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State-Dependent Sampling for Perturbed Time-Delay Systems

Christophe Fiter, Laurentiu Hetel, Wilfrid Perruquetti, and Jean-Pierre Richard

Abstract— In this work we present a state-dependent sam-
pling control that allows for enlarging the sampling intervals
of state-feedback control. We consider the case of perturbed
linear time-invariant systems with input-delay and guarantee
their L2-stability. The approach is based on a novel class of
switched Lyapunov-Krasovskii functionals with state-dependent
matrices. It results in an LMI problem that allows for enlarg ing
the sampling interval according to the system state. Then, a
mapping of the state space is designed offline: it computes for
each state of the state space a lower-bound estimation of the
maximum allowable sampling interval, which makes it possible
to reduce the number of actuations during the real-time control
of the system.

I. INTRODUCTION

Networked Control Systems are often required to share a
limited amount of resources, which leads to delays, and to
fluctuations of the sampling interval. From the control theory
point of view, these phenomena bring up new challenges.

Several studies already questioned the robustness aspect
for systems with time-varying sampling ([5], [6], [15], [9]),
time-varying delays ([8], [14]), or both time-varying sam-
pling and delays ([10], [11]).

Recently, intensive research has also been conducted to
adapt dynamically the sampling so as to reduce the processor
and/or network loads while ensuring the desired control per-
formances. There are two main approaches in the literature:
”Event-triggered control” ([16], [12]), in which sensors are
equipped with special intelligence so that information is
sent to the controller only when special events occur (e.g.
crossing a frontier of the state space, or a level of a Lyapunov
function). The main drawback is that it requires dedicated
hardware to continuously monitor the plant state and check
the defined stability conditions.
”Self-triggered control” ([17], [13]), which consists in com-
puting at each sampling instant a lower-bound estimation of
the next largest admissible sampling interval, so as to emulate
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et Signal (CNRS UMR 8219), École Centrale de Lille, 59651
Villeneuve d’Ascq, France - W. Perruquetti and J-.P Richardare
with the Non-A Project team, INRIA Lille-Nord Europe, France
christophe.fiter@centraliens-lille.org,
laurentiu.hetel@ec-lille.fr,
wilfrid.perruquetti@inria.fr,
jean-pierre.richard@ec-lille.fr

event-triggered control without resorting to extra hardware.
In these works, the computations for the next sampling times
are made online, which increases the processor load. Also,
it generally stays open to compute a Lyapunov function
optimizing the sampling intervals while taking into account
the perturbations and the delays.

More recently, in [2], we proposed a third dynamic sam-
pling control approach,”state-dependent sampling”, which
consists in designing a map of the maximal allowable sam-
pling intervals over conic regions of the state-space, thanks
to Linear Matrix Inequalities (LMIs). The advantages are:
- the state-dependent sampling map is designedoffline (once
for all), which allows for reducing the number of online
computations compared to self-triggered control;
- the Lyapunov function is optimizedso as to enlarge the
lower-bound of the sampling map.
However, up to now, only ideal Linear Time-Invariant (LTI)
systems were considered.

In the present work, we propose a novel state-dependent
sampling approach that guaranteesL2-stability for LTI sys-
tems subject to both perturbations and input-delay. This
approach is based on anew class of Lyapunov-Krasovskii
functionals (LKF) with matrices that will switch accordingto
the conic region the sampled-state belongs to. Along with the
benefits of the state-dependent sampling approach previously
mentioned, the advantages are:
- the proposed LKF takes into account both the perturbations,
the delays and the sampling;
- the LKF matrices are computed so as to enlarge the
sampling map over the conic regions of the state-space.

The paper is organized as follows: Section II formulates
the problem; Section III presents the stability results. Section
IV provides the offline algorithm that builds the state-
dependent sampling map. Section V shows some simulation
results, and Section VI sums up the conclusions.

Notations: MT stands for the transpose ofM ∈ Mn,m

(the set of realn×m matrices).Sn denotes the set ofn×n

symmetric matrices, andS+
n (resp.S+∗

n ) the set of positive
(resp. positive definite) matricesP � 0 (resp.P ≻ 0) in Sn.
L2 is the space of square-integrable functions onR

+. ‖.‖2 is
the Euclidian norm onRn and‖.‖L2

is theL2-norm onL2:

‖f‖L2
=
(∫∞

0 ‖f(t)‖22dt
)

1
2 . For a given maximum delayh2,

xt (resp. ẋt) denotes a function such thatxt(θ) = x(t + θ)
(resp. ẋt(θ) = ẋ(t+ θ)) for all θ ∈ [−h2, 0].

II. PROBLEM FORMULATION

We consider the LTI system

ẋ(t) = Ax(t) + Bu(t) + Ew(t)
z(t) = Cx(t) +Du(t)

}

, ∀t ≥ 0, (1)



where x(t) ∈ R
n is the state vector,w(t) ∈ R

nw is an
exogenous disturbance inL2, u(t) ∈ R

nu is the control
input, andz(t) ∈ R

nz is the controlled output.A, B, C,
D, andE are constant matrices of appropriate dimensions.

The feedback control law is defined as:

u(t) = −Kx(sk), ∀t ∈ [tk, tk+1), (2)

with a constant feedback matrix gainK, sk thekth sampling
time (when thekth input is computed) andtk the kth

actuation time (when thekth computed input is received by
the actuators).

The sampling law is defined as

sk+1 − sk ≡ τk ∈ [τ−, τmax(x(sk))], (3)

with a given minimal sampling intervalτ− > 0 and a
maximal state-dependent sampling mapτmax : R

n → R
+.

We set ourself in the same context as in [2]: we assume
that the state space is covered by a set ofq conic regions

Rσ = {x ∈ R
n, xTΨσx ≥ 0},Ψσ ∈ Sn, σ ∈ {1, · · · , q},

(4)
for which maximal sampling intervalsτ+σ ≥ τ− are defined.
With this assumption, the state-dependent sampling map is
considered to be a function of the form

τmax(x) = max
σ∈{1,··· ,q}

{τ+σ |x ∈ Rσ}, ∀x ∈ R
n. (5)

The motivation for studying this class of systems (as well
as methods to design these conic regions) has been given
in [2], where it is shown that such a description may be
used for approximating a self-triggered control scheme. This
formulation also proved to be efficient to design the sampling
map offline, thus allowing to reduce the number of online
computations.

The sampling and actuation times are linked by the relation

sk = tk − h(tk), (6)

with a delayh(t) assumed to satisfy:

∀t ≥ 0, h(t) ∈ [h1, h2], and ḣ(t) ∈ [e1, e2], (7)

for given scalars0 ≤ h1 ≤ h2 and e1 ≤ e2 < 1. Since
sk+1 − sk > 0, it implies thattk+1 − tk ≥ sk+1−sk

1−e1
> 0,

due toe1 < 1 and thus the control inputs are received by
the actuator in the same order as they are sent.

The closed-loop system{(1),· · · ,(7)} is denoted asT.
Due to the unknown exogenous disturbances, the system

T will be studied from theL2-stability point of view.

Definition 1: [17] A linear systemF is said to be finite-
gainL2-stable fromw to Fw with an induced gain less than
γ if F is a linear operator fromL2 into L2 and there exist
positive real constantsγ andξ such that for allw ∈ L2,

‖Fw‖L2
≤ γ‖w‖L2

+ ξ. (8)

The present work aims at designing (offline) a state-
dependent sampling mapτmax (as defined in (5)) that allows
to enlarge the sampling intervals (3) while ensuring the finite-
gainL2-stability of T from w to z, with a gain less than a
fixed γ ≥ 0.

III. MAIN L2-STABILITY RESULTS

In this section, we provideL2-stability conditions for the
perturbed and delayed systemT for a given maximal state-
dependent sampling map (5). They are based on aquite
general class of LKF (with state-dependent matrices)which
take into accountdelays, perturbationsandsampling.

A. Non-delayed case

In order to simplify the reading, we first consider a
simplified version of the system (without delay:sk = tk),
and present the main stability tools, as well as a simplified
version of the proposed LKF,

Vσk
(t, x(t), ẋt) = xT (t)Px(t)

+ (sk+1 − t)
∫ t

sk
ẋT (s)Uσk

ẋ(s)ds,
(9)

defined for all t ∈ [sk, sk+1) and k ∈ N, with matrices
P andUσ of appropriate dimensions. Parameterσk can be
any elementσ ∈ {1, · · · , q} such thatx(sk) ∈ Rσ and
τ− ≤ τk ≤ τ+σ (there exists at least one, according to (3)
and (5)).

The new aspect of the LKF (9) compared to previ-
ous works on systems with time-varying samplings ([6],
[15], [10]) is the fact thatit involves elements that are
switching according to the system state. Indeed, note that
the matrix termUσk

is switching at timessk according
to the region the sampled statex(sk) belongs to (since
the switching lawσk satisfiesx(sk) ∈ Rσk

). This state-
dependent switch is possible thanks to the fact that the func-
tional Vσk

is continuous at timessk: Vσk
(sk, x(sk), ẋsk) =

limt→s
−

k

Vσk−1
(t, x(t), ẋt) = xT (sk)Px(sk).

This new type of switched LKF is well adapted to the
stability analysis of systems with state-dependent sampling,
but it also provides some advantages regarding the stability
analysis of systems with (state-independent) time-varying
sampling, as it will be shown in the Example 2 of the
Numerical Examples Section.

In the following, as in the framework of [6], we denote

V̄ (t) = Vσk
(t, x(t), ẋt), for all t ∈ [sk, sk+1), k ∈ N.

In order to guarantee theL2-stability of the non-delayed
systemT, we need to provide conditions that ensure thatV̄

satisfies the conditions of Lemma 4, in the Appendix.
To begin with, we can see that̄V is continuous overR+

(we have shown earlier that it is continuous at timessk)
and differentiable overR+\{sk, k ∈ N}. To ensure that̄V
is positive definite, we assume that the matricesP andUσ

are such thatP = PT ≻ 0 andUσ = UT
σ � 0, for all σ ∈

{1, · · · , q}. Now, all that is needed to ensure the system’s
L2-stability, is to provide conditions to satisfy

∀t 6= sk,
˙̄V (t) + zT (t)z(t)− γ2wT (t)w(t) ≤ 0. (10)

In order to analyse this condition, we study the restriction
of ˙̄V on any interval[sk, sk+1), k ∈ N. First, we compute:

˙̄V (t) = 2ẋT (t)Px(t) + (sk+1 − t)ẋT (t)Uσk
ẋ(t)

−
∫ t

sk
ẋT (s)Uσk

ẋ(s)ds.
(11)



Then, using the Jensen inequality [8], we compute an
upper-bound of the integral term:

−
∫ t

sk

ẋT (s)Uσk
ẋ(s)ds ≤ −(t− sk)ν

T (t)Uσk
ν(t), (12)

with

ν(t) =
1

t− sk

∫ t

sk

ẋ(s)ds =
x(t)− x(sk)

t− sk
, (13)

and obtain
˙̄V (t) ≤ 2ẋT (t)Px(t) + (sk+1 − t)ẋT (t)Uσk

ẋ(t)
−(t− sk)ν

T (t)Uσk
ν(t).

(14)
ν(t) is well defined by continuity int = sk, since when
t → sk, ν(t) → ẋ(sk).

We introduce the augmented state vectorφ(t) ∈ R
3n+nw :

φ(t)T = [xT (t), xT (sk), νT (t), wT (t)], (15)

and matricesMi andNj such that

x(t) = M1φ(t), x(sk) = M2φ(t),
ν(t) = M3φ(t), w(t) = M4φ(t),
ẋ(t) = (AM1 −BKM2 + EM4)φ(t) = N1φ(t),
z(t) = (CM1 −DKM2)φ(t) = N2φ(t).

(16)

Using these notations we can rewrite the inequality (14) as

˙̄V (t) + zT (t)z(t)− γ2wT (t)w(t) ≤
φT (t)[NT

1 PM1 +MT
1 PN1 + (sk+1 − t)NT

1 Uσk
N1

−(t− sk)M
T
3 Uσk

M3 +NT
2 N2 − γ2MT

4 M4]φ(t).
(17)

The relation (13) betweenν(t), x(t), and x(sk) can be
written asH(t)φ(t) = 0 with H(t) = (t − sk)M3 −M1 +
M2. Therefore, by applying the Finsler’s lemma [1] one can
include this relation in (17) and obtain that for any matrices
Yσk

∈ M3n+nw,n:

˙̄V (t) + zT (t)z(t)− γ2wT (t)w(t) ≤
φT (t)[NT

1 PM1 +MT
1 PN1 + (sk+1 − t)NT

1 Uσk
N1

−(t− sk)M
T
3 Uσk

M3 +NT
2 N2 − γ2MT

4 M4

+Yσk
((t− sk)M3 −M1 +M2)

+((t− sk)M3 −M1 +M2)
TY T

σk
]φ(t).

(18)
Since (18) is linear in the variablet, it is possible to reduce

the number of conditions to be checked by applying Lemma
5 (Appendix) with the variableλ = t ∈ [sk, sk+1]. The two
obtained inequalities are both linear in the variablesk+1−sk.
Thus we can use once again Lemma 5 with the variable
λ = sk+1 − sk ∈ [τ−, τ+σk

] to prove that if the 4 inequalities
ξTΞi,jσk

ξ ≤ 0 are satisfied for allξ ∈ R
3n+nw , with Ξi,j,σk

defined as
Ξi,1,σ = Ξσ + Ti,σN

T
1 UσN1, (19)

Ξi,2,σ = Ξσ + Ti,σ

[

−MT
3 UσM3 + YσM3 +MT

3 Y T
σ

]

,

(20)
Ξσ = NT

1 PM1 +MT
1 PN1 +NT

2 N2 − γ2MT
4 M4

+Yσ(−M1 +M2) + (−M1 +M2)
TY T

σ ,
(21)

with
T1,σ = T1 = τ− andT2,σ = τ+σ , (22)

then ˙̄V (t) + zT (t)z(t) − γ2wT (t)w(t) ≤ 0 for all t ∈
[sk, sk+1).

Since we know thatx(sk) ∈ Rσk
(i.e. we have

xT (sk)Ψσk
x(sk) ≥ 0), we can use the lossless version of

the S-procedure [1] on each of the4 obtained inequalities to
show that, if there are scalarsεi,j,σ ≥ 0 such that the LMIs

Ξi,j,σ + εi,j,σM
T
2 ΨσM2 � 0, (23)

hold for σ = σk, then condition (10) is satisfied. Therefore,
we have the following property:

Proposition 1: Consider scalarsγ ≥ 0 and τ−, and a
set of q conic regions covering the state spaceRσ =
{x, xTΨσx ≥ 0}, Ψσ ∈ Sn, σ ∈ {1, · · · , q}, with maximal
sampling intervalsτ+σ .
The perturbed non-delayed sampled-data systemT is finite-
gainL2-stable fromw to z with a gain less thanγ if there
exist matricesP ∈ S+∗

n , Uσ ∈ S+
n , Yσ ∈ M3n+nw,n,

and scalarsεi,j,σ ≥ 0 such that (23) is satisfied for all
σ ∈ {1, · · · , q} and (i, j) ∈ {1, 2}2.

B. General delayed case

Now, we consider the more general system with delay, as
well as the switched LKF:

Vσk
(t, xt, ẋt) = V1(t, xt, ẋt) + V2,σk

(t, xt, ẋt), (24)

defined for allt ∈ [tk, tk+1) andk ∈ N, with

V1(t, xt, ẋt) = ηT (t)Pη(t) +
∫ t

t−h1
xT (s)Q1x(s)ds

+
∫ t−h1

t−h(t) x
T (s)Q2x(s)ds

+
∫ t−h(t)

t−h2
xT (s)Q3x(s)ds

+
∫ t

t−h(t) ẋ
T (s)(R1 + (h(t) − t+ s)R2)ẋ(s)ds

+
∫ 0

−h2

∫ t

t+θ
ẋT (s)R3ẋ(s)dsdθ

+
∫ −h1

−h2

∫ t

t+θ
ẋT (s)R4ẋ(s)dsdθ

(25)
consisting of classical terms used for delay systems ([4], [14],
[10]), and an additional term

V2,σk
(t, xt, ẋt) = (tk+1 − t)

(

η(t)
η(tk)

)T

Ωσk

(

η(t)
η(tk)

)

+(tk+1 − t)
∫ t

tk
η̇T (s)Uσk

η̇(s)ds

+(tk+1 − t)(t− tk)η
T (tk)Sσk

η(tk),
(26)

with the vectorη(t):

η(t) =

(

x(t)
x(t − h(t))

)

, (27)

and the matricesΩσ, σ ∈ {1, · · · , q} defined as:

Ωσ =

(

Xσ+XT

σ

2 −Xσ +X1,σ

∗ −X1,σ −XT
1,σ +

Xσ+XT

σ

2

)

. (28)

The matricesP , Q1, Q2, Q3, R1, R2, R3, R4, Uσ, Sσ,
Xσ, X1,σ have appropriate dimensions. Parameterσk can
be any elementσ ∈ {1, · · · , q} such thatx(sk) ∈ Rσ and
τ− ≤ τk ≤ τ+σ (there exists at least one, according to (3)
and (5)).



Similar to what we had with the previous simple LKF, we
note that the term (26) iscomposed of matrix termsΩσk

,
Uσk

, and Sσk
which are switching at timestk according

to the regionx(sk) belongs to. This state-dependent switch
is possible thanks to the fact thatV2,σk

(tk, xtk , ẋtk) =
limt→t

−

k

V2,σk−1
(t, xt, ẋt) = 0, which ensures the continuity

of V2. This function with state-dependent matrices is a
natural extension of the works with LKFs on systems with
delays ([4], [14]), sampling ([6], [15]), or both ([10]).

As in the simplified case, we analyse the system’sL2-
stability by checking the conditions of Lemma 4 with

V̄ (t) = Vσk
(t, xt, ẋt), for all t ∈ [tk, tk+1) andk ∈ N,

(29)
with Vσk

defined in (24). In the following, we also define the
time-dependent functions̄V1 and V̄2, with similar notations

TheL2 stability analysis is divided into two main steps.
- First, we prove that̄V is continuous overR+ and differ-
entiable for allt ∈ [tk, tk+1), and provide conditions for its
positive definiteness.
- Then, we differentiatēV , upper-bound the obtained result
and derive theL2 stability conditions.

We introduce two scalars, to be involved in the next
lemma:

T1,σ = T1 = max
{

τ− + h1 − h2,
τ−

1−e1

}

,

T2,σ = min
{

τ+σ + h2 − h1,
τ+
σ

1−e2

}

.
(30)

As it is shown in the proof of the lemma (provided in the
Technical Report [3]), these scalars are set to satisfy

T1,σk
≤ tk+1 − tk ≤ T2,σk

. (31)

Lemma 2:The functionV̄ defined in (29) is continuous
over R+ and differentiable for allt 6= tk, k ∈ N. If its
matrix parameters satisfyP ∈ S+∗

2n , Q1, Q2, Q3, R1, R2,
R3, R4 ∈ S+

n , Uσ, Sσ ∈ S+
2n, Xσ, X1,σ ∈ M2n,2n, and if

there existq scalarsεσ ≥ 0 such that, for allσ ∈ {1, · · · , q}:

(

P 0
0 0

)

+ T2,σΩσ − εσ

(

0 0
0 Ψσ

)

≻ 0, (32)

then V̄ is also positive definite, and there exists a scalar
β > 0 such thatV̄ (t) ≥ β‖x(t)‖22 for all t ≥ 0.

Proof: The proof is available in the Technical Report [3].

Now that smoothness and positive-definiteness ofV̄ can
be checked, the second step is the stability analysis. We
introduce the matricesMi∈{1,··· ,11} ∈ Mn,11n+nw

and
M12 ∈ Mnw,11n+nw

:

(

MT
1 · · · MT

12

)

= I, (33)

and define the matricesNj∈{1,··· ,7}:

N1 = AM1 −BKM4 + EM12, N2 =

(

M1

M2

)

,

N3 =

(

N1

M7

)

, N4 =

(

M3

M4

)

, N5 =

(

N2

N4

)

,

N6 =

(

M8

M9

)

, andN7 = CM1 −DKM4.

(34)

The use of these matrices is very similar to the one in the
previous simplified case (see (16)).

In the following Theorem, we provide anL2-stability
condition for the systemT. The condition is in the form of
LMIs of the size(11n+ nw)× (11n+ nw) that depend on
the matrices of the LKF (24), of the description of the conic
regions (4), and of some scalars (εσ, εi,j,l,o,σ) and matrices
(Y1,σ, Y2,σ, Y3,σ) resulting from the use of the S-procedure
[1] and Finsler’s Lemma [1] respectively.

Theorem 3:Consider scalarsγ ≥ 0, h1, h2, e1, e2,
τ−, and a set ofq conic regions covering the state space
Rσ = {x, xTΨσx ≥ 0}, Ψσ ∈ Sn, σ ∈ {1, · · · , q}, with
maximal sampling intervalsτ+σ .
The perturbed and delayed sampled-data systemT is finite-
gainL2-stable fromw to z with a gain less thanγ if there
exist matricesP ∈ S+∗

2n , Q1, Q2, Q3, R1, R2, R3, R4 ∈ S+
n ,

Uσ, Sσ ∈ S+
2n, Xσ, X1,σ ∈ M2n,2n, Y1,σ ∈ M7n,2n,

Y2,σ, Y3,σ ∈ M7n,n and scalarsεσ, εi,j,l,o,σ ≥ 0 such
that (32) and (35) are satisfied for allσ ∈ {1, · · · , q} and
(i, j, l, o) ∈ {1, 2}4:

Ξi,j,l,o,σ + εi,j,l,o,σM
T
4 ΨσM4 � 0, (35)

with

Ξi,j,l,1,σ = Ξi,j,σ + Tl,σ

[

NT
4 SσN4 +NT

3 UσN3

+NT
3 Ω1,σN5 +NT

5 ΩT
1,σN3

]

,
(36)

Ξi,j,l,2,σ = Ξi,j,σ + Tl,σ

[

−NT
4 SσN4 −NT

6 UσN6

+Ȳ1,σN6 +NT
6 Ȳ T

1,σ

]

,
(37)

Ξi,j,σ = NT
3 PN2 +NT

2 PN3 +MT
1 Q1M1

+MT
5 (Q2 −Q1)M5 −MT

6 Q3M6 −NT
5 ΩσN5

+NT
1 (R1 + hjR2 + h2R3 + (h2 − h1)R4)N1

− 1
1−e1

MT
7 R1M7 + (1− ei)M

T
2 (Q3 −Q2)M2

− 1
h1
(M1 −M5)

T ((1 − ei)R2 +R3)(M1 −M5)

−(hj − h1)M
T
10((1 − e2)R2 +R3 +R4)M10

−(h2 − hj)M
T
11(R3 +R4)M11

+Ȳ1,σ(−N2 +N4) + (−N2 +N4)
T Ȳ T

1,σ

+Ȳ2,σ((hj − h1)M10 −M5 +M2)
+((hj − h1)M10 −M5 +M2)

T Ȳ T
2,σ

+Ȳ3,σ((h2 − hj)M11 −M2 +M6)
+((h2 − hj)M11 −M2 +M6)

T Ȳ T
3,σ

+NT
7 N7 − γ2MT

12M12,
(38)

Ω1,σ =
(

Xσ+XT

σ

2 −Xσ +X1,σ

)

, (39)

Ȳ1,σ =

(

Y1,σ

0

)

∈ M11n+nw,2n,

Ȳa,σ =

(

Ya,σ

0

)

∈ M11n+nw,n, a ∈ {2, 3}.
(40)



Proof: The proof, similar to the one in the non-delayed case,
is available in the Technical Report [3].

Remark 1: If w satisfieszT (t)z(t) − γ2wT (t)w(t) ≥ 0,
and if the LMIs (35) are strict, the sampled-data systemT

is asymptotically stable.

IV. A STATE-DEPENDENT SAMPLING MAP
DESIGN

In this section, we propose a three-step algorithm (Figure
1), which allows for computing the LKF matrices so as
to maximize both the largest admissible state-independent
sampling intervalτ+ = minσ∈{1,··· ,q} τ

+
σ and the state-

dependent sampling mapτmax described in (5), with respect
to theL2-stability conditions provided in Theorem 3. Keep
in mind that all steps are made offline.

STEP 1

⋄ Single regionRn

⋄ Compute the largest admissible
state-independent samplingτ+

⋄ Compute the LKF matricesP , Q1, Q2, Q3,
R1, R2, R3, R4, (andU , S, X , X1)

STEP 2

Theorem 3 LMIs + line search algorithm

⋄ q conic regionsRσ covering the state space
⋄ Use the LKF matricesP , Q1, Q2, Q3,
R1, R2, R3, R4 computed in Step 1

Theorem 3 LMIs +
line search algorithm
for each regionRσ

⋄ Design the mapping of the largest admissible

⋄ Compute the LKF matricesUσ, Sσ, Xσ, X1,σ

STEP 3

Design of the state-dependent sampling map

for each regionRσ

τmax(x) = maxσ∈I(x) τ
+
σ ≥ τ+, ∀x ∈ R

n

samplingτ+σ ≥ τ+ for each regionRσ

Fig. 1. Algorithm to design the state-dependent sampling map τmax

Remark 2:Step 1 may be used as a robust analysis
of delayed and perturbed sampled-data systems with time-
varying sampling. Step 2 leads to a self-triggering algorithm
except that all computations are made offline, and the state-

dependent matricesUσ, Sσ, Xσ, andX1,σ of the LKF are
computed during that step.

Remark 3:One can also compute the largest admissible
state-independent samplingτ+ (Step 1) by using the LKF
with state-dependent matrices switching on some predefined
regionsRσ. Although it is more complex, this can reduce
the conservatism, as it will be illustrated in Example 2.

Remark 4:Very often, the works are carried with a mini-
mal sampling intervalτ− set to 0, as in [2], [17], or [6].
Enabling a larger minimal sampling makes it possible to
increase the obtained maximal samplingτ+σ (or evenτ+)
with the proposed technique.

V. NUMERICAL EXAMPLES

A. Example 1

We consider the system:

ẋ(t) =

(

−3 0
0 1

)

x(t)−
(

1
1

)

Kx(sk) + w(t), and

K =
(

−1 4
)

, z(t) = x(t), for t ∈ [tk, tk+1).

The state-dependent sampling map (5) will be designed
in four successive cases: 1) no delay nor perturbations (w =
0, h = 0, asymptotic stability); 2) perturbations on the delay-
free system (w 6= 0, h = 0, L2-stability with γ =

√
10);

3) unperturbed system with delayh(t) ∈ [10−4, 10−1] and
ḣ(t) ∈ [−0.2, 0.6] (w = 0, h 6= 0, asymptotic); 4) perturbed
system with the same delay (w 6= 0, h 6= 0, γ =

√
10).

We setτ− ≃ 0 and use the isotropic partition described
in [2] to design a covering ofq = 100 conic regions. Then,
we use the algorithm of Section IV to build the mapping
that maximizes the sampling interval for each state. Because
the state dimension is2, the conic regions are defined from
the spherical coordinates(ρ, θ) of the statex = ρeiθ, for the
particular valueρ = 1 (the unit sphere). Computed offline
in each of the 4 cases, Figure 2 presents the admissible
sampling interval as a function of the state angleθ ∈ [−π, π).

Respectively to the four presented cases, the longest state-
independent sampling interval we found is: 1)τ+ = 0.535;
2) 0.445; 3) 0.169; 4) 0.145. Note that sinceτ− ≃ 0, the
systemL2-stability (or asymptotic stability) is preserved for
any time-varying sampling less thanτ+. Also, thanks to the
mappings we built, the robustness regarding classical time-
varying sampling is extended to all state-dependent sampling
intervals under the curves obtained in Figure 2.

Simulation results are shown in the Technical Report [3].

B. Example 2

To show the conservatism reduction brought by the LKF
with state-dependent matrices, we consider the unperturbed,
delay-free system from [9]:

ẋ(t) =

(

−0.5 0
0 3.5

)

x(t) −
(

1
1

)

Kx(sk), and

K =
(

−1.02 5.62
)

, z(t) = x(t), for t ∈ [sk, sk+1).
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0.5

0.6
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0.2

τ+ σ(s
)
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)
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Fig. 2. Example 1: Mapping of the maximal admissible samplings τ+σ for
the system with or without perturbationsw and/or delaysh.

We setτ− ≃ 0. Considering the results given by the step 1
of the algorithm described in Section IV and taking only one
region R

n, the longest state-independent sampling interval
τ+ (i.e. admissible no matter the state) obtained is equal
to 0.267, whereas we obtain0.309 with q = 100 regions
Rσ (an improvement of16%). This corresponds to a robust
stability bound that can be compared to the ones obtained in
[6] (τ+ = 0.259), [7] (τ+ = 0.204), or [15] (τ+ = 0.198).

VI. CONCLUSION

This work introduced a new class of Lyapunov-Krasovskii
functionals with state-dependent matrices. It allowed for
designing a state-dependent sampling that reduces the
number of actuations, while keeping theL2-stability for
perturbed time-delayed linear state feedback systems. The
proposed method can be seen both as a self-triggered control
and as a new time-varying sampling analysis leading to a
state-dependent sampling design. We think it presents two
main advantages, since it makes it possible:
- to maximize the minimal sampling interval
τ+ = infx∈Rn τmax(x) of the state-dependent sampling
map, and to compute the associated Lyapunov-Krasovskii
function matrices that ensure the systemL2-stability;
- to design offline a mapping of the state space with
a maximum allowable sampling time for each region.
Therefore, no additional computation is required online
during the control of the system.

VII. APPENDIX

Lemma 4: (Adapted from [6])T is L2-stable fromw to
z with a gain less thanγ ≥ 0 if there exists a positive
definite continuous function̄V : t ∈ R

+ → V̄ (t) ∈ R
+,

differentiable for allt 6= tk, k ∈ N, that satisfies alongT:

˙̄V (t) + zT (t)z(t)− γ2wT (t)w(t) ≤ 0. (41)

Lemma 5: (Adapted from [1])Considerx ∈ R
n, two

matricesΓ1 andΓ2 in Sn and two scalarsλ− < λ+. The
following statements are equivalent:
(i) ∀λ ∈ [λ−, λ+], xT (Γ1 + λΓ2)x ≤ 0,
(ii) xT (Γ1 + λ−Γ2)x ≤ 0 andxT (Γ1 + λ+Γ2)x ≤ 0.
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