73 research outputs found

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Advanced methods for earth observation data synergy for geophysical parameter retrieval

    Get PDF
    The first part of the thesis focuses on the analysis of relevant factors to estimate the response time between satellite-based and in-situ soil moisture (SM) using a Dynamic Time Warping (DTW). DTW was applied to the SMOS L4 SM, and was compared to in-situ root-zone SM in the REMEDHUS network in Western Spain. The method was customized to control the evolution of time lag during wetting and drying conditions. Climate factors in combination with crop growing seasons were studied to reveal SM-related processes. The heterogeneity of land use was analyzed using high-resolution images of NDVI from Sentinel-2 to provide information about the level of spatial representativity of SMOS data to each in-situ station. The comparison of long-term precipitation records and potential evapotranspiration allowed estimation of SM seasons describing different SM conditions depending on climate and soil properties. The second part of the thesis focuses on data-driven methods for sea ice segmentation and parameter retrieval. A Bayesian framework is employed to segment sets of multi-source satellite data. The Bayesian unsupervised learning algorithm allows to investigate the ‘hidden link’ between multiple data. The statistical properties are accounted for by a Gaussian Mixture Model, and the spatial interactions are reflected using Hidden Markov Random Fields. The algorithm segments spatial data into a number of classes, which are represented as a latent field in physical space and as clusters in feature space. In a first application, a two-step probabilistic approach based on Expectation-Maximization and the Bayesian segmentation algorithm was used to segment SAR images to discriminate surface water from sea ice types. Information on surface roughness is contained in the radar backscattering images which can be - in principle - used to detect melt ponds and to estimate high-resolution sea ice concentration (SIC). In a second study, the algorithm was applied to multi-incidence angle TB data from the SMOS L1C product to harness the its sensitivity to thin ice. The spatial patterns clearly discriminate well-determined areas of open water, old sea ice and a transition zone, which is sensitive to thin sea ice thickness (SIT) and SIC. In a third application, SMOS and the AMSR2 data are used to examine the joint effect of CIMR-like observations. The information contained in the low-frequency channels allows to reveal ranges of thin sea ice, and thicker ice can be determined from the relationship between the high-frequency channels and changing conditions as the sea ice ages. The proposed approach is suitable for merging large data sets and provides metrics for class analysis, and to make informed choices about integrating data from future missions into sea ice products. A regression neural network approach was investigated with the goal to infer SIT using TB data from the Flexible Microwave Payload 2 (FMPL-2) of the FSSCat mission. Two models - covering thin ice up to 0.6m and the full-range of SIT - were trained on Arctic data using ground truth data derived from the SMOS and Cryosat-2. This work demonstrates that moderate-cost CubeSat missions can provide valuable data for applications in Earth observation.La primera parte de la tesis se centra en el análisis de los factores relevantes para estimar el tiempo de respuesta entre la humedad del suelo (SM) basada en el satélite y la in-situ, utilizando una deformación temporal dinámica (DTW). El DTW se aplicó al SMOS L4 SM, y se comparó con la SM in-situ en la red REMEDHUS en el oeste de España. El método se adaptó para controlar la evolución del desfase temporal durante diferentes condiciones de humedad y secado. Se estudiaron los factores climáticos en combinación con los períodos de crecimiento de los cultivos para revelar los procesos relacionados con la SM. La heterogeneidad del uso del suelo se analizó utilizando imágenes de alta resolución de NDVI de Sentinel-2 para proporcionar información sobre el nivel de representatividad espacial de los datos de SMOS a cada estación in situ. La comparación de los patrones de precipitación a largo plazo y la evapotranspiración potencial permitió estimar las estaciones de SM que describen diferentes condiciones de SM en función del clima y las propiedades del suelo. La segunda parte de esta tesis se centra en métodos dirigidos por datos para la segmentación del hielo marino y la obtención de parámetros. Se emplea un método de inferencia bayesiano para segmentar conjuntos de datos satelitales de múltiples fuentes. El algoritmo de aprendizaje bayesiano no supervisado permite investigar el “vínculo oculto” entre múltiples datos. Las propiedades estadísticas se contabilizan mediante un modelo de mezcla gaussiana, y las interacciones espaciales se reflejan mediante campos aleatorios ocultos de Markov. El algoritmo segmenta los datos espaciales en una serie de clases, que se representan como un campo latente en el espacio físico y como clústeres en el espacio de las variables. En una primera aplicación, se utilizó un enfoque probabilístico de dos pasos basado en la maximización de expectativas y el algoritmo de segmentación bayesiano para segmentar imágenes SAR con el objetivo de discriminar el agua superficial de los tipos de hielo marino. La información sobre la rugosidad de la superficie está contenida en las imágenes de backscattering del radar, que puede utilizarse -en principio- para detectar estanques de deshielo y estimar la concentración de hielo marino (SIC) de alta resolución. En un segundo estudio, el algoritmo se aplicó a los datos TB de múltiples ángulos de incidencia del producto SMOS L1C para aprovechar su sensibilidad al hielo fino. Los patrones espaciales discriminan claramente áreas bien determinadas de aguas abiertas, hielo marino viejo y una zona de transición, que es sensible al espesor del hielo marino fino (SIT) y al SIC. En una tercera aplicación, se utilizan los datos de SMOS y de AMSR2 para examinar el efecto conjunto de las observaciones tipo CIMR. La información contenida en los canales de baja frecuencia permite revelar rangos de hielo marino delgado, y el hielo más grueso puede determinarse a partir de la relación entre los canales de alta frecuencia y las condiciones cambiantes a medida que el hielo marino envejece. El enfoque propuesto es adecuado para fusionar grandes conjuntos de datos y proporciona métricas para el análisis de clases, y para tomar decisiones informadas sobre la integración de datos de futuras misiones en los productos de hielo marino. Se investigó un enfoque de red neuronal de regresión con el objetivo de inferir el SIT utilizando datos de TB de la carga útil de microondas flexible 2 (FMPL-2) de la misión FSSCat. Se entrenaron dos modelos - que cubren el hielo fino hasta 0.6 m y el rango completo del SIT - con datos del Ártico utilizando datos de “ground truth” derivados del SMOS y del Cryosat-2. Este trabajo demuestra que las misiones CubeSat de coste moderado pueden proporcionar datos valiosos para aplicaciones de observación de la Tierra.Postprint (published version

    Volume II Acquisition Research Creating Synergy for Informed Change, Thursday 19th Annual Acquisition Research Proceedings

    Get PDF
    ProceedingsApproved for public release; distribution is unlimited

    Climate Change Impacts on Agriculture in Europe

    Get PDF
    COST Action 734 was launched thanks to the coordinated activity of 29 EU countries. The main objective of the Action was the evaluation of impacts from climate change and variability on agriculture for various European areas. Secondary objectives were: collection and review of existing agroclimatic indices and simulation models, to assess hazard impacts on European agricultural areas; to apply climate scenarios for the next few decades; the definition of harmonised criteria to evaluate the impacts of climate change and variability on agriculture; the definition of warning systems guidelines. Based on the result, possible actions (specific recommendations, suggestions, warning systems) were elaborated and proposed to the end-users, depending on their needs

    Sixth International Symposium Monitoring of Mediterranean Coastal Areas. Problems and Measurement Techniques

    Get PDF
    The Sixth International Symposium Monitoring of Mediterranean Coastal Areas. Problems and Measurement Techniques (Livorno, Italy 28-29 September 2016) was organized by the CNR-IBIMET in collaboration with University Departments, the City of Livorno, the LEM Foundation, the Livorno Port Authority and CeSIA-Accademia dei Georgofili, with the patronage by Accademia Nazionale dei Lincei, the Tuscany Region and the Province of Livorno. The Symposium, that every two years addresses to Mediterranean scholars, was characterized by discourse of topics related to Mediterranean coastal areas and by the search for technical and instrumental solutions to problems related to: energy production in the coastal area, morphology and evolution of coastlines, flora and fauna of the littoral system, management and integrated coastal protection, coastline geography, human influence on coastal landscape

    Geotechnical Engineering for the Preservation of Monuments and Historic Sites III

    Get PDF
    The conservation of monuments and historic sites is one of the most challenging problems facing modern civilization. It involves, in inextricable patterns, factors belonging to different fields (cultural, humanistic, social, technical, economical, administrative) and the requirements of safety and use appear to be (or often are) in conflict with the respect of the integrity of the monuments. The complexity of the topic is such that a shared framework of reference is still lacking among art historians, architects, structural and geotechnical engineers. The complexity of the subject is such that a shared frame of reference is still lacking among art historians, architects, architectural and geotechnical engineers. And while there are exemplary cases of an integral approach to each building element with its static and architectural function, as a material witness to the culture and construction techniques of the original historical period, there are still examples of uncritical reliance on modern technology leading to the substitution from earlier structures to new ones, preserving only the iconic look of the original monument. Geotechnical Engineering for the Preservation of Monuments and Historic Sites III collects the contributions to the eponymous 3rd International ISSMGE TC301 Symposium (Naples, Italy, 22-24 June 2022). The papers cover a wide range of topics, which include:   - Principles of conservation, maintenance strategies, case histories - The knowledge: investigations and monitoring - Seismic risk, site effects, soil structure interaction - Effects of urban development and tunnelling on built heritage - Preservation of diffuse heritage: soil instability, subsidence, environmental damages The present volume aims at geotechnical engineers and academics involved in the preservation of monuments and historic sites worldwide

    Array Manifold Calibration for Multichannel SAR Sounders

    Get PDF
    This dissertation demonstrates airborne synthetic aperture radar (SAR) sounder array manifold calibration to improve outcomes in two-dimensional and three-dimensional image formation of ice sheet and glacier subsurfaces. The methodology relies on the creation of snapshot databases that aid in both the identification of calibration pixels as well as the validation of proposed calibration strategies. A parametric estimator of nonlinear SAR sounder manifold parameters is derived given a superset of statistically independent and spatially diverse subsets, assuming knowledge of the manifold model. Both measurements-based and computational electromagnetic modeling (CEM) approaches are pursued in obtaining a parametric representation of the manifold that enables the application of this estimator. The former relies on a principal components based characterization of SAR sounder manifolds. By incorporating a subspace clustering technique to identify pixels with a single dominant source, the algorithm circumvents an assumption of single source observations that underlies the formulation of nonparametric methods and traditionally limits the applicability of these techniques to the SAR sounder problem. Three manifolds are estimated and tested against a nominal manifold model in angle estimation and tomography. Measured manifolds on average reduce angle estimation error by a factor of 4.8 and lower vertical elevation uncertainty of SAR sounder derived digital elevation models by a factor of 3.7. Application of the measured manifolds in angle estimation produces 3-D images with more focused scattering signatures and higher intensity pixels that improve automated surface extraction outcomes. Measured manifolds are studied against Method of Moments predictions of the array's response to plane wave excitation obtained with a detailed model of the sounder's array that includes the airborne platform and fairing housing. CEM manifolds reduce angle estimation uncertainty off nadir on average by a factor of 3 when applied to measurements, providing initial confirmation of the utility of the CEM model in predicting angle estimation performance of the sounder's airborne arrays. The research findings of this dissertation indicate that SAR sounder manifold calibration will significantly increase the scientific value of legacy ice sheet and glacier sounding data sets and lead to optimized designs of future remote sensing instrumentation for surveying the cryosphere

    Framing, Context, and Methods (Chapter 1)

    Get PDF
    Working Group I (WGI) of the Intergovernmental Panel on Climate Change (IPCC) assesses the current evidence on the physical science of climate change, evaluating knowledge gained from observations, reanalyses, paleoclimate archives and climate model simulations, as well as physical, chemical and biological climate processes. This chapter sets the scene for the WGI Assessment, placing it in the context of ongoing global and regional changes, international policy responses, the history of climate science and the evolution from previous IPCC assessments, including the Special Reports prepared as part of this Assessment Cycle. This chapter presents key concepts and methods, relevant recent developments, and the modelling and scenario framework used in this Assessment
    corecore