5 research outputs found

    ReShader: View-Dependent Highlights for Single Image View-Synthesis

    Full text link
    In recent years, novel view synthesis from a single image has seen significant progress thanks to the rapid advancements in 3D scene representation and image inpainting techniques. While the current approaches are able to synthesize geometrically consistent novel views, they often do not handle the view-dependent effects properly. Specifically, the highlights in their synthesized images usually appear to be glued to the surfaces, making the novel views unrealistic. To address this major problem, we make a key observation that the process of synthesizing novel views requires changing the shading of the pixels based on the novel camera, and moving them to appropriate locations. Therefore, we propose to split the view synthesis process into two independent tasks of pixel reshading and relocation. During the reshading process, we take the single image as the input and adjust its shading based on the novel camera. This reshaded image is then used as the input to an existing view synthesis method to relocate the pixels and produce the final novel view image. We propose to use a neural network to perform reshading and generate a large set of synthetic input-reshaded pairs to train our network. We demonstrate that our approach produces plausible novel view images with realistic moving highlights on a variety of real world scenes.Comment: SIGGRAPH Asia 2023. Project page at https://people.engr.tamu.edu/nimak/Papers/SIGAsia2023_Reshader/index.html and video at https://www.youtube.com/watch?v=XW-tl48D3O

    Proxy-guided Image-based Rendering for Mobile Devices

    Get PDF
    VR headsets and hand-held devices are not powerful enough to render complex scenes in real-time. A server can take on the rendering task, but network latency prohibits a good user experience. We present a new image-based rendering (IBR) architecture for masking the latency. It runs in real-time even on very weak mobile devices, supports modern game engine graphics, and maintains high visual quality even for large view displacements. We propose a novel server-side dual-view representation that leverages an optimally-placed extra view and depth peeling to provide the client with coverage for filling disocclusion holes. This representation is directly rendered in a novel wide-angle projection with favorable directional parameterization. A new client-side IBR algorithm uses a pre-transmitted level-of-detail proxy with an encaging simplification and depth-carving to maintain highly complex geometric detail. We demonstrate our approach with typical VR / mobile gaming applications running on mobile hardware. Our technique compares favorably to competing approaches according to perceptual and numerical comparisons

    Efficient Hybrid Image Warping for High Frame-Rate Stereoscopic Rendering

    Get PDF
    Modern virtual reality simulations require a constant high-frame rate from the rendering engine. They may also require very low latency and stereo images. Previous rendering engines for virtual reality applications have exploited spatial and temporal coherence by using image-warping to re-use previous frames or to render a stereo pair at lower cost than running the full render pipeline twice. However these previous approaches have shown artifacts or have not scaled well with image size. We present a new image-warping algorithm that has several novel contributions: an adaptive grid generation algorithm for proxy geometry for image warping; a low-pass hole-filling algorithm to address un-occlusion; and support for transparent surfaces by efficiently ray casting transparent fragments stored in per-pixel linked lists of an A-Buffer. We evaluate our algorithm with a variety of challenging test cases. The results show that it achieves better quality image-warping than state-of-the-art techniques and that it can support transparent surfaces effectively. Finally, we show that our algorithm can achieve image warping at rates suitable for practical use in a variety of applications on modern virtual reality equipment

    Glossy Probe Reprojection for Interactive Global Illumination

    Get PDF
    International audienceRecent rendering advances dramatically reduce the cost of global illumination. But even with hardware acceleration, complex light paths with multiple glossy interactions are still expensive; our new algorithm stores these paths in precomputed light probes and reprojects them at runtime to provide interactivity. Combined with traditional light maps for diffuse lighting our approach interactively renders all light paths in static scenes with opaque objects. Naively reprojecting probes with glossy lighting is memory-intensive, requires efficient access to the correctly reflected radiance, and exhibits problems at occlusion boundaries in glossy reflections. Our solution addresses all these issues. To minimize memory, we introduce an adaptive light probe parameterization that allocates increased resolution for shinier surfaces and regions of higher geometric complexity. To efficiently sample glossy paths, our novel gathering algorithm reprojects probe texels in a view-dependent manner using efficient reflection estimation and a fast rasterization-based search. Naive probe reprojection often sharpens glossy reflections at occlusion boundaries, due to changes in parallax. To avoid this, we split the convolution induced by the BRDF into two steps: we precompute probes using a lower material roughness and apply an adaptive bilateral filter at runtime to reproduce the original surface roughness. Combining these elements, our algorithm interactively renders complex scenes while fitting in the memory, bandwidth, and computation constraints of current hardware
    corecore