2,297 research outputs found

    An Analysis Review: Optimal Trajectory for 6-DOF-based Intelligent Controller in Biomedical Application

    Get PDF
    With technological advancements and the development of robots have begun to be utilized in numerous sectors, including industrial, agricultural, and medical. Optimizing the path planning of robot manipulators is a fundamental aspect of robot research with promising future prospects. The precise robot manipulator tracks can enhance the efficacy of a variety of robot duties, such as workshop operations, crop harvesting, and medical procedures, among others. Trajectory planning for robot manipulators is one of the fundamental robot technologies, and manipulator trajectory accuracy can be enhanced by the design of their controllers. However, the majority of controllers devised up to this point were incapable of effectively resolving the nonlinearity and uncertainty issues of high-degree freedom manipulators in order to overcome these issues and enhance the track performance of high-degree freedom manipulators. Developing practical path-planning algorithms to efficiently complete robot functions in autonomous robotics is critical. In addition, designing a collision-free path in conjunction with the physical limitations of the robot is a very challenging challenge due to the complex environment surrounding the dynamics and kinetics of robots with different degrees of freedom (DoF) and/or multiple arms. The advantages and disadvantages of current robot motion planning methods, incompleteness, scalability, safety, stability, smoothness, accuracy, optimization, and efficiency are examined in this paper

    Simultaneous Obstacle Avoidance and Target Tracking of Multiple Wheeled Mobile Robots With Certified Safety

    Get PDF
    Collision avoidance plays a major part in the control of the wheeled mobile robot (WMR). Most existing collision-avoidance methods mainly focus on a single WMR and environmental obstacles. There are few products that cast light on the collision-avoidance between multiple WMRs (MWMRs). In this article, the problem of simultaneous collision-avoidance and target tracking is investigated for MWMRs working in the shared environment from the perspective of optimization. The collision-avoidance strategy is formulated as an inequality constraint, which has proven to be collision free between the MWMRs. The designed MWMRs control scheme integrates path following, collision-avoidance, and WMR velocity compliance, in which the path following task is chosen as the secondary task, and collision-avoidance is the primary task so that safety can be guaranteed in advance. A Lagrangian-based dynamic controller is constructed for the dominating behavior of the MWMRs. Combining theoretical analyses and experiments, the feasibility of the designed control scheme for the MWMRs is substantiated. Experimental results show that if obstacles do not threaten the safety of the WMR, the top priority in the control task is the target track task. All robots move along the desired trajectory. Once the collision criterion is satisfied, the collision-avoidance mechanism is activated and prominent in the controller. Under the proposed scheme, all robots achieve the target tracking on the premise of being collision free
    • …
    corecore