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Abstract We extend previous works of Fliess et al. [2008] on the estimation of the switching
signal and of the state for switching linear systems to the perturbed case when the perturbation
is structured that is when the perturbation is unknown but known to satisfy a certain differential
equation (for example if the perturbation is constant then its time-derivative is zero). We
characterize also singular inputs and/or perturbations for which the switched systems become
undistinguishable. Several convincing numerical experiments are illustrating our techniques
which are easily implementable.

Keywords: Linear systems, switched systems, hybrid systems, state estimation, switching
signal estimation, numerical differentiation.

1. INTRODUCTION

Hybrid systems (coupling between a continuous dynamical
system and a discrete state system), encountered in prac-
tice, can exhibit switchings between several subsystems,
both as a result of controller design, such as in switching
supervisory control, and inherently by nature, such as
when a physical plant has the capability of undergoing
several operational modes.

Hybrid systems is an active ongoing research fields for at
least two reasons: the first one being for economic and
social needs and the second one because it offer us a
stimulating playground. The first reason find its roots in
embedded systems which are more and more becoming
part of our everyday-life: their control is becoming much
more complex because of: the coupling between continuous
dynamics and decision making process, the increasing
requested performances and the process networking.

Switched systems may be viewed as higher–level abstrac-
tions of hybrid systems, obtained by neglecting the details
of the discrete behavior. Informally, a switched system
is composed of a family of dynamical subsystems (lin-
ear or nonlinear), and a rule, called the switching law,
that orchestrates the switching between them. In recent
years, there has been increasing interest in the control
problems of switched systems due to their significance
from both a theoretical and practical point of view and
also because of their inherently interdisciplinary nature.

⋆ This work was supported in part by INRIA–ALIEN.

So several important results for switched systems have
been achieved, including various results on stability (see
Agrachev and Liberzon [2001], Arapostathis and Broucke
[2007], Blanchini and Savorgnan [2008], Boscain [2006],
Branicky [1994, 1998], Hespanha and Morse [1999], Liber-
zon and Morse [1999], Vu and Liberzon. [2005], Mancilla-
Aguilar and Garćıa [2000], Mancilla-Aguilar et al. [2005],
Pettersson and Lennartson [1996], Skafidas et al. [1999])
(with many applications see, for example, Buisson et al.
[2005] for application to electrical power converters), sta-
bilization (see Bourdais et al. [2006, 2008], Moulay et al.
[2007], De Persis et al. [2003, 2004], Pettersson [1999],
Wicks et al. [1994], Wicks and DeCarlo [1997], Wicks et al.
[1998], Zhai et al. [2003], Wang et al. [2004]), tracking (see
Bourdais et al. [2007]), controllability results (see Sun et al.
[2002], Xie et al. [2002]), and input-to-state properties, . . . .
See, e.g., Branicky [1993], Brockett [1993], Decarlo et al.
[2000], Liberzon and Morse [1999], Liberzon [2003], Sun
and Ge [2005] for a survey of this type of results. A large
number of these results highlight the central role played
by the knowledge of the switching function.

More over observability and state estimation is a key
problem for such systems, where discrete and continuous
parts are mixed. In Ackerson and Fu [1970], the notion
of state estimation for switched systems is introduced.
A generic setting for the observability of switched linear
systems in a continuous setting has been given in Babaali
and Pappas [2005]. In Vidal et al. [2003] the observability
of switched linear systems in the case of deterministic
switching signal was carried out. The unobserved switching



case was analyzed in De Santis et al. [2003]. In most of the
cases, the hybrid observer consists of two parts: an index
estimator of the current active sub-model and a continuous
observer that estimates the continuous state of the hybrid
system.

But concerning the estimation of the switching function,
up to now very few results are concerned with such es-
timation problem let us mention Millnert [1980] on iden-
tification of abruptly changing systems using least-square
methods (with an example of switching between two linear
systems), Vu and Liberzon [2008] on left invertibility 1 and
Balluchi et al. [2002], Ragot et al. [2003], Saadaoui et al.
[2006], Fliess et al. [2008] that are providing switching
function estimators. Following the previous obtained re-
sults by the authors (see Fliess et al. [2008]) we investigate
here the structured perturbed case that is when the sub-
models are perturbed with an exogenous signal which is
unknown but which is known to satisfy a given differential
equation. As mentioned in Fliess et al. [2008] it may hap-
pen that singular inputs may lead to a situation where it is
not possible to distinguish the output of two different sub-
models: in this situation it is not possible to determine the
active subsystem. As we can easily imagine such situation
may also happen for some particular perturbations. Thus
the paper is structured as follows: section 2 is formulating
the problem to be solve and gives necessary and sufficient,
in terms of easy to check algebraic conditions, for distin-
guishability independently of the structured perturbation
; section 3 gives a real time algorithm for the estimation of
the switching function when the problem is solvable (that
is when all the sub-models are distinguishable whatever
is the structured perturbation). The algorithm being con-
vincingly illustrated through a simple simulation example
in subsection 3.3.

2. DISTINGUISHABILITY

2.1 Problem formulation: an Input-output behavior

Consider SISO linear switched systems of the form:

ẋ = Aσ(t)x + Bσ(t)u + Eσ(t)p,

y = Cσ(t)x + Dσ(t)u + Fσ(t)p,

x ∈ R
nxσ(t) , u ∈ R, y ∈ R, p ∈ R (1)

where σ(t) is the switching signal taking value within
the index set IM = {1, ..., M} (M is a finite integer),
x is the state of eventually variable dimension (nxσ(t)

),
u the known input of the system, y is the measured
output (eventually a noisy measurement) and p is the
unknown perturbation acting on the system. In the rest we
address the problem of the reconstruction of the switching
signal σ(t) in “real-time”, and of the state variables (not
detailed here, see Fliess et al. [2008] for the details in
the unperturbed case which can be under some reasonable
assumptions extended to our concerned setting)).

Assume that the perturbation is an exogenous signal of
known structure that is p is the solution of a known
differential equation. Let us mention some examples p =
c (constant) : ṗ = 0, p =

∑np

i=1 ait
i : p(np+1) = 0 and

1 “From the knowledge of y(t) can we recover the input and the
switching function” which is closely related to our problem of
interest.

p = a cos(ωt) : p̈ + ω2p = 0 which are the more common
encountered perturbations in physics. Since no state jump
is assumed, we adopt an i/o behavior representation:

ai

(

d

dt

)

yi = bi

(

d

dt

)

u + ci

(

d

dt

)

p, i ∈ IM , (2)

cM+1

(

d

dt

)

p = 0 (3)

where ai, bi, ci belongs to R[ d
dt

] (the ring of polynomials in

the variable d
dt

). Using the known input and the measured
output without knowing exactly the perturbation we want
to estimate σ (once this is done one can get x in real-time).

2.2 Distinguishability

Let us consider two monovariable linear systems described
by (2 with M = 2, ai, bi are relatively prime (for i = 1, 2)
and the structured perturbation satisfies (3) with M = 2.

Let us assume that ai, bi, ci for i = 1, 2 and c3 are known.
It is clear that we cannot distinguish their i/o behaviors
if, and only if, u, p and y = y1 = y2 satisfy the matrix
differential equation

(

a1 −b1 −c1
a2 −b2 −c2
0 0 c3

)(

y
u
p

)

=

(

0
0
0

)

. (4)

Classic algebraic manipulations show that Eq. (4) is equiv-
alent to

A

(

d

dt

)

y = 0 B

(

d

dt

)

u = 0 C

(

d

dt

)

p = 0. (5)

where A, B, C ∈ R[ d
dt

], AB 6= 0 (B 6= 0 otherwise the two
systems have the same transfer function).

Definition 1. The two systems are said to be strongly dis-
tinguishable if for any non-zero input and any perturbation
the two systems have distinguishable behavior that is if,
the polynomials A and B are constant polynomials. If not
the two systems are said to be weakly distinguishable, that
is there exist a non zero input and a perturbation for which
the two systems have distinguishable behavior.

The next result summarizes the above computations.

Theorem 2. In (5) A and B are given by 2

A = c′3 gcd(b1p
1
1, b2p

2
1),

B = c′3 (a2b
′

1 − a1b
′

2) ,
C = c3,

(6)

where a = gcd(a1, a2), a1 = aa′1, a2 = aa′2, b = gcd(b1, b2),
b1 = bb′1, b2 = bb′2, c = gcd(c1, c2, c3), c3 = cc′3,
p1 = lcm(a′1, a

′

2b
′

1 − a′1b
′

2), and p1 = p1
1a

′

1 = p1
2(a

′

2b
′

1 −
a′1b

′

2), p2 = lcm(a′2, a
′

2b
′

1 − a′1b
′

2), and p2 = p2
1a

′

2 =
p2
2(a

′

2b
′

1 − a′1b
′

2). Strong distinguishability is equivalent to
c′3 (a2b

′

1 − a1b
′

2) ∈ R\{0} and c′3 gcd(b1p
1
1, b2p

2
1) ∈ R\{0}.

Proof. Using a = gcd(a1, a2), b = gcd(b1, b2) and c =
gcd(c1, c2, c3), (4) reads as:





aa′1 −bb′1 −cc′1
aa′2 −bb′2 −cc′2
0 0 cc′3





(

y
u
p

)

=

(

0
0
0

)

. (7)

2 Where gcd (resp. lcm) is the usual notation of the greatest common
divisor (resp. least common multiple).



Some manipulations on the lines of (7) leads to:

b1

(

d

dt

)

p1
1

(

d

dt

)

c′3

(

d

dt

)

u = 0

[

a1

(

d

dt

)

b′2

(

d

dt

)

− a2

(

d

dt

)

b′1

(

d

dt

)]

c′3

(

d

dt

)

y = 0

c3

(

d

dt

)

p = 0

And to

b2

(

d

dt

)

p2
1

(

d

dt

)

c′3

(

d

dt

)

u = 0

[

a1

(

d

dt

)

b′2

(

d

dt

)

− a2

(

d

dt

)

b′1

(

d

dt

)]

c′3

(

d

dt

)

y = 0

c3

(

d

dt

)

p = 0

The conclusion follows.

Remark 3. We have the same conditions as the ones ob-
tained before in Fliess et al. [2008] except that ai, bi are
replaced by c′3ai, c

′

3bi.

2.3 Example

In order to illustrate the above obtained result, let us
consider the first two sub-systems of example 3.3:

i = 1 : ẋ1 = −x1 + u + p, y = x1: (i/o) ẏ + y = u + p,
i = 2 : ẋ1 = x2 +p, ẋ2 = −x1 −x2 +u, y = x1 +x2: (i/o)

ÿ + ẏ + y = u̇ + u + ṗ,

to determine the singular situation(s) (such analysis can
be done for each pair of sub-systems leading to table 1).
We assume that the structured perturbation is a constant
one that is ṗ = 0 leading to c3(

d
dt

) = d
dt

. Since a1 =
d
dt

+ 1, b1 = 1, c1 = 1 (for the first sub-model) and

a2 =
(

d
dt

)2
+ d

dt
+ 1, b1 = d

dt
+ 1, c1 = d

dt
(for the second

sub-model), one obtains a = gcd(a1, a2) = 1, a1 = a′1,
a2 = a′2, b = gcd(b1, b2) = 1, b1 = b′1, b2 = b′2,
c = gcd(c1, c2, c3) = 1, c3 = c′3, p1 = lcm(a′1, a

′

2b
′

1 − a′1b
′

2),
and p1 = p1

1a
′

1 = p1
2(a

′

2b
′

1−a′1b
′

2), p2 = lcm(a′2, a
′

2b
′

1−a′1b
′

2),
and p2 = p2

1a
′

2 = p2
2(a

′

2b
′

1 − a′1b
′

2). This is p1
1 = d

dt
= −p2

1,

Leading to

A = c′3 gcd(b1p
1
1, b2p

2
1) =

d2

dt2
, (8)

B = c′3 (a2b
′

1 − a1b
′

2) =
d2

dt2
, (9)

C = c3 =
d

dt
. (10)

Which implies that a singular situation occurs when u, y, p
are of the form u(t) = u0 + tu̇0, y(t) = y0 + tẏ0, p = p0

the constants (u0, u̇0, y0, ẏ0, p0) being found such that the
two sub-models equations holds ẏ + y = u + p and ÿ +
ẏ + y = u̇ + u + ṗ. Which finally leads to u(t) = u0 +
tp0, y(t) = u0 + tp0, p = p0. Thus, these two systems are
weakly distinguishable.

3. SWITCHING SIGNAL ESTIMATION

From now on, assume that all the subsystems models are
known and that any pair is strongly distinguishable inde-
pendently of the perturbation. Let us consider a switching

system defined by a finite collection of i/o behaviors driven
by LTI satisfying the previous assumptions. As soon as the
system is not at rest, for the given control, the measured
output can be used to determine which subsystem is ac-
tive. From now on, we want to obtain effective real-time
algorithm to determine the current “i”. If one is able to
construct in real time the following quantities

ri(t) = ai

(

d

dt

)

yi − bi

(

d

dt

)

u − ci

(

d

dt

)

p,

it is clear that the current “i” is such that ri(t) = 0 on a
sub-set of R with non zero measure. The problem is thus
reduced to the real-time computation of time derivative of
the output and input despite the noise.

ri(t) are not the right quantities to consider because they
involve p (which is unknown), there is a natural way
suggested by the previous theorem which is to multiply
ri(t) by a differential operator such that the term p

disappear namely by c′i
(

d
dt

)

where c′i = gcd(ci, cM+1).
Thus if we consider

ri(t) = c′i

(

d

dt

)

ri(t)

= c′i

(

d

dt

)(

ai

(

d

dt

)

yi − c′i

(

d

dt

)

bi

(

d

dt

)

u

)

(11)

one can distinguish any active subsystem: the active one
being such that ri(t) = 0.

The numerical differentiation techniques introduced below
are of non asymptotic nature, and the desired estimation
can be obtained instantaneously (there is a singularity
at time t = 0). But in practice they are numerically
implemented with discrete measured data, thus from a
practical point of view, it will be necessary that the
sampling time should be small enough with respect to the
duration time between two successive switchings 3 .

3.1 Numerical differentiation

This algebraic setting for numerical differentiation of noisy
signals was introduced in Fliess et al. [2004] and analysed
in Mboup et al. [2007, 2009] (see also Nöthen [2007] for
interesting discussions and comparisons). The reader may
find additional theoretical foundations in Fliess [2006],
Fliess and Sira-Ramı́rez [2003]. Consider a signal y(t) =
∑

∞

l=0 y(l)(0) tl

l! which is assumed to be analytic around
t = 0 and its truncated Taylor expansion

yN (t) =

N
∑

l=0

y(l)(0)
tl

l!

at order N . The usual rules of symbolic calculus in
Schwartz’s distribution theory (Schwartz [1966]) yield

y
(N+1)
N (t) = y(0)δ(N) + . . . + y(N)(0)δ,

where δ is the Dirac measure at zero. Multiply both sides
by (−t)l:

(−t)ly
(N+1)
N (t) = (−t)l

(

y(0)δ(N) + . . . + y(N)(0)δ
)

,

and apply the rules tδ = 0, tδ(l) = −lδ(l−1), l ≥ 1. We
obtain a triangular system of linear equations from which
the derivatives y(l)(0) can be obtained (1 ≤ l ≤ N)

3 In practice at least 30 times smaller, Zeno phenomenon are thus
excluded.



(−t)ly
(N+1)
N (t) =

N !

(N − l)!
δ(N−l)y(0) + . . . + δy(N−l)(0).

(12)
It means that the coefficients y(0), . . . , y(N)(0) are linearly
identifiable (see Fliess and Sira-Ramı́rez [2003, 2008]).
The time derivatives of yN (t), the Dirac measures and its
derivatives are removed by integrating with respect to time
both sides of Eq. (12) at least ν times (ν > N):
∫ t

0

∫ tν−1

0

· · ·

∫ t1

0

(−τ)ly
(N+1)
N dtν−1 · · ·dt1dτ =

N !

(N − l)!

tν−N−l−1

(ν − N − l − 1)!
y(0) + . . . +

tν−1

(ν − 1)!
y(N−l)(0).

The iterated integrals may be replaced by
∫ t

0

∫ tν−1

0

· · ·

∫ t1

0

ταx(τ)dtν−1 · · · dt1dτ =

∫ t

0

(t − τ)ν−1

(ν − 1)!
ταx(τ)dτ. (13)

It is clear that the numerical estimation relies on

lim
N→+∞

[y
(l)
N (0)]estim(t) = y(l)(0).

Remark 4. These iterated integrals are low pass filters
which attenuate the noises, which are viewed as highly
fluctuating phenomena (see Fliess [2006] for more details).
The above formulae may easily be extended to sliding time
windows in order to obtain real time estimates (see Mboup
et al. [2007, 2009] for further details).

3.2 Algorithm

Off line:

(1) determine the highest order of differentiation to be
estimated: with respect to the output kymax =
maxi(degree(c′i(s)ai(s))) and w.r.t the input kumax =
maxi(degree(c′i(s)bi(s))),

(2) test distinguishability using (6) which will provide the
“bad” inputs (let us note that the second relation of
(6) can be used to check if the input is a “bad” one
just by checking if it satisfies the differential relation).

On line:

(1) using our techniques (see section 3.1) compute
y, ẏ, . . . , y(kymax); u, u̇, . . . , u(kumax),

(2) check if ri(t) is zero for some time interval then the
corresponding active subsystem is the “i-th”one.

3.3 Example

Let us consider the following switching system (2) where

i = 1 : ẋ1 = −x1 + u + p, y = x1: (i/o) ẏ + y = u + p,
i = 2 : ẋ1 = x2 +p, ẋ2 = −x1 −x2 +u, y = x1 +x2: (i/o)

ÿ + ẏ + y = u̇ + u + ṗ,
i = 3 : ẋ1 = − 1

2x1+u+ 3
2p, y = x1: (i/o) 2ẏ+y = 2u+3p,

i = 4 : ẋ1 = x2 +p, ẋ2 = −2x1−x2 +u, y = x1 +x2: (i/o)
ÿ + ẏ + 2y = u̇ + u + ṗ − p,

where the structured perturbations are constant that is
when (3) is

ṗ = 0. (14)

For the first order systems, in that follows, x2 is enforced to
zero. Moreover, the output continuity is ensured between
two systems whereas initial condition of derivative output
is randomly chosen in [−0.5, +0.5].
Residuals associated to previous systems are

i = 1 : ri = [ÿ]e + [ẏ]e − [u̇]e
i = 2 : ri = [ÿ]e + [ẏ]e + [y]e − [u̇]e − u

i = 3 : ri = 2[ÿ]e + [ẏ]e − 2[u̇]e

i = 4 : ri = [y(3)]e + [ÿ]e + 2[ẏ]e − [ü]e − [u̇]e
where [•]e is the estimation of • and [y]e corresponds the
y denoised signal. Table 1 gives the singular i/o for which
distinuishability is lost for a constant perturbation p = p0.

i\j 1 2

1 X

{

u = u0 + tp0

y = u0 + tp0

2

{

u = u0 + tp0

y = u0 + tp0
X

3

{

u = −2p0

y = −p0

{

u = −3p0 + u
′

0(exp(t))

y = −3p0 +
2

3
u
′

0(exp(t))

4

{

u = p0(1 − 2 exp(t))

y = −p0 exp(t)

{

u = −2p0

y = −p0

i\j 3 4

1

{

u = −2p0

y = −p0

{

u = p0(1 − 2 exp(t))

y = −p0 exp(t)

2

{

u = −3p0 + u
′

0(exp(t))

y = −3p0 +
2

3
u
′

0(exp(t))

{

u = −2p0

y = −p0

3 X

{

u = 2p0 +
1

3
u
′

0(exp(3t))

y = p0 +
2

9
u
′

0(exp(3t))

4

{

u = 2p0 +
1

3
u
′

0(exp(3t))

y = p0 +
2

9
u
′

0(exp(3t))
X

Table 1. Singular situations for each pair of
sub-systems

Figure 1, system behavior is given. A sinusoidal function
is applied as an input and no noise is added to the output
(see figure 1-(b)). The switching signal σ is given in figure
1-(a).
In noisy free case, residuals can be evaluated according to
Euler’s method. The corresponding results, given in figure
2-(a), are perfect, i.e. residuals are null when the associated
system is active and becomes non zero in other cases.
In the noisy case (additive output noise N(0, 0.001) (figure
2-(b)) or N(0, 0.005) (figure 2-(c)), Euler’s method is not
available. We propose to apply recent results on derivative
estimation (see Mboup et al. [2007, 2009]) in order to
evaluate residuals. To detect quickly all system changes,
derivative estimation is obtained using a very short sliding
window. However, sometimes this choice implies some
difficulties as for the last switch figure 2-(c) to evaluate
residuals. In Fliess et al. [2008], authors improve this
particular point.

CONCLUSION

Distinguishability has been investigated for LTI switched
systems. Easy to check necessary and sufficient conditions
were obtained, which provide “bad input/perturbations”
to be avoided in order to be able to detect the active mode.
Real time estimation of the current index are obtained
using differentiation techniques robust w.r.t. noises. Some
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(a) Switching signal σ
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Figure 1. Free noise behavior with a sinusoidal input and an unknown constant perturbation p = −0.5
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(a) Noisy free case
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(b) Noisy case: white noise N(0, 0.001)
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(c) Noisy case: white noise N(0, 0.005)

Figure 2. Residuals : |r1| (–); |r2| (- -); |r3| (. .); |r4| (- .)

extension to nonlinear switching systems is under investi-
gation.
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