74 research outputs found

    Design, Integration, and Deployment of UAS borne HF/VHF Depth Sounding Radar and Antenna System

    Get PDF
    The dynamic thinning of fast-flowing glaciers is so poorly understood that its potential impact on sea level rise remains unpredictable. Therefore, there is a dire need to predict the behavior of these ice bodies by understanding their bed topography and basal conditions, particularly near their grounding lines (the limit between grounded ice and floating ice). The ability to detect previous VHF radar returns in some key glacier regions is limited by strong clutter caused by severe ice surface roughness, volume scatter, and increased attenuation induced by water inclusions and debris. The work completed in the context of this thesis encompasses the design, integration, and field testing of a new compact light-weight radar and antenna system suitable for low-frequency operation onboard Uninhabited Aerial Systems (UASs). Specifically, this thesis presents the development of two tapered dipole antennas compatible with a 4-meter wingspan UAS. The bow-tie shaped antenna resonates at 35 MHz, and the meandering and resistively loaded element radiates at 14 MHz. Also discussed are the methods and tools used to achieve the necessary bandwidth while mitigating the electromagnetic coupling between the antennas and on-board avionics in a fully populated UAS. The influence of EM coupling on the 14 MHz antenna was nominal due to relatively longer wavelength. However, its input impedance had to be modified by resistive loading in order to avoid high power reflections back to the transmitter. The antenna bandwidths were further enhanced by employing impedance matching networks that resulted in 17.3% and 7.1% bandwidths at 35 MHz and 14 MHz, respectively. Finally, a compact 4 lbs. system was validated during the 2013-2014 Antarctic deployment, which led to echo sounding of more challenging temperate ice in the Arctic Circle. The thesis provides results obtained from data collected during a field test campaign over the Russell glacier in Greenland compared with previous data obtained with a VHF depth sounder system operated onboard a manned aircraft

    Proceedings of the Seventh International Space University Alumni Conference

    Get PDF
    The Seventh Alumni Conference of the International Space University, coordinated by the ISU U.S. Alumni Organization (IUSAO), was held at Cleveland State University in Cleveland, Ohio on Friday, July 24, 1998. These proceedings are a record of the presentations. The following topics are included: Remote sensing education in developing countries; Integrated global observing strategy; NASA's current earth science program; Europe's lunar initiative; Lunarsat: Searching for the South Polar cold traps; Asteroid hazards; ESA exobiological activities; Space testbed for photovoltaics; Teledesic Space infrastructure; Space instrument's concurrent design; NASA advanced fuel program; Mission preparation and training for the European Robotic Arm (ERA); and Global access to remote sensing systems

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    This publication represents the NASA research and technology program for FY-93. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number

    Science Mission Directorate TechPort Records for 2019 STI-DAA Release

    Get PDF
    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community including the recommendations set forth in the National Research Council (NRC) decadal surveys and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions -- Heliophysics, Earth Science, Planetary Science, and Astrophysics -- develops fundamental science questions upon which to base future research and mission programs

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings

    Array Manifold Calibration for Multichannel SAR Sounders

    Get PDF
    This dissertation demonstrates airborne synthetic aperture radar (SAR) sounder array manifold calibration to improve outcomes in two-dimensional and three-dimensional image formation of ice sheet and glacier subsurfaces. The methodology relies on the creation of snapshot databases that aid in both the identification of calibration pixels as well as the validation of proposed calibration strategies. A parametric estimator of nonlinear SAR sounder manifold parameters is derived given a superset of statistically independent and spatially diverse subsets, assuming knowledge of the manifold model. Both measurements-based and computational electromagnetic modeling (CEM) approaches are pursued in obtaining a parametric representation of the manifold that enables the application of this estimator. The former relies on a principal components based characterization of SAR sounder manifolds. By incorporating a subspace clustering technique to identify pixels with a single dominant source, the algorithm circumvents an assumption of single source observations that underlies the formulation of nonparametric methods and traditionally limits the applicability of these techniques to the SAR sounder problem. Three manifolds are estimated and tested against a nominal manifold model in angle estimation and tomography. Measured manifolds on average reduce angle estimation error by a factor of 4.8 and lower vertical elevation uncertainty of SAR sounder derived digital elevation models by a factor of 3.7. Application of the measured manifolds in angle estimation produces 3-D images with more focused scattering signatures and higher intensity pixels that improve automated surface extraction outcomes. Measured manifolds are studied against Method of Moments predictions of the array's response to plane wave excitation obtained with a detailed model of the sounder's array that includes the airborne platform and fairing housing. CEM manifolds reduce angle estimation uncertainty off nadir on average by a factor of 3 when applied to measurements, providing initial confirmation of the utility of the CEM model in predicting angle estimation performance of the sounder's airborne arrays. The research findings of this dissertation indicate that SAR sounder manifold calibration will significantly increase the scientific value of legacy ice sheet and glacier sounding data sets and lead to optimized designs of future remote sensing instrumentation for surveying the cryosphere
    corecore