97,152 research outputs found

    Real-time estimation for switched linear systems

    Get PDF
    International audienceWe extend previous works on real-time estimation, via algebraic techniques, to the recovering of the switching signal and of the state for switching linear systems. We characterize also singular inputs for which the switched systems become undistinguishable. Several convincing numerical experiments are illustrating our techniques which are easily implementable

    Real-time estimation of the switching signal for perturbed switched linear systems

    Get PDF
    International audienceWe extend previous works of Fliess et al. [2008] on the estimation of the switching signal and of the state for switching linear systems to the perturbed case when the perturbation is structured that is when the perturbation is unknown but known to satisfy a certain differential equation (for example if the perturbation is constant then its time-derivative is zero). We characterize also singular inputs and/or perturbations for which the switched systems become undistinguishable. Several convincing numerical experiments are illustrating our techniques which are easily implementable

    Observability and observer design for switched linear systems

    Get PDF
    Hybrid vehicles, HVAC systems in new/old buildings, power networks, and the like require safe, robust control that includes switching the mode of operation to meet environmental and performance objectives. Such switched systems consist of a set of continuous-time dynamical behaviors whose sequence of operational modes is driven by an underlying decision process. This thesis investigates feasibility conditions and a methodology for state and mode reconstruction given input-output measurements (not including mode sequence). An application herein considers insulation failures in permanent magnet synchronous machines (PMSMs) used in heavy hybrid vehicles. Leveraging the feasibility literature for switched linear time-invariant systems, this thesis introduces two additional feasibility results: 1) detecting switches from safe modes into failure modes and 2) state and mode estimation for switched linear time-varying systems. This thesis also addresses the robust observability problem of computing the smallest structured perturbations to system matrices that causes observer infeasibility (with respect to the Frobenius norm). This robustness framework is sufficiently general to solve related robustness problems including controllability, stabilizability, and detectability. Having established feasibility, real-time observer reconstruction of the state and mode sequence becomes possible. We propose the embedded moving horizon observer (EMHO), which re-poses the reconstruction as an optimization using an embedded state model which relaxes the range of the mode sequence estimates into a continuous space. Optimal state and mode estimates minimize an L2-norm between the measured output and estimated output of the associated embedded state model. Necessary conditions for observer convergence are developed. The EMHO is adapted to solve the surface PMSM fault detection problem

    Topics in Automotive Rollover Prevention: Robust and Adaptive Switching Strategies for Estimation and Control

    Get PDF
    The main focus in this thesis is the analysis of alternative approaches for estimation and control of automotive vehicles based on sound theoretical principles. Of particular importance is the problem rollover prevention, which is an important problem plaguing vehicles with a high center of gravity (CG). Vehicle rollover is, statistically, the most dangerous accident type, and it is difficult to prevent it due to the time varying nature of the problem. Therefore, a major objective of the thesis is to develop the necessary theoretical and practical tools for the estimation and control of rollover based on robust and adaptive techniques that are stable with respect to parameter variations. Given this background, we first consider an implementation of the multiple model switching and tuning (MMST) algorithm for estimating the unknown parameters of automotive vehicles relevant to the roll and the lateral dynamics including the position of CG. This results in high performance estimation of the CG as well as other time varying parameters, which can be used in tuning of the active safety controllers in real time. We then look into automotive rollover prevention control based on a robust stable control design methodology. As part of this we introduce a dynamic version of the load transfer ratio (LTR) as a rollover detection criterion and then design robust controllers that take into account uncertainty in the CG position. As the next step we refine the controllers by integrating them with the multiple model switched CG position estimation algorithm. This results in adaptive controllers with higher performance than the robust counterparts. In the second half of the thesis we analyze extensions of certain theoretical results with important implications for switched systems. First we obtain a non-Lyapunov stability result for a certain class of linear discrete time switched systems. Based on this result, we suggest switched controller synthesis procedures for two roll dynamics enhancement control applications. One control design approach is related to modifying the dynamical response characteristics of the automotive vehicle while guaranteeing the switching stability under parametric variations. The other control synthesis method aims to obtain transient free reference tracking of vehicle roll dynamics subject to parametric switching. In a later discussion, we consider a particular decentralized control design procedure based on vector Lyapunov functions for simultaneous, and structurally robust model reference tracking of both the lateral and the roll dynamics of automotive vehicles. We show that this controller design approach guarantees the closed loop stability subject to certain types of structural uncertainty. Finally, assuming a purely theoretical pitch, and motivated by the problems considered during the course of the thesis, we give new stability results on common Lyapunov solution (CLS) existence for two classes of switching linear systems; one is concerned with switching pair of systems in companion form and with interval uncertainty, and the other is concerned with switching pair of companion matrices with general inertia. For both problems we give easily verifiable spectral conditions that are sufficient for the CLS existence. For proving the second result we also obtain a certain generalization of the classical Kalman-Yacubovic-Popov lemma for matrices with general inertia

    State-Dependent Sampling for Perturbed Time-Delay Systems

    Get PDF
    International audienceIn this work we present a state-dependent sampling control that allows for enlarging the sampling intervals of state-feedback control. We consider the case of perturbed linear time-invariant systems with input-delay and guarantee their L2-stability. The approach is based on a novel class of switched Lyapunov-Krasovskii functionals with state-dependent matrices. It results in an LMI problem that allows for enlarging the sampling interval according to the system state. Then, a mapping of the state space is designed offline: it computes for each state of the state space a lower-bound estimation of the maximum allowable sampling interval, which makes it possible to reduce the number of actuations during the real-time control of the system

    Robust fault detection for vehicle lateral dynamics: Azonotope-based set-membership approach

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this work, a model-based fault detection layoutfor vehicle lateral dynamics system is presented. The majorfocus in this study is on the handling of model uncertainties andunknown inputs. In fact, the vehicle lateral model is affectedby several parameter variations such as longitudinal velocity,cornering stiffnesses coefficients and unknown inputs like windgust disturbances. Cornering stiffness parameters variation isconsidered to be unknown but bounded with known compactset. Their effect is addressed by generating intervals for theresiduals based on the zonotope representation of all possiblevalues. The developed fault detection procedure has been testedusing real driving data acquired from a prototype vehicle.Index Terms— Robust fault detection, interval models,zonotopes, set-membership, switched uncertain systems, LMIs,input-to-state stability, arbitrary switching.Peer ReviewedPostprint (author's final draft

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    • …
    corecore