373 research outputs found

    A general approach to backwards-compatible delivery of high dynamic range images and video

    Full text link

    Summative Stereoscopic Image Compression using Arithmetic Coding

    Get PDF
    Image compression targets at plummeting the amount of bits required for image representation for save storage space and speed up the transmission over network. The reduction of size helps to store more images in the disk and take less transfer time in the data network. Stereoscopic image refers to a three dimensional (3D) image that is perceived by the human brain as the transformation of two images that is being sent to the left and right human eyes with distinct phases. However, storing of these images takes twice space than a single image and hence the motivation for this novel approach called Summative Stereoscopic Image Compression using Arithmetic Coding (S2ICAC) where the difference and average of these stereo pair images are calculated, quantized in the case of lossy approach and unquantized in the case of lossless approach, and arithmetic coding is applied. The experimental result analysis indicates that the proposed method achieves high compression ratio and high PSNR value. The proposed method is also compared with JPEG 2000 Position Based Coding Scheme(JPEG 2000 PBCS) and Stereoscopic Image Compression using Huffman Coding (SICHC). From the experimental analysis, it is observed that S2ICAC outperforms JPEG 2000 PBCS as well as SICHC

    Diseño, implementación y optimización del sistema de compresión de imágenes sobre el ordenador de a bordo del proyecto de nanosátelite Eye-Sat

    Get PDF
    Eye-Sat es un Proyecto de nano satélites, dirigido por el CNES (Centre National d’Etudes Spatiales) y desarrollado principalmente por estudiantes de varias escuelas de ingeniería del territorio francés. El objetivo de este pequeño telescopio no solo radica en la oportunidad de realizar la demostración de distintos dispositivos tecnológicos, sino que también tiene como misión la adquisición de fotografías en la bandas de color e infrarrojo de la vía Láctea, así como el estudio de la intensidad y polarización de la luz Zodiacal. Los requerimientos de la misión exigen el desarrollo de un algoritmo de compresión de imágenes sin pérdidas para las imágenes “Color Filter Array” CFA (Bayer) e infrarrojas adquiridas por el satélite. Como miembro de la comisión consultativa para los sistemas espaciales, CNES ha seleccionado el estándar CCSDS-123.0-B como algoritmo base para cumplir los requerimientos de la misión. A este algoritmo se le añadirán modificaciones o mejoras, adaptadas a las imágenes tipo, con el fin de mejorar las prestaciones de compresión y de complejidad. La implementación y la optimización del algoritmo será desarrollada sobre la plataforma Xilinx Zynq® All Programmable SoC, el cual incluye una FPGA y un Dual-core ARM® Cortex™-A9 processor with NEONTM DSP/FPU Engine

    Investigation of Different Video Compression Schemes Using Neural Networks

    Get PDF
    Image/Video compression has great significance in the communication of motion pictures and still images. The need for compression has resulted in the development of various techniques including transform coding, vector quantization and neural networks. this thesis neural network based methods are investigated to achieve good compression ratios while maintaining the image quality. Parts of this investigation include motion detection, and weight retraining. An adaptive technique is employed to improve the video frame quality for a given compression ratio by frequently updating the weights obtained from training. More specifically, weight retraining is performed only when the error exceeds a given threshold value. Image quality is measured objectively, using the peak signal-to-noise ratio versus performance measure. Results show the improved performance of the proposed architecture compared to existing approaches. The proposed method is implemented in MATLAB and the results obtained such as compression ratio versus signalto- noise ratio are presented

    Point cloud data compression

    Get PDF
    The rapid growth in the popularity of Augmented Reality (AR), Virtual Reality (VR), and Mixed Reality (MR) experiences have resulted in an exponential surge of three-dimensional data. Point clouds have emerged as a commonly employed representation for capturing and visualizing three-dimensional data in these environments. Consequently, there has been a substantial research effort dedicated to developing efficient compression algorithms for point cloud data. This Master's thesis aims to investigate the current state-of-the-art lossless point cloud geometry compression techniques, explore some of these techniques in more detail and then propose improvements and/or extensions to enhance them and provide directions for future work on this topic

    Data hiding in multimedia - theory and applications

    Get PDF
    Multimedia data hiding or steganography is a means of communication using subliminal channels. The resource for the subliminal communication scheme is the distortion of the original content that can be tolerated. This thesis addresses two main issues of steganographic communication schemes: 1. How does one maximize the distortion introduced without affecting fidelity of the content? 2. How does one efficiently utilize the resource (the distortion introduced) for communicating as many bits of information as possible? In other words, what is a good signaling strategy for the subliminal communication scheme? Close to optimal solutions for both issues are analyzed. Many techniques for the issue for maximizing the resource, viz, the distortion introduced imperceptibly in images and video frames, are proposed. Different signaling strategies for steganographic communication are explored, and a novel signaling technique employing a floating signal constellation is proposed. Algorithms for optimal choices of the parameters of the signaling technique are presented. Other application specific issues like the type of robustness needed are taken into consideration along with the established theoretical background to design optimal data hiding schemes. In particular, two very important applications of data hiding are addressed - data hiding for multimedia content delivery, and data hiding for watermarking (for proving ownership). A robust watermarking protocol for unambiguous resolution of ownership is proposed
    corecore