5 research outputs found

    A Real-Time Video-based Eye Tracking Approach for Driver Attention Study

    Get PDF
    nowing the driver's point of gaze has significant potential to enhance driving safety, eye movements can be used as an indicator of the attention state of a driver; but the primary obstacle of integrating eye gaze into today's large scale real world driving attention study is the availability of a reliable, low-cost eye-tracking system. In this paper, we make an attempt to investigate such a real-time system to collect driver's eye gaze in real world driving environment. A novel eye-tracking approach is proposed based on low cost head mounted eye tracker. Our approach detects corneal reflection and pupil edge points firstly, and then fits the points with ellipse. The proposed approach is available in different illumination and driving environment from simple inexpensive head mounted eye tracker, which can be widely used in large scale experiments. The experimental results illustrate our approach can reliably estimate eye position with an accuracy of average 0.34 degree of visual angle in door experiment and 2--5 degrees in real driving environments

    CAT-CAD: A Computer-Aided Diagnosis Tool for Cataplexy

    Get PDF
    Narcolepsy with cataplexy is a severe lifelong disorder characterized, among others, by sudden loss of bilateral face muscle tone triggered by emotions (cataplexy). A recent approach for the diagnosis of the disease is based on a completely manual analysis of video recordings of patients undergoing emotional stimulation made on-site by medical specialists, looking for specific facial behavior motor phenomena. We present here the CAT-CAD tool for automatic detection of cataplexy symptoms, with the double aim of (1) supporting neurologists in the diagnosis/monitoring of the disease and (2) facilitating the experience of patients, allowing them to conduct video recordings at home. CAT-CAD includes a front-end medical interface (for the playback/inspection of patient recordings and the retrieval of videos relevant to the one currently played) and a back-end AI-based video analyzer (able to automatically detect the presence of disease symptoms in the patient recording). Analysis of patients’ videos for discovering disease symptoms is based on the detection of facial landmarks, and an alternative implementation of the video analyzer, exploiting deep-learning techniques, is introduced. Performance of both approaches is experimentally evaluated using a benchmark of real patients’ recordings, demonstrating the effectiveness of the proposed solutions

    Real-Time Vision-Based Driver Drowsiness/Fatigue Detection System

    No full text

    Real-Time Vision-Based Driver Drowsiness/Fatigue Detection System

    No full text
    [[abstract]]In this paper, a vision system for monitoring driver's vigilance is presented. The level of vigilance is determined by integrating a number of facial parameters. In order to estimate these parameters, the facial features of eyes, mouth and head are first located in the input video sequence. The located facial features are then tracked over the subsequent images. Facial parameters are estimated during facial feature tracking. The estimated parametric values are collected and analyzed every fixed time interval to provide a real-time vigilance level of the driver. A series of experiments on real sequences were demonstrated to reveal the feasibility of the proposed system.
    corecore