4 research outputs found

    A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry

    Get PDF
    Producción CientíficaThe gold standard approach to diagnose obstructive sleep apnea (OSA) in children is overnight in-lab polysomnography (PSG), which is labor-intensive for clinicians and onerous to healthcare systems and families. Simplification of PSG should enhance availability and comfort, and reduce complexity and waitlists. Airflow (AF) and oximetry (SpO2) signals summarize most of the information needed to detect apneas and hypopneas, but automatic analysis of these signals using deep-learning algorithms has not been extensively investigated in the pediatric context. The aim of this study was to evaluate a convolutional neural network (CNN) architecture based on these two signals to estimate the severity of pediatric OSA. PSG-derived AF and SpO2 signals from the Childhood Adenotonsillectomy Trial (CHAT) database (1638 recordings), as well as from a clinical database (974 recordings), were analyzed. A 2D CNN fed with AF and SpO2 signals was implemented to estimate the number of apneic events, and the total apnea-hypopnea index (AHI) was estimated. A training-validation-test strategy was used to train the CNN, adjust the hyperparameters, and assess the diagnostic ability of the algorithm, respectively. Classification into four OSA severity levels (no OSA, mild, moderate, or severe) reached 4-class accuracy and Cohen's Kappa of 72.55% and 0.6011 in the CHAT test set, and 61.79% and 0.4469 in the clinical dataset, respectively. Binary classification accuracy using AHI cutoffs 1, 5 and 10 events/h ranged between 84.64% and 94.44% in CHAT, and 84.10%–90.26% in the clinical database. The proposed CNN-based architecture achieved high diagnostic ability in two independent databases, outperforming previous approaches that employed SpO2 signals alone, or other classical feature-engineering approaches. Therefore, analysis of AF and SpO2 signals using deep learning can be useful to deploy reliable computer-aided diagnostic tools for childhood OSA.Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (project 10.13039/501100011033)Fondo Europeo de Desarrollo Regional - Unión Europea (projects PID2020-115468RB-I00 and PDC2021-120775-I00)Sociedad Española de Neumología y Cirugía Torácica (project 649/2018)Sociedad Española de Sueño (project Beca de Investigación SES 2019)Consorcio Centro de Investigación Biomédica en Red - Instituto de Salud Carlos III - Ministerio de Ciencia, Innovación y Universidades (project CB19/01/00012)National Institutes of Health (projects HL083075, HL083129, UL1-RR-024134 and UL1 RR024989)National Heart, Lung, and Blood Institute (projects R24 HL114473 and 75N92019R002)Ministerio de Educación, Cultura y Deporte (grant FPU16/02938)Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación - Fondo Social Europeo (grant RYC2019-028566-I)National Institutes of Health (grants HL130984, HL140548, and AG061824

    An explainable deep-learning architecture for pediatric sleep apnea identification from overnight airflow and oximetry signals

    Get PDF
    Producción CientíficaDeep-learning algorithms have been proposed to analyze overnight airflow (AF) and oximetry (SpO2) signals to simplify the diagnosis of pediatric obstructive sleep apnea (OSA), but current algorithms are hardly interpretable. Explainable artificial intelligence (XAI) algorithms can clarify the models-derived predictions on these signals, enhancing their diagnostic trustworthiness. Here, we assess an explainable architecture that combines convolutional and recurrent neural networks (CNN + RNN) to detect pediatric OSA and its severity. AF and SpO2 were obtained from the Childhood Adenotonsillectomy Trial (CHAT) public database (n = 1,638) and a proprietary database (n = 974). These signals were arranged in 30-min segments and processed by the CNN + RNN architecture to derive the number of apneic events per segment. The apnea-hypopnea index (AHI) was computed from the CNN + RNN-derived estimates and grouped into four OSA severity levels. The Gradient-weighted Class Activation Mapping (Grad-CAM) XAI algorithm was used to identify and interpret novel OSA-related patterns of interest. The AHI regression reached very high agreement (intraclass correlation coefficient > 0.9), while OSA severity classification achieved 4-class accuracies 74.51% and 62.31%, and 4-class Cohen’s Kappa 0.6231 and 0.4495, in CHAT and the private datasets, respectively. All diagnostic accuracies on increasing AHI cutoffs (1, 5 and 10 events/h) surpassed 84%. The Grad-CAM heatmaps revealed that the model focuses on sudden AF cessations and SpO2 drops to detect apneas and hypopneas with desaturations, and often discards patterns of hypopneas linked to arousals. Therefore, an interpretable CNN + RNN model to analyze AF and SpO2 can be helpful as a diagnostic alternative in symptomatic children at risk of OSA.Ministerio de Ciencia e Innovación /AEI/10.13039/501100011033/ FEDER (grants PID2020-115468RB-I00 and PDC2021-120775-I00)CIBER -Consorcio Centro de Investigación Biomédica en Red- (CB19/01/00012), Instituto de Salud Carlos IIINational Institutes of Health (HL083075, HL083129, UL1-RR-024134, UL1 RR024989)National Heart, Lung, and Blood Institute (R24 HL114473, 75N92019R002)Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación- “Ramón y Cajal” grant (RYC2019-028566-I

    Aplicación de técnicas de deep learning para clasificar los eventos de apnea e hipopnea mediante las señales de pulsioximetría

    Get PDF
    La apnea obstructiva del sueño (AOS) es una patología de gran prevalencia en la población general con graves repercusiones para la calidad de vida de las personas que la padecen. Está directamente relacionada con el desarrollo de enfermedades cardiovasculares, además de aumentar el riesgo de accidentes de tráfico y la tasa de mortalidad. A pesar de que la polisomnografía nocturna es reconocida como el gold standard para el diagnóstico de la AOS, presenta una serie de limitaciones significativas. Se trata de una prueba con un elevado coste económico, laboriosa y no siempre accesible, aparte de ser incómoda para los pacientes al tener que dormir una noche fuera de sus domicilios particulares conectados a múltiples sensores. Ante estos inconvenientes, la comunidad científica ha explorado diversas alternativas para ayudar en el diagnóstico de la AOS. Entre ellas se encuentra la pulsioximetría, una técnica simple, fiable y accesible que registra las señales de saturación de oxígeno (SpO2) y frecuencia de pulso (PR), las cuales contienen información acerca de los episodios de hipoxemia intermitente, normalmente asociados con la aparición de eventos de apnea e hipopnea.Grado en Ingeniería Biomédic
    corecore