31,834 research outputs found

    Real-time Outdoor Localization Using Radio Maps: A Deep Learning Approach

    Full text link
    Global Navigation Satellite Systems typically perform poorly in urban environments, where the likelihood of line-of-sight conditions between the devices and the satellites is low, and thus alternative localization methods are required for good accuracy. We present LocUNet: A convolutional, end-to-end trained neural network for the localization task, able to estimate the position of a user from the received signal strength (RSS) from a small number of Base Stations (BSs). In the proposed method, the user to be localized simply reports the measured RSS to a central processing unit, which may be located in the cloud. Using estimations of pathloss radio maps of the BSs and the RSS measurements, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the estimations of radio maps. The proposed method does not require pre-sampling of new environments and is suitable for real-time applications. Moreover, two novel datasets that allow for numerical evaluations of RSS and ToA methods in realistic urban environments are presented and made publicly available for the research community. By using these datasets, we also provide a fair comparison of state-of-the-art RSS and ToA-based methods in the dense urban scenario and show numerically that LocUNet outperforms all the compared methods.Comment: Submitted to IEEE Transactions on Wireless Communication

    RF-Based Location Using Interpolation Functions to Reduce Fingerprint Mapping

    Get PDF
    Indoor RF-based localization using fingerprint mapping requires an initial training step, which represents a time consuming process. This location methodology needs a database conformed with RSSI (Radio Signal Strength Indicator) measures from the communication transceivers taken at specific locations within the localization area. But, the real world localization environment is dynamic and it is necessary to rebuild the fingerprint database when some environmental changes are made. This paper explores the use of different interpolation functions to complete the fingerprint mapping needed to achieve the sought accuracy, thereby reducing the effort in the training step. Also, different distributions of test maps and reference points have been evaluated, showing the validity of this proposal and necessary trade-offs. Results reported show that the same or similar localization accuracy can be achieved even when only 50% of the initial fingerprint reference points are taken

    PEOPLEx: PEdestrian Opportunistic Positioning LEveraging IMU, UWB, BLE and WiFi

    Full text link
    This paper advances the field of pedestrian localization by introducing a unifying framework for opportunistic positioning based on nonlinear factor graph optimization. While many existing approaches assume constant availability of one or multiple sensing signals, our methodology employs IMU-based pedestrian inertial navigation as the backbone for sensor fusion, opportunistically integrating Ultra-Wideband (UWB), Bluetooth Low Energy (BLE), and WiFi signals when they are available in the environment. The proposed PEOPLEx framework is designed to incorporate sensing data as it becomes available, operating without any prior knowledge about the environment (e.g. anchor locations, radio frequency maps, etc.). Our contributions are twofold: 1) we introduce an opportunistic multi-sensor and real-time pedestrian positioning framework fusing the available sensor measurements; 2) we develop novel factors for adaptive scaling and coarse loop closures, significantly improving the precision of indoor positioning. Experimental validation confirms that our approach achieves accurate localization estimates in real indoor scenarios using commercial smartphones

    Selective AP-sequence Based Indoor Localization without Site Survey

    Full text link
    In this paper, we propose an indoor localization system employing ordered sequence of access points (APs) based on received signal strength (RSS). Unlike existing indoor localization systems, our approach does not require any time-consuming and laborious site survey phase to characterize the radio signals in the environment. To be precise, we construct the fingerprint map by cutting the layouts of the interested area into regions with only the knowledge of positions of APs. This can be done offline within a second and has a potential for practical use. The localization is then achieved by matching the ordered AP-sequence to the ones in the fingerprint map. Different from traditional fingerprinting that employing all APs information, we use only selected APs to perform localization, due to the fact that, without site survey, the possibility in obtaining the correct AP sequence is lower if it involves more APs. Experimental results show that, the proposed system achieves localization accuracy < 5m with an accumulative density function (CDF) of 50% to 60% depending on the density of APs. Furthermore, we observe that, using all APs for localization might not achieve the best localization accuracy, e.g. in our case, 4 APs out of total 7 APs achieves the best performance. In practice, the number of APs used to perform localization should be a design parameter based on the placement of APs.Comment: VTC2016-Spring, 15-18 May 2016, Nanjing, Chin
    • …
    corecore