6 research outputs found

    Real-Time Scalable Visual Tracking via Quadrangle Kernelized Correlation Filters

    Get PDF
    Correlation filter (CF) has been widely used in tracking tasks due to its simplicity and high efficiency. However, conventional CF-based trackers fail to handle the scale variation that occurs when the targeted object is moving, which is one of the most notable unsolved problems of visual object tracking. In this paper, we propose a scalable visual tracking algorithm based on kernelized correlation filters, referred to as quadrangle kernelized correlation filters (QKCF). Unlike existing complicated scalable trackers that either perform the correlation filtering operation multiple times or extract many candidate windows at various scales, our tracker intends to estimate the scale of the object based on the positions of its four corners, which can be detected using a new Gaussian training output matrix within one filtering process. After obtaining four peak values corresponding to the four corners, we measure the detection confidence of each part response by evaluating its spatial and temporal smoothness. On top of it, a weighted Bayesian inference framework is employed to estimate the final location and size of the bounding box from the response matrix, where the weights are synchronized with the calculated detection likelihoods. Experiments are performed on the OTB-100 data set and 16 benchmark sequences with significant scale variations. The results demonstrate the superiority of the proposed method in terms of both effectiveness and robustness, compared with the state-of-the-art methods

    Unsupervised Deep Video Hashing via Balanced Code for Large-Scale Video Retrieval

    Get PDF
    This paper proposes a deep hashing framework, namely, unsupervised deep video hashing (UDVH), for large-scale video similarity search with the aim to learn compact yet effective binary codes. Our UDVH produces the hash codes in a self-taught manner by jointly integrating discriminative video representation with optimal code learning, where an efficient alternating approach is adopted to optimize the objective function. The key differences from most existing video hashing methods lie in: 1) UDVH is an unsupervised hashing method that generates hash codes by cooperatively utilizing feature clustering and a specifically designed binarization with the original neighborhood structure preserved in the binary space and 2) a specific rotation is developed and applied onto video features such that the variance of each dimension can be balanced, thus facilitating the subsequent quantization step. Extensive experiments performed on three popular video datasets show that the UDVH is overwhelmingly better than the state of the arts in terms of various evaluation metrics, which makes it practical in real-world applications. © 1992-2012 IEEE

    Learning effective binary representation with deep hashing technique for large-scale multimedia similarity search

    Get PDF
    The explosive growth of multimedia data in modern times inspires the research of performing an efficient large-scale multimedia similarity search in the existing information retrieval systems. In the past decades, the hashing-based nearest neighbor search methods draw extensive attention in this research field. By representing the original data with compact hash code, it enables the efficient similarity retrieval by only conducting bitwise operation when computing the Hamming distance. Moreover, less memory space is required to process and store the massive amounts of features for the search engines owing to the nature of compact binary code. These advantages make hashing a competitive option in large-scale visual-related retrieval tasks. Motivated by the previous dedicated works, this thesis focuses on learning compact binary representation via hashing techniques for the large-scale multimedia similarity search tasks. Particularly, several novel frameworks are proposed for popular hashing-based applications like a local binary descriptor for patch-level matching (Chapter 3), video-to-video retrieval (Chapter 4) and cross-modality retrieval (Chapter 5). This thesis starts by addressing the problem of learning local binary descriptor for better patch/image matching performance. To this end, we propose a novel local descriptor termed Unsupervised Deep Binary Descriptor (UDBD) for the patch-level matching tasks, which learns the transformation invariant binary descriptor via embedding the original visual data and their transformed sets into a common Hamming space. By imposing a l2,1-norm regularizer on the objective function, the learned binary descriptor gains robustness against noises. Moreover, a weak bit scheme is applied to address the ambiguous matching in the local binary descriptor, where the best match is determined for each query by comparing a series of weak bits between the query instance and the candidates, thus improving the matching performance. Furthermore, Unsupervised Deep Video Hashing (UDVH) is proposed to facilitate large-scale video-to-video retrieval. To tackle the imbalanced distribution issue in the video feature, balanced rotation is developed to identify a proper projection matrix such that the information of each dimension can be balanced in the fixed-bit quantization, thus improving the retrieval performance dramatically with better code quality. To provide comprehensive insights on the proposed rotation, two different video feature learning structures: stacked LSTM units (UDVH-LSTM) and Temporal Segment Network (UDVH-TSN) are presented in Chapter 4. Lastly, we extend the research topic from single-modality to cross-modality retrieval, where Self-Supervised Deep Multimodal Hashing (SSDMH) based on matrix factorization is proposed to learn unified binary code for different modalities directly without the need for relaxation. By minimizing graph regularization loss, it is prone to produce discriminative hash code via preserving the original data structure. Moreover, Binary Gradient Descent (BGD) accelerates the discrete optimization against the bit-by-bit fashion. Besides, an unsupervised version termed Unsupervised Deep Cross-Modal Hashing (UDCMH) is proposed to tackle the large-scale cross-modality retrieval when prior knowledge is unavailable

    Real-Time Scalable Visual Tracking via Quadrangle Kernelized Correlation Filters

    No full text
    corecore