluate the hypothesis test that rules the candidate match
selection. Moreover, we present a statistical analysis of the matching subprob-
lems generated.
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Figure 13: Empirical PR curves of the candidate match probability and motion gating func-
tion.

5.2.1. Hypothesis Test Evaluation

The performance of the hypothesis test defined in (1) is evaluated in terms
of its precision and recall rates. These scores are based on the number of true
positives tp, false positives fp, and false negatives fn as follows

Recall =
tp

tp + fn
, (18) Precision =

tp
tp + fp

. (19)

In Fig. 13, we can see the Precision vs Recall (PR) curve that evaluates the
performance of the motion gating function Pκ. Moreover, we present the PR
curve that evaluates the hypothesis test based on the candidate match proba-
bility Pc, which combines the gating functions Pκ and Pa.

The ultimate goal of the hypothesis test is to establish candidate matches
without losing any true match (recall = 1) while discarding the largest num-
ber of unlikely correspondences (precision → 1). By analyzing the motion PR
curve, we can see that the recall was maintained in 1 up to a precision of ap-
proximately 0.3. Loosely speaking, this implies that for every vehicle in camera
r, approximately 4 candidate matches are selected in camera r + 1. This is the
case if only the motion gating function Pκ were used. On the other hand, the
PR curve of the candidate match probability Pc shows the result of combining
the gating functions based on motion and appearance cues. In this case, the
recall was kept to 1 up to a precision of approximately 0.4. As a result, for every
vehicle observed in camera r, an average of 3 candidate matches are selected
in camera r + 1. In conclusion, the hypothesis test allows us to considerably
reduce the number of unlikely matches without losing any true match.

In Fig. 13, we can also see the operational point that we set for the hypothesis
test. This point corresponds to a probability threshold of Υ = 10−3, which yields
a precision of 0.36 and a recall rate of 1.
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Figure 14: Distribution of the matching subproblems in terms of their number of vehicles. Note
that most subproblems are composed of a few vehicles, thus reducing the number of possible
assignments. The first bin shows that some vehicles were already re-identified, suggesting that
the vehicle-type descriptor and the spatial discrepancy provided enough evidence to get the
correct match. On average, the matching subproblems are composed of 4 vehicles, which is
also an approximate number of candidate matches per vehicle.

5.2.2. Analysis of the matching subproblems

After selecting the candidate matches, the matching subproblems were found
as described in section 4.1.2. In Fig. 14, we present the distribution of the
matching subproblems in terms of their number of vehicles. This figure shows
that the re-identification problem is split in different matching subproblems
of small size. By contrast, previous methods based on a sliding window used a
fixed window size of 10 vehicles. This implies that each vehicle has 10 candidate
matches, whereas with our approach we have on average 4 candidate matches
per vehicle.

An important aspect to analyze of a matching subproblem is its connec-
tion matrix, which describes the matching combinations. In this matrix, some
matching combinations may be restricted, as shown in Fig. 10(b). As a result,
the number of possible assignments can be reduced, and the chances of getting
the correct match increase. In order to evaluate the chances of randomly pick
the correct assignment in a matching subproblem, we analyzed the entropy of
this event. If we assume that PR = 1/NR is the probability of getting the correct
match out of NR possible assignments, we can define the entropy E as follows

E = log2

(
1

PR

)
= log2(NR), (20)

where the subscript R denotes the connection matrix that is being evaluated. In
order to enumerate the NR permutations of a connection matrix with forbidden
combinations is necessary to derive its rook polynomial (Tucker, 2006). This
polynomial can be automatically generated by using Fielder’s algorithm (Field-
er, 2004).

An entropy analysis of the matching subproblems is addressed in Fig. 15.
In this figure, the asterisk markers show the entropy of matching subproblems
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Figure 15: Distribution of the matching subproblems in terms of their number of vehicles
and entropy. The asterisk markers show the entropy of matching subproblems of different
sizes with a full connection matrix. The cross markers show the entropy of the subproblems
returned by the decomposition step, while the circle markers denote their average entropy.
For comparative purposes, we include with a triangle and a square marker the entropy of
previous work using a sliding-window approach.

with a full connection matrix. In this case, getting the correct assignment is
very challenging because the number of permutations increases in a factorial way
with the number of vehicles. On the other hand, the cross markers show the en-
tropy of the matching subproblems returned by the decomposition step. In this
case, most of the subproblems reported a lower entropy than their equivalents
with a full connection matrix. This means that by restricting some matching
combinations we can gain some “knowledge” about the correct assignment. In-
terestingly, matching subproblems of big size lose more entropy because their
connection matrix is more sparse.

In comparison with previous methods, we found that our approach yields
an average entropy of 2.24 bits, whereas sliding window methods like in Rios-
Cabrera et al. (2012) and Jelača et al. (2013), returned an uncertainty of 15.30
bits and 18.47 bits, respectively. In summary, the entropy study reveals that our
decomposition step may significantly improve the chances of getting the correct
assignment, and thus the re-identification rate.

5.3. Re-identification Assessment

In this section, we evaluate our performance in terms of the ranking capa-
bilities of our Bayesian model to discriminate between true and false matches.
Moreover, we present a comparative analysis of our re-identification performance
in relation to previous work.

5.3.1. Match Ranking Performance

After a matching subproblem has been found, the log-posterior probabil-
ity is computed for all valid matching combinations. Then, based on this evi-
dence, we use an assignment method to finally solve the vehicle re-identification.
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Figure 16: Cumulative matching curves using a nearest neighbor matcher. The CMCs ob-
tained with the training and testing set are shown with cross and circle markers, respectively.
The curve with asterisk markers represents the CMC obtained with automatic detections.
Finally, the curve with triangle markers shows the performance of matching vehicles from
non-adjacent cameras.

For comparative purposes, we tested our performance with a Nearest Neighbor
(NN) matcher and a bijective matcher like the LAPJV algorithm (Jonker and
Volgenant, 1987). The intention is to evaluate the ranking capabilities of our
inference model using these two assignment methods. According to Bolle et al.
(2005), the ranking capabilities of a re-identification system can be assessed
with a Cumulative Matching Curve (CMC). The CMC estimates the cumu-
lative accuracy of correct identifications found within certain rank of ordered
solutions.

An assessment of the re-identification performance using the nearest neigh-
bor matcher is presented in Fig. 16. In general, the performance of a CMC
is evaluated in terms of its first ranked identification rate, and the number of
ranks need it to reach the 100% of the cumulate accuracy. In these terms, the
re-identification rate of our system is 97.5% with the training set and 92.0%
with the testing set. The performance with automatic detections reaches to
91.7%. Meanwhile, when we match vehicles from non-adjacent cameras, the
performance drops to 84.8%. In this case, note that the distance between cam-
eras is larger than the case of adjacent cameras, which increases the spatial
discrepancy and the chances that vehicles change lane and pose. In relation to
the convergence of the CMCs, we can see that all of them converge at most in
the fifth rank. This implies that all the correct matches were found within the
first five ranked solutions. The fast convergence of these curves can be explained
by two factors: 1. Most matching subproblems are composed of less than 15
vehicles, which constrains the possible assignments. 2. Our inference model
evaluates the probability of true and false matches in a consistent way.

The ranking capabilities of our inference model can be also evaluated with
the LAPJV algorithm (Jonker and Volgenant, 1987). Unlike the NN matcher,
the LAPJV algorithm performs a one-to-one assignment, and finds the optimal
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Figure 17: Cumulative matching curves using a bijective matcher. The curve with circle
markers denote the CMCs obtained with the training and testing set. The curve with asterisk
markers represents the CMC obtained with automatic detections. Finally, the curve with
triangle markers shows the performance of matching vehicles from non-adjacent cameras.

solution of the MAP formulation described in (17). In order to determine the
rank of the bijective assignments we used Murty’s algorithm (Murty, 1968).

The re-identification performance using the LAPJV algorithm can be ana-
lyzed in Fig. 17. Note that the re-identification rate increased in relation to the
NN matcher for all cases. This improvement is thanks to the MAP formulation,
which jointly optimizes the bijective assignment, and not each vehicle indepen-
dently. For the training and testing set, the CMCs reach a re-identification
performance of 100%. With automatic detections the performance is 98%. In-
terestingly, the re-identification performance between non-adjacent cameras is
95%. This is an encouraging result considering the larger distance between cam-
eras and the larger dissimilarity between vehicles. Regarding the convergence of
the CMCs, we can see that all of them converge at most in the ninth rank. Note
that the convergence is slower than with the NN matcher because a bijective
matcher has a larger solution space. Nevertheless, thanks to the small size of
the subproblems and their sparse connection matrix, our method reaches the
convergence within a few ranked solutions.

5.3.2. Comparative Analysis

Having investigated the ranking capabilities of our inference model, we com-
pared our re-identification performance with previous work. Recall that these
approaches use a sliding window to group the vehicles between cameras and
to perform the assignment. Therefore, their re-identification performance is
reported in terms of the window size chosen. Although our method does not
require a sliding window, we evaluated it using this scheme for the sake of com-
parison.

In Fig. 18, we can compare the performance of our approach with earlier work
using manual detections. Note that the matching curves reported by previous
work decrease as the window size increases. This behavior is caused by two
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Figure 18: Re-identification performance for different matching windows using manual detec-
tions. The curve with asterisk markers shows the performance reported by Rios-Cabrera et al.
(2012). The performance presented in our earlier work (Jelača et al., 2013) is depicted with
triangle markers. On the other hand, the performance curves of our Bayesian framework with
the training set (TRN) and testing set (TST) are shown with diamond and square markers,
respectively. A NN matcher is used in these last cases. Finally, the curve with cross markers
shows our performance with the training and testing set using a bijective matcher.

factors: 1. The factorial increase of the number of possible assignments with
the window size. 2. The difficulty of matching vehicles of similar appearance
within large windows. This last factor becomes more relevant for methods
based exclusively on appearance models. On the contrary, the matching curves
obtained with our Bayesian framework exhibit a transient and a steady state.
These curves reach a steady state thanks to our candidate match selection,
which significantly constrains the number of possible assignments. By using a
nearest neighbor matcher, the steady state is reached when the re-identification
is 97.5% with the training set, and 94% with the testing set. These percentages
improve to 100% by using the LAPJV matcher. It is worth to remark that all
the performance curves in Fig. 18 were estimated assuming that the vehicles
keep a strict ordering between cameras. Therefore, corresponding vehicles were
always included within the matching window, thus avoiding the observation
delay problem discussed in section 3. In a later evaluation with automatic
detections this assumption is not longer considered.

In Fig. 19 we compare the performance of our approach with previous work
using automatic detections. By analyzing the matching curves of previous meth-
ods, we can observe a faster decay than their corresponding curves in Fig. 18.
On average, the performance of these curves dropped 16%. This drop is not
only caused by the misalignments of the automatic detections, but also due to
the observation delay problem. Therefore, corresponding vehicles may not be
found within the matching window leading to mismatches. The performance
of our matching curves using the NN and LAPJV matcher are also presented
in Fig. 19. Note that these curves maintain a transient and steady state. The
steady state is reached when the re-identification rate is 92% using the NN
matcher and 98% using the LAPJV matcher. In Fig. 19, we also evaluate the
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Figure 19: Re-identification performance for different matching windows using automatic de-
tections. The curve with asterisk markers shows the performance reported by Rios-Cabrera
et al. (2012). The performance presented in our earlier work (Jelača et al., 2013) is depicted
with triangle markers. On the other hand, the curve with circle markers shows the per-
formance of the circus functions using the LAPJV matcher without any statistical support.
The matching curves with square and cross markers denote the performance of our Bayesian
framework using a NN and LAPJV matcher, respectively.

re-identification performance by only using the circus functions to match the
vehicles. The intention is to show the differences in performance when the cir-
cus functions are used alone without statistical support, and in combination
with the motion cues using our Bayesian framework. As a result, by only using
the circus functions, the performance is similar to that reported in previous
papers, and lower than the one obtained with our Bayesian framework. In con-
clusion, the performance gain of our method can be due to two factors: 1. The
candidate match selection, which restricts the possible assignments making it
easier for the appearance descriptor to discriminate among a few vehicles rather
than numerous vehicles of similar appearance. 2. The Bayesian formulation,
which effectively exploits the good separability between true and false matches
by combining motion and appearance features to infer the best assignment.

6. Conclusion

In this paper, we presented a study of the vehicle re-identification prob-
lem for a tunnel surveillance network. The proposed Bayesian framework effi-
ciently combined motion and appearance features to successfully solve the re-
identification problem. Descriptors like the spatial discrepancy and the vehicle
complexity built a statistical test that dynamically splits the re-identification
problem into small matching subproblems. By partitioning the re-identification
problem, we showed that the probability of getting the correct match signif-
icantly increased in comparison with sliding window methods. On the other
hand, descriptors like the circus functions, spatial discrepancy, and lane change
were used to derive a MAP formulation to find the optimal assignment for each
matching subproblem. An evaluation of this inference model showed that the
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correct assignment of the matching subproblems was found within the first 7 out
of 120 ranked solutions. Also, the evaluation yielded an overall re-identification
rate of 100% and 98% using manual and automatic detections, respectively. This
represents an increase of 5% in comparison with our earlier work. Finally, we
conclude that the proposed method should be validated in a larger multicamera
network and tested for other re-identification applications.
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