25 research outputs found

    Real-time Scene Text Detection with Differentiable Binarization

    Full text link
    Recently, segmentation-based methods are quite popular in scene text detection, as the segmentation results can more accurately describe scene text of various shapes such as curve text. However, the post-processing of binarization is essential for segmentation-based detection, which converts probability maps produced by a segmentation method into bounding boxes/regions of text. In this paper, we propose a module named Differentiable Binarization (DB), which can perform the binarization process in a segmentation network. Optimized along with a DB module, a segmentation network can adaptively set the thresholds for binarization, which not only simplifies the post-processing but also enhances the performance of text detection. Based on a simple segmentation network, we validate the performance improvements of DB on five benchmark datasets, which consistently achieves state-of-the-art results, in terms of both detection accuracy and speed. In particular, with a light-weight backbone, the performance improvements by DB are significant so that we can look for an ideal tradeoff between detection accuracy and efficiency. Specifically, with a backbone of ResNet-18, our detector achieves an F-measure of 82.8, running at 62 FPS, on the MSRA-TD500 dataset. Code is available at: https://github.com/MhLiao/DBComment: Accepted to AAAI 202

    Real-time Arabic scene text detection using fully convolutional neural networks

    Get PDF
    The aim of this research is to propose a fully convolutional approach to address the problem of real-time scene text detection for Arabic language. Text detection is performed using a two-steps multi-scale approach. The first step uses light-weighted fully convolutional network: TextBlockDetector FCN, an adaptation of VGG-16 to eliminate non-textual elements, localize wide scale text and give text scale estimation. The second step determines narrow scale range of text using fully convolutional network for maximum performance. To evaluate the system, we confront the results of the framework to the results obtained with single VGG-16 fully deployed for text detection in one-shot; in addition to previous results in the state-of-the-art. For training and testing, we initiate a dataset of 575 images manually processed along with data augmentation to enrich training process. The system scores a precision of 0.651 vs 0.64 in the state-of-the-art and a FPS of 24.3 vs 31.7 for a VGG-16 fully deployed

    CCLAP: Controllable Chinese Landscape Painting Generation via Latent Diffusion Model

    Full text link
    With the development of deep generative models, recent years have seen great success of Chinese landscape painting generation. However, few works focus on controllable Chinese landscape painting generation due to the lack of data and limited modeling capabilities. In this work, we propose a controllable Chinese landscape painting generation method named CCLAP, which can generate painting with specific content and style based on Latent Diffusion Model. Specifically, it consists of two cascaded modules, i.e., content generator and style aggregator. The content generator module guarantees the content of generated paintings specific to the input text. While the style aggregator module is to generate paintings of a style corresponding to a reference image. Moreover, a new dataset of Chinese landscape paintings named CLAP is collected for comprehensive evaluation. Both the qualitative and quantitative results demonstrate that our method achieves state-of-the-art performance, especially in artfully-composed and artistic conception. Codes are available at https://github.com/Robin-WZQ/CCLAP.Comment: 8 pages,13 figure

    UNITS: Unsupervised Intermediate Training Stage for Scene Text Detection

    Full text link
    Recent scene text detection methods are almost based on deep learning and data-driven. Synthetic data is commonly adopted for pre-training due to expensive annotation cost. However, there are obvious domain discrepancies between synthetic data and real-world data. It may lead to sub-optimal performance to directly adopt the model initialized by synthetic data in the fine-tuning stage. In this paper, we propose a new training paradigm for scene text detection, which introduces an \textbf{UN}supervised \textbf{I}ntermediate \textbf{T}raining \textbf{S}tage (UNITS) that builds a buffer path to real-world data and can alleviate the gap between the pre-training stage and fine-tuning stage. Three training strategies are further explored to perceive information from real-world data in an unsupervised way. With UNITS, scene text detectors are improved without introducing any parameters and computations during inference. Extensive experimental results show consistent performance improvements on three public datasets.Comment: Accepted by ICME 202

    A Text Recognition Algorithm Based on a Dual-Attention Mechanism in Complex Driving Environment

    Get PDF
    In response to many problems such as complex background of text recognition environment, perspective distortion, shallow handwriting, and mixed Chinese and English characters, we have designed an OCR algorithm framework with features such as landmark extraction and correction, image enhancement, text detection, and text recognition. We have designed a DBNet based on dual attention mechanism and content-aware upsampling. We have also designed a text recognition module incorporating the central loss CRNN + CTC to improve content awareness. Experimental results show that the improved text detection network in this paper has increased accuracy by 5.09%, recall by 2.12%, and F-score by 3.46% on the ICDAR2015 dataset. The text recognition network has improved the accuracy of recognizing Chinese and English characters by 1.2%

    MixNet: Toward Accurate Detection of Challenging Scene Text in the Wild

    Full text link
    Detecting small scene text instances in the wild is particularly challenging, where the influence of irregular positions and nonideal lighting often leads to detection errors. We present MixNet, a hybrid architecture that combines the strengths of CNNs and Transformers, capable of accurately detecting small text from challenging natural scenes, regardless of the orientations, styles, and lighting conditions. MixNet incorporates two key modules: (1) the Feature Shuffle Network (FSNet) to serve as the backbone and (2) the Central Transformer Block (CTBlock) to exploit the 1D manifold constraint of the scene text. We first introduce a novel feature shuffling strategy in FSNet to facilitate the exchange of features across multiple scales, generating high-resolution features superior to popular ResNet and HRNet. The FSNet backbone has achieved significant improvements over many existing text detection methods, including PAN, DB, and FAST. Then we design a complementary CTBlock to leverage center line based features similar to the medial axis of text regions and show that it can outperform contour-based approaches in challenging cases when small scene texts appear closely. Extensive experimental results show that MixNet, which mixes FSNet with CTBlock, achieves state-of-the-art results on multiple scene text detection datasets
    corecore