13 research outputs found

    A Cooperative Path Planning Algorithm for a Multiple Mobile Robot System in a Dynamic Environment

    Get PDF
    A practical path planning method for a multiple mobile robot system (MMRS) requires handling both the collision-free constraint and the kinematic constraint of real robots, the latter of which has to date been neglected by most path planning methods. In this paper, we present a practical cooperative path planning algorithm for MMRS in a dynamic environment. First, each robot uses an analytical method to plan an obstacle-avoidance path. Then, a distributed prioritized scheme is introduced to realize cooperative path planning. In the scheme, each robot calculates a priority value according to its situation at each instant in time, which will determine the robot\u27s priority. Higher-priority robots can ignore lower-priority robots, whereas lower-priority robots should avoid collisions with higher-priority robots. To minimize the path length for MMRS, a least path length constraint is added. The priority value is also calculated by a path cost function that takes the path length into consideration. Unlike other priority methods, the algorithm proposed is not time consuming; therefore, it is suitable for dynamic environments. Simulation results are presented to verify the effectiveness of the proposed algorithm

    Navigation control of an automated mobile robot robot using neural network technique

    Get PDF
    Over recent years, automated mobile robots play a crucial role in various navigation operations. For any mobile device, the capacity to explore in its surroundings is essential. Evading hazardous circumstances, for example, crashes and risky conditions (temperature, radiation, presentation to climate, and so on.) comes in the first place, yet in the event that the robot has a reason that identifies with particular places in its surroundings, it must discover those spots. There is an increment in examination here due to the requisition of mobile robots in a solving issues like investigating natural landscape and assets, transportation tasks, surveillance, or cleaning. We require great moving competencies and a well exactness for moving in a specified track in these requisitions. Notwithstanding, control of these navigation bots get to be exceptionally troublesome because of the exceedingly unsystematic and dynamic aspects of the surrounding world. The intelligent reply to this issue is the provision of sensors to study the earth. As neural networks (NNs) are described by adaptability and a fitness for managing non-linear problems, they are conceived to be useful when utilized on navigation robots. In this exploration our computerized reasoning framework is focused around neural network model for control of an Automated motion robot in eccentric and unsystematic nature. Hence the back propagation algorithm has been utilized for controlling the direction of the mobile robot when it experiences by an obstacle in the left, right and front directions. The recreation of the robot under different deterrent conditions is carried out utilizing Arduino which utilizes C programs for usage

    A Dynamic Bioinspired Neural Network Based Real-Time Path Planning Method for Autonomous Underwater Vehicles

    Get PDF
    Real-time path planning for autonomous underwater vehicle (AUV) is a very difficult and challenging task. Bioinspired neural network (BINN) has been used to deal with this problem for its many distinct advantages: that is, no learning process is needed and realization is also easy. However, there are some shortcomings when BINN is applied to AUV path planning in a three-dimensional (3D) unknown environment, including complex computing problem when the environment is very large and repeated path problem when the size of obstacles is bigger than the detection range of sensors. To deal with these problems, an improved dynamic BINN is proposed in this paper. In this proposed method, the AUV is regarded as the core of the BINN and the size of the BINN is based on the detection range of sensors. Then the BINN will move with the AUV and the computing could be reduced. A virtual target is proposed in the path planning method to ensure that the AUV can move to the real target effectively and avoid big-size obstacles automatically. Furthermore, a target attractor concept is introduced to improve the computing efficiency of neural activities. Finally, some experiments are conducted under various 3D underwater environments. The experimental results show that the proposed BINN based method can deal with the real-time path planning problem for AUV efficiently

    Rapid, parallel path planning by propagating wavefronts of spiking neural activity

    Get PDF
    Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampus-like network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware

    A Bioinspired Neural Model Based Extended Kalman Filter for Robot SLAM

    Get PDF
    Robot simultaneous localization and mapping (SLAM) problem is a very important and challenging issue in the robotic field. The main tasks of SLAM include how to reduce the localization error and the estimated error of the landmarks and improve the robustness and accuracy of the algorithms. The extended Kalman filter (EKF) based method is one of the most popular methods for SLAM. However, the accuracy of the EKF based SLAM algorithm will be reduced when the noise model is inaccurate. To solve this problem, a novel bioinspired neural model based SLAM approach is proposed in this paper. In the proposed approach, an adaptive EKF based SLAM structure is proposed, and a bioinspired neural model is used to adjust the weights of system noise and observation noise adaptively, which can guarantee the stability of the filter and the accuracy of the SLAM algorithm. The proposed approach can deal with the SLAM problem in various situations, for example, the noise is in abnormal conditions. Finally, some simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach

    Fuzzy-Based Optimal Adaptive Line-of-Sight Path Following for Underactuated Unmanned Surface Vehicle with Uncertainties and Time-Varying Disturbances

    Get PDF
    This paper investigates the path following control problem for an underactuated unmanned surface vehicle (USV) in the presence of dynamical uncertainties and time-varying external disturbances. Based on fuzzy optimization algorithm, an improved adaptive line-of-sight (ALOS) guidance law is proposed, which is suitable for straight-line and curve paths. On the basis of guidance information provided by LOS, a three-degree-of-freedom (DOF) dynamic model of an underactuated USV has been used to design a practical path following controller. The controller is designed by combining backstepping method, neural shunting model, neural network minimum parameter learning method, and Nussbaum function. Neural shunting model is used to solve the problem of “explosion of complexity,” which is an inherent illness of backstepping algorithm. Meanwhile, a simpler neural network minimum parameter learning method than multilayer neural network is employed to identify the uncertainties and time-varying external disturbances. In particular, Nussbaum function is introduced into the controller design to solve the problem of unknown control gain coefficient. And much effort is made to obtain the stability for the closed-loop control system, using the Lyapunov stability theory. Simulation experiments demonstrate the effectiveness and reliability of the improved LOS guidance algorithm and the path following controller

    A Highly Effective and Robust Membrane Potential-Driven Supervised Learning Method for Spiking Neurons

    Get PDF
    Spiking neurons are becoming increasingly popular owing to their biological plausibility and promising computational properties. Unlike traditional rate-based neural models, spiking neurons encode information in the temporal patterns of the transmitted spike trains, which makes them more suitable for processing spatiotemporal information. One of the fundamental computations of spiking neurons is to transform streams of input spike trains into precisely timed firing activity. However, the existing learning methods, used to realize such computation, often result in relatively low accuracy performance and poor robustness to noise. In order to address these limitations, we propose a novel highly effective and robust membrane potential-driven supervised learning (MemPo-Learn) method, which enables the trained neurons to generate desired spike trains with higher precision, higher efficiency, and better noise robustness than the current state-of-the-art spiking neuron learning methods. While the traditional spike-driven learning methods use an error function based on the difference between the actual and desired output spike trains, the proposed MemPo-Learn method employs an error function based on the difference between the output neuron membrane potential and its firing threshold. The efficiency of the proposed learning method is further improved through the introduction of an adaptive strategy, called skip scan training strategy, that selectively identifies the time steps when to apply weight adjustment. The proposed strategy enables the MemPo-Learn method to effectively and efficiently learn the desired output spike train even when much smaller time steps are used. In addition, the learning rule of MemPo-Learn is improved further to help mitigate the impact of the input noise on the timing accuracy and reliability of the neuron firing dynamics. The proposed learning method is thoroughly evaluated on synthetic data and is further demonstrated on real-world classification tasks. Experimental results show that the proposed method can achieve high learning accuracy with a significant improvement in learning time and better robustness to different types of noise
    corecore