4,507 research outputs found

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Compressive Hyperspectral Imaging Using Progressive Total Variation

    Get PDF
    Compressed Sensing (CS) is suitable for remote acquisition of hyperspectral images for earth observation, since it could exploit the strong spatial and spectral correlations, llowing to simplify the architecture of the onboard sensors. Solutions proposed so far tend to decouple spatial and spectral dimensions to reduce the complexity of the reconstruction, not taking into account that onboard sensors progressively acquire spectral rows rather than acquiring spectral channels. For this reason, we propose a novel progressive CS architecture based on separate sensing of spectral rows and joint reconstruction employing Total Variation. Experimental results run on raw AVIRIS and AIRS images confirm the validity of the proposed system.Comment: To be published on ICASSP 2014 proceeding

    An Efficient Classification of Hyperspectral Remotely Sensed Data Using Support Vector Machine

    Get PDF
    This work present an efficient hardware architecture of Support Vector Machine (SVM) for the classification of Hyperspectral remotely sensed data using High Level Synthesis (HLS) method. The high classification time and power consumption in traditional classification of remotely sensed data is the main motivation for this work. Therefore presented work helps to classify the remotely sensed data in real-time and to take immediate action during the natural disaster. An embedded based SVM is designed and implemented on Zynq SoC for classification of hyperspectral images. The data set of remotely sensed data are tested on different platforms and the performance is compared with existing works. Novelty in our proposed work is extend the HLS based FPGA implantation to the onboard classification system in remote sensing. The experimental results for selected data set from different class shows that our architecture on Zynq 7000 implementation generates a delay of 11.26 µs and power consumption of 1.7 Watts, which is extremely better as compared to other Field Programmable Gate Array (FPGA) implementation using Hardware description Language (HDL)  and Central Processing Unit (CPU) implementation
    corecore