40,096 research outputs found

    From motor babbling to hierarchical learning by imitation: a robot developmental pathway

    Get PDF
    How does an individual use the knowledge acquired through self exploration as a manipulable model through which to understand others and benefit from their knowledge? How can developmental and social learning be combined for their mutual benefit? In this paper we review a hierarchical architecture (HAMMER) which allows a principled way for combining knowledge through exploration and knowledge from others, through the creation and use of multiple inverse and forward models. We describe how Bayesian Belief Networks can be used to learn the association between a robot’s motor commands and sensory consequences (forward models), and how the inverse association can be used for imitation. Inverse models created through self exploration, as well as those from observing others can coexist and compete in a principled unified framework, that utilises the simulation theory of mind approach to mentally rehearse and understand the actions of others

    3D human pose estimation from depth maps using a deep combination of poses

    Full text link
    Many real-world applications require the estimation of human body joints for higher-level tasks as, for example, human behaviour understanding. In recent years, depth sensors have become a popular approach to obtain three-dimensional information. The depth maps generated by these sensors provide information that can be employed to disambiguate the poses observed in two-dimensional images. This work addresses the problem of 3D human pose estimation from depth maps employing a Deep Learning approach. We propose a model, named Deep Depth Pose (DDP), which receives a depth map containing a person and a set of predefined 3D prototype poses and returns the 3D position of the body joints of the person. In particular, DDP is defined as a ConvNet that computes the specific weights needed to linearly combine the prototypes for the given input. We have thoroughly evaluated DDP on the challenging 'ITOP' and 'UBC3V' datasets, which respectively depict realistic and synthetic samples, defining a new state-of-the-art on them.Comment: Accepted for publication at "Journal of Visual Communication and Image Representation

    Articulated human tracking and behavioural analysis in video sequences

    Get PDF
    Recently, there has been a dramatic growth of interest in the observation and tracking of human subjects through video sequences. Arguably, the principal impetus has come from the perceived demand for technological surveillance, however applications in entertainment, intelligent domiciles and medicine are also increasing. This thesis examines human articulated tracking and the classi cation of human movement, rst separately and then as a sequential process. First, this thesis considers the development and training of a 3D model of human body structure and dynamics. To process video sequences, an observation model is also designed with a multi-component likelihood based on edge, silhouette and colour. This is de ned on the articulated limbs, and visible from a single or multiple cameras, each of which may be calibrated from that sequence. Second, for behavioural analysis, we develop a methodology in which actions and activities are described by semantic labels generated from a Movement Cluster Model (MCM). Third, a Hierarchical Partitioned Particle Filter (HPPF) was developed for human tracking that allows multi-level parameter search consistent with the body structure. This tracker relies on the articulated motion prediction provided by the MCM at pose or limb level. Fourth, tracking and movement analysis are integrated to generate a probabilistic activity description with action labels. The implemented algorithms for tracking and behavioural analysis are tested extensively and independently against ground truth on human tracking and surveillance datasets. Dynamic models are shown to predict and generate synthetic motion, while MCM recovers both periodic and non-periodic activities, de ned either on the whole body or at the limb level. Tracking results are comparable with the state of the art, however the integrated behaviour analysis adds to the value of the approach.Overseas Research Students Awards Scheme (ORSAS

    Autonomous monitoring of cliff nesting seabirds using computer vision

    Get PDF
    In this paper we describe a proposed system for automatic visual monitoring of seabird populations. Image sequences of cliff face nesting sites are captured using time-lapse digital photography. We are developing image processing software which is designed to automatically interpret these images, determine the number of birds present, and monitor activity. We focus primarily on the the development of low-level image processing techniques to support this goal. We first describe our existing work in video processing, and show how it is suitable for this problem domain. Image samples from a particular nest site are presented, and used to describe the associated challenges. We conclude by showing how we intend to develop our work to construct a distributed system capable of simultaneously monitoring a number of sites in the same locality

    Learning object behaviour models

    Get PDF
    The human visual system is capable of interpreting a remarkable variety of often subtle, learnt, characteristic behaviours. For instance we can determine the gender of a distant walking figure from their gait, interpret a facial expression as that of surprise, or identify suspicious behaviour in the movements of an individual within a car-park. Machine vision systems wishing to exploit such behavioural knowledge have been limited by the inaccuracies inherent in hand-crafted models and the absence of a unified framework for the perception of powerful behaviour models. The research described in this thesis attempts to address these limitations, using a statistical modelling approach to provide a framework in which detailed behavioural knowledge is acquired from the observation of long image sequences. The core of the behaviour modelling framework is an optimised sample-set representation of the probability density in a behaviour space defined by a novel temporal pattern formation strategy. This representation of behaviour is both concise and accurate and facilitates the recognition of actions or events and the assessment of behaviour typicality. The inclusion of generative capabilities is achieved via the addition of a learnt stochastic process model, thus facilitating the generation of predictions and realistic sample behaviours. Experimental results demonstrate the acquisition of behaviour models and suggest a variety of possible applications, including automated visual surveillance, object tracking, gesture recognition, and the generation of realistic object behaviours within animations, virtual worlds, and computer generated film sequences. The utility of the behaviour modelling framework is further extended through the modelling of object interaction. Two separate approaches are presented, and a technique is developed which, using learnt models of joint behaviour together with a stochastic tracking algorithm, can be used to equip a virtual object with the ability to interact in a natural way. Experimental results demonstrate the simulation of a plausible virtual partner during interaction between a user and the machine

    Towards the Safety of Human-in-the-Loop Robotics: Challenges and Opportunities for Safety Assurance of Robotic Co-Workers

    Get PDF
    The success of the human-robot co-worker team in a flexible manufacturing environment where robots learn from demonstration heavily relies on the correct and safe operation of the robot. How this can be achieved is a challenge that requires addressing both technical as well as human-centric research questions. In this paper we discuss the state of the art in safety assurance, existing as well as emerging standards in this area, and the need for new approaches to safety assurance in the context of learning machines. We then focus on robotic learning from demonstration, the challenges these techniques pose to safety assurance and indicate opportunities to integrate safety considerations into algorithms "by design". Finally, from a human-centric perspective, we stipulate that, to achieve high levels of safety and ultimately trust, the robotic co-worker must meet the innate expectations of the humans it works with. It is our aim to stimulate a discussion focused on the safety aspects of human-in-the-loop robotics, and to foster multidisciplinary collaboration to address the research challenges identified

    Using accelerometer, high sample rate GPS and magnetometer data to develop a cattle movement and behaviour model

    Get PDF
    The study described in this paper developed a model of animal movement, which explicitly recognised each individual as the central unit of measure. The model was developed by learning from a real dataset that measured and calculated, for individual cows in a herd, their linear and angular positions and directional and angular speeds. Two learning algorithms were implemented: a Hidden Markov model (HMM) and a long-term prediction algorithm. It is shown that a HMM can be used to describe the animal's movement and state transition behaviour within several “stay” areas where cows remained for long periods. Model parameters were estimated for hidden behaviour states such as relocating, foraging and bedding. For cows’ movement between the “stay” areas a long-term prediction algorithm was implemented. By combining these two algorithms it was possible to develop a successful model, which achieved similar results to the animal behaviour data collected. This modelling methodology could easily be applied to interactions of other animal specie

    Automatic sensor-based detection and classification of climbing activities

    Get PDF
    This article presents a method to automatically detect and classify climbing activities using inertial measurement units (IMUs) attached to the wrists, feet and pelvis of the climber. The IMUs record limb acceleration and angular velocity. Detection requires a learning phase with manual annotation to construct the statistical models used in the cusum algorithm. Full-body activity is then classified based on the detection of each IMU
    corecore