1,058 research outputs found

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Augmenting forearm crutches with wireless sensors for lower limb rehabilitation

    No full text
    Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage

    Recent Innovations in Footwear and the Role of Smart Footwear in Healthcare—A Survey

    Get PDF
    © 2024 The Author(s). Licensee MDPI, Basel, Switzerland. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Smart shoes have ushered in a new era of personalised health monitoring and assistive technologies. Smart shoes leverage technologies such as Bluetooth for data collection and wireless transmission, and incorporate features such as GPS tracking, obstacle detection, and fitness tracking. As the 2010s unfolded, the smart shoe landscape diversified and advanced rapidly, driven by sensor technology enhancements and smartphones’ ubiquity. Shoes have begun incorporating accelerometers, gyroscopes, and pressure sensors, significantly improving the accuracy of data collection and enabling functionalities such as gait analysis. The healthcare sector has recognised the potential of smart shoes, leading to innovations such as shoes designed to monitor diabetic foot ulcers, track rehabilitation progress, and detect falls among older people, thus expanding their application beyond fitness into medical monitoring. This article provides an overview of the current state of smart shoe technology, highlighting the integration of advanced sensors for health monitoring, energy harvesting, assistive features for the visually impaired, and deep learning for data analysis. This study discusses the potential of smart footwear in medical applications, particularly for patients with diabetes, and the ongoing research in this field. Current footwear challenges are also discussed, including complex construction, poor fit, comfort, and high cost.Peer reviewe

    Choice of Piezoelectric Element over Accelerometer for an Energy-Autonomous Shoe-Based System

    Get PDF
    Shoe-based wearable sensor systems are a growing research area in health monitoring, disease diagnosis, rehabilitation, and sports training. These systems—equipped with one or more sensors, either of the same or different types—capture information related to foot movement or pressure maps beneath the foot. This captured information offers an overview of the subject’s overall movement, known as the human gait. Beyond sensing, these systems also provide a platform for hosting ambient energy harvesters. They hold the potential to harvest energy from foot movements and operate related low-power devices sustainably. This article proposes two types of strategies (Strategy 1 and Strategy 2) for an energy-autonomous shoe-based system. Strategy 1 uses an accelerometer as a sensor for gait acquisition, which reflects the classical choice. Strategy 2 uses a piezoelectric element for the same, which opens up a new perspective in its implementation. In both strategies, the piezoelectric elements are used to harvest energy from foot activities and operate the system. The article presents a fair comparison between both strategies in terms of power consumption, accuracy, and the extent to which piezoelectric energy harvesters can contribute to overall power management. Moreover, Strategy 2, which uses piezoelectric elements for simultaneous sensing and energy harvesting, is a power-optimized method for an energy-autonomous shoe system

    An Overview of Smart Shoes in the Internet of Health Things: Gait and Mobility Assessment in Health Promotion and Disease Monitoring

    Get PDF
    New smart technologies and the internet of things increasingly play a key role in healthcare and wellness, contributing to the development of novel healthcare concepts. These technologies enable a comprehensive view of an individual’s movement and mobility, potentially supporting healthy living as well as complementing medical diagnostics and the monitoring of therapeutic outcomes. This overview article specifically addresses smart shoes, which are becoming one such smart technology within the future internet of health things, since the ability to walk defines large aspects of quality of life in a wide range of health and disease conditions. Smart shoes offer the possibility to support prevention, diagnostic work-up, therapeutic decisions, and individual disease monitoring with a continuous assessment of gait and mobility. This overview article provides the technological as well as medical aspects of smart shoes within this rising area of digital health applications, and is designed especially for the novel reader in this specific field. It also stresses the need for closer interdisciplinary interactions between technological and medical experts to bridge the gap between research and practice. Smart shoes can be envisioned to serve as pervasive wearable computing systems that enable innovative solutions and services for the promotion of healthy living and the transformation of health care

    Master of Science

    Get PDF
    thesisComputing and data acquisition have become an integral part of everyday life. From reading emails on cell phones to kids playing with motion sensing game consoles, we are surrounded with sensors and mobile computing devices. As the availability of powerful computing devices increases, applications in previously limited environments become possible. Training devices in rehabilitation are becoming increasingly common and more mobile. Community based rehabilitative devices are emerging that embrace these mobile advances. To further the flexibility of devices used in rehabilitation, research has explored the use of smartphones as a means to process data and provide feedback to the user. In combination with sensor embedded insoles, smartphones provide a powerful tool for the clinician in gathering data and as a standalone training tool in rehabilitation. This thesis presents the continuing research of sensor based insoles, feedback systems and increasing the capabilities of the Adaptive Real-Time Instrumentation System for Tread Imbalance Correction, or ARTISTIC, with the introduction of ARTISTIC 2.0. To increase the capabilities of the ARTISTIC an Inertial Measurement Unit (IMU) was added, which gave the system the ability to quantify the motion of the gait cycle and, more specifically, determine stride length. The number of sensors in the insole was increased from two to ten, as well as placing the microprocessor and a vibratory motor in the insole. The transmission box weight was reduced by over 50 percent and the volume by over 60 percent. Stride length was validated against a motion capture system and found the average stride length to be within 2.7 ± 6.9 percent. To continue the improvement of the ARTISTIC 2.0, future work will include implementing real-time stride length feedback
    corecore