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Robot simultaneous localization and mapping (SLAM) problem is a very important and challenging issue in the robotic field.
The main tasks of SLAM include how to reduce the localization error and the estimated error of the landmarks and improve the
robustness and accuracy of the algorithms. The extended Kalman filter (EKF) based method is one of the most popular methods
for SLAM. However, the accuracy of the EKF based SLAM algorithm will be reduced when the noise model is inaccurate. To solve
this problem, a novel bioinspired neural model based SLAM approach is proposed in this paper. In the proposed approach, an
adaptive EKF based SLAM structure is proposed, and a bioinspired neural model is used to adjust the weights of system noise and
observation noise adaptively, which can guarantee the stability of the filter and the accuracy of the SLAM algorithm. The proposed
approach can deal with the SLAM problem in various situations, for example, the noise is in abnormal conditions. Finally, some

simulation experiments are carried out to validate and demonstrate the efficiency of the proposed approach.

1. Introduction

Robot simultaneous localization and mapping (SLAM) is one
of the most challenging problems in mobile robotic fields,
which has important theory and application value in vari-
ous robotic applications, such as the underwater detection,
domestic service, and universe exploration [1-5]. Various
approaches have been proposed to deal with the SLAM
problem. Mullane et al. [6] proposed an integrated Bayesian
framework for feature-based SLAM in the general case of
uncertain feature number and data association. Lui and Jarvis
[7] presented a pure vision-based topological SLAM system
for mobile robot autonomous navigation in initially unknown
environments. Chatterjee and Matsuno [8] proposed a new
neurofuzzy based adaptive Kalman filtering algorithm for
SLAM of mobile robots or vehicles. Zhou et al. [9] proposed
an auxiliary marginal particle filter and FastSLAM based
compositive SLAM algorithm to improve the performance
of samples and increase the estimation accuracy. Kaess et
al. [10] presented a novel approach to the simultaneous

localization and mapping problem that is based on fast incre-
mental matrix factorization. Benedettelli et al. [11] proposed
a multirobot cooperative SLAM algorithm using M-Space
representation of linear features, suitable for environments
which can be represented in terms of lines and segments.
Previous research on SLAM problem may be divided into
two broad categories. One category consists of a number of
mathematical probabilistic techniques, such as EKF based
algorithm [12, 13], particle filtering based algorithm [14, 15],
and Monte Carlo localization method [16, 17]. The other cat-
egory of research focuses on emulating the biological systems
thought to be responsible for mapping and navigation in
animals [18-20]. However, both of the category algorithms
have some limitations. For example, the standard Kalman
filtering is based on the minimum variance estimation; the
filter will exhibit a divergence phenomenon with the increase
in the number of filterings; namely, the error between the
estimated value and the actual value will become bigger and
bigger. The biological emulating based algorithms are too



complex to be realized and the SLAM mechanism of animals
is not very clear now.

Although there are many modern techniques that are
suitable for SLAM, the EKF based SLAM method is still one of
the most popular methods for SLAM, because the EKF based
method has a good algorithm structure for SLAM and a strict
mathematical theory basis. The EKF based method is used
widely to solve SLAM problem [8, 21-24], especially in some
applications, where the computational constraints or the
scarcity of high precision sensors makes it impossible to use
other SLAM methods, such as the methods based on high-
resolution vision sensors [25-27] and the methods based on
high dense topological maps [28, 29]. However, there is a
key problem of the EKF based SLAM method; namely, the
accuracy of the system noise and the observation noise model
will decide the final accuracy of the SLAM algorithm. To
deal with this problem, some improved algorithms have been
proposed. For example, Du et al. [30] proposed an improved
fuzzy adaptive EKF to establish a priori noise model for the
SLAM problem. Kang et al. [31] presented a modified neural
network aided EKF based SLAM for improving the accuracy
of the feature map. However, those algorithms introduced
above still have some limitations, such as the computation
which is complex and the algorithm is unstable in some
conditions.

To improve the robustness and accuracy of the EKF
based SLAM algorithm, a novel adaptive EKF based SLAM
approach is proposed in this paper. Firstly, an adaptive EKF
based SLAM algorithm structure is proposed, where the
weights of noises in the EKF based SLAM algorithm are
adjusted adaptively. Secondly, a bioinspired neural model is
used to realize these adjustments for noise weights, which can
guarantee the stability of the filter. Finally, some simulation
experiments were conducted. The results show the efficiency
of the proposed approach. The divergence problem of EKF
is solved effectively, and the robustness and accuracy of the
SLAM approach are improved.

This paper is organized as follows. Section 2 presents the
proposed bioinspired neural model based extended Kalman
filter algorithm. The simulation experiments for mobile robot
SLAM task are given in Section 3. Section 4 discusses the
sensitivity of the parameters and some performances of the
proposed approach in detail. Finally, the conclusions are
given in Section 5.

2. The Proposed Bioinspired Neural Model
Based EKF Algorithm

In this paper, the SLAM problem is studied. The core task of
SLAM is that a robot explores in an unknown environment
to learn the environment (map), while simultaneously using
that map to locate within the environment [32-34]. A novel
approach based on bioinspired neural model is proposed.
In the proposed approach, EKF is used to solve the SLAM
problem, while a bioinspired neural model is used to adjust
the weights of system noise and observation noise adaptively
in the EKF based SLAM algorithm. The main reason to use
this bioinspired neural model is that it is not only a feasible
solution, but also an efficient one. The bioinspired method
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can deal with SLAM problem efficiently without any a priori
knowledge nor any learning procedures, which is a trend
in the SLAM field [32, 35]. The basic work flow and the
theoretical analysis of the EKF based SLAM algorithm can be
viewed in [8, 36, 37]. The proposed approach is introduced in
detail as follows.

2.1. The SLAM Algorithm Based on EKF. 'The basic idea of
EKF based SLAM is that the robot uses the known states to
predict the states of the next step, and then this prediction is
corrected based on the observation at the next step. The state
equation of EKF based algorithm is as follows [38]:

X(k+1)= F() X (k) +G KU k) + W (k),
Z (k) = H(k) X (k) +V (k),

where X(k) is the state variable of the system at time k; U (k)
is the control variable of the system; Z(k) is the observation
value by robotic sensors; F(k) is the state transition matrix;
G(k) is the control matrix; H(k) is the observation matrix;
W(k) and V(k) are the noise of system and observation,
respectively. Here the state of the system is based on the
specific SLAM tasks, such as the number of landmarks and
the dimension of the environment. Assume that the location
of the robot at time k is x,(k) and the position of the ith
landmark is [;; then the state of the system can be denoted by

X (k) = [« (o), 1505, @)

)

where N is the number of landmarks in the environment.
The location of the robot x,(k) is updated by its kinematic
model, while the landmarks in the environment are assumed
as static, namely, [;(k + 1) = [;(k) = I;. The general EKF based
SLAM algorithm includes two main steps.

(1) Prediction Step. Firstly, the state equation is used to predict
the state of system at the next time. Assume that the system
state calculated at time k is X(k | k); the prediction of system
state for the next time k + 1 is denoted by X(k + 1 | k), which
can be predicted as follows:

X(k+1|k)=Fk)X(Kk|k)+Gk) U k),
Z(k+1|k)=H(k)X(k+1]|k), (3)
P(k+1|k)=F(k)P(k|k)F" (k)+Q(k),

where P(k + 1 | k) and P(k | k) are the covariance matrix
related to X(k + 1 | k) and X (k | k), respectively; and Q(k) is
the covariance matrix of control noise.

(2) Update Step. When the observation of system at time k + 1
is obtained by the onboard sensors of the robot, the system
state at time k + 1 can be updated based on the system state
equation and the prediction of system state:

X(k+1|k+1)
=Xk+1|k)+Kk+1)Zk+1)-Z(k+1]|k),
Pk+1|k+1)

=Pk+1|k)-Kk+1)H(k+1)P(k+1]|k),
(4)
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where K(k) is the gain of EKF, which can be obtained by

P(k+1|k)H" (k+1)
Hk+1DP(k+1|kHT (k+1)+R(k+1)
(5)

Kk+1)=

where R(k) is the covariance matrix of observation noise.

In this paper, the difference between the prediction of
system state and the real value obtained by the robotic
onboard sensors is defined as the innovation, which is
denoted by C(k). The innovation C(k) can be calculated by

Ck+1l)=Zk+1)-Z(k+1]k). (6)

The variance of the innovation C(k) is defined as S(k),
which can be calculated by

Sk+1)=H(k+1)P(k+1|kH (k+1)+R(k+1).
(7)

The innovation C(k) can be used to adjust and correct
the EKF based method. In this paper, an adaptive EKF based
SLAM algorithm is proposed, where a bioinspired neural
model is used to adjust the credibility and availability of the
observation.

2.2. The Proposed Adaptive Model for the EKF Based SLAM.
Before the introduction of the bioinspired neural model
based EKF algorithm, it is necessary to set up a control model
for the EKF based SLAM firstly [30]. In this model, the noises
in the EKF based SLAM algorithm are expressed as follows:

Qk)=a(k)Q,
R(k)=b(k)R,

(8)

where Q and R are the initial covariance matrixes for
noises; a(k) and b(k) are the weights for system noise and
observation noise, respectively.

In a certain time window M, the mean values of the inno-
vation C(k) and its variance S(k) are denoted by C(k) and
S(k), respectively, which can be calculated as follows:

_ 1 &
C(k)= — c@,
Mi:kg/lﬂ
9)
Sw-L Y s o
S(k) = — SHS ).
Mi:k—M+1
The confidence levels of the mean values of the innovation

C(k) and its variance S(k) are denoted by g, and g,, respec-
tively, which can be obtained by

(1/)) X, C; (k)

q, (k) = Zj D)

(10)
Tr (S (k)
q, (k) = m,

where J is the dimension of the observation and the Tr() is a
function to calculate the trace of a matrix. In the EKF model,
q, and g, will fluctuate around 0 and 1 in a very little range,
respectively, if the assumption of the noise model is accurate.
Otherwise, the values of C(k) and S(k) will increase when the
real value of the observation noise increases. Then the value
of g, will be far away from 0 and the value of g, will be bigger
than 1. Under this condition, the stability of the system will
become worse [30, 36, 38].

Remark 1. Of course, if the parameters of the noise model are
properly tuned and assuming correspondences are known,
the covariance of the noise will become arbitrarily small
and the accuracy of the EKF based SLAM algorithm can be
guaranteed. But it needs more experience and time, which are
both scarce in the real-world applications of SLAM tasks.

To deal with the problem discussed above, an adaptive
model is proposed in this paper. The basic idea of this model
is to change the weights of the noises if the assumption of
the noise model is away from the actual value. The adaptive
EKF based SLAM algorithm structure is shown in Figure 1.
In this paper, a bioinspired neural model is used to realize
the adjustment function.

2.3. A Bioinspired Neural Model for the EKF Based SLAM. In
the proposed approach, a bioinspired neural dynamic model
is used to adjust the weights of noises adaptively. The first
computational model of a uniform patch of membrane in
a biological neural system using electrical circuit elements
was proposed by Hodgkin and Huxley [39, 40]. In their
membrane model, the dynamics of the voltage across the
membrane is described using a state equation technique (see
[39, 41]). Based on this state equation, a shunting model is
obtained as

% — A+ (B—x)S —(D+x)S, ()
where x; is the neural activity (membrane potential) of the ith
neuron; A, B, and D are nonnegative constants, representing
the passive decay rate, and the upper and lower bounds of the
neural activity, respectively; and S} and S; are the excitatory
and inhibitory inputs to the neuron. This shunting model
was first proposed by Grossberg to understand the real-time
adaptive behavior of individuals to complex and dynamic
environmental contingencies and has many applications in
visual perception, sensory motor control, and many other
areas (e.g., [41, 42]). This shunting model is stable [39, 43],
where the neural activity x; is bounded in the finite interval
[-D, B]. The state workspace varies in terms of the dynamics
of the neural model, due to the influence of the external
inputs.

In the proposed EKF based SLAM algorithm structure
(see Figure 1), the prediction and update steps are carried out
continuously. As a result, the confidence levels of the mean
values of the innovation C(k) and its variance S(k) will change
constantly. Because the system tends to be stable if g, is close
to 0 and g, is close to 1, the weights a(k) and b(k) of the system
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FIGURE 1: The adaptive EKF based SLAM algorithm structure based
on the bioinspired neural model.
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noise and observation noise in the EKF based SLAM algo-
rithm should be controlled in real time. As introduced above,
the bioinspired neural model has several advantages such as
the guaranteed stability and efficient computation [41, 44], so
it could be used to improve the adaptability of the EKF based
SLAM algorithm. The basic idea of the proposed approach is
to realize the control function based on the bioinspired neural
model above. The inputs of this controller are g, (k) and g, (k),
and the outputs of this controller are a(k) and b(k). The adap-
tive control function based on this bioinspired neural model
(namely, the shunting model above; see (11)) is defined as

dilik) = —Aall)+ (B -a) fi = (D +a(k) fr,
_d’;(tk) = ~ A (k) + (B, b (k) f, - (D, +b(K)) for

(12)

where A, A,, By, B,, D;, and D, are the parameters of the
controller for a(k) and b(k); f, and f, are the inputs of the
bioinspired neural model, which are defined as

fi=aq, k),
fi=1-g,(k).

Remark 2. Based on the proposed bioinspired model, the
weights for system noise and observation noise (namely, a(k)
and b(k)) can be guaranteed in a stable range and change
with the difference between the prediction of the system
state and the real value obtained by the robotic onboard
sensors (namely, g, (k) and g,(k)) adaptively. In addition, this
bioinspired neural model based controller does not need any
a priori knowledge about the noise model nor any learning
procedures.

(13)

3. Simulation Experiments

In this paper, to test the performance of the proposed
approach, some simulation experiments are conducted which
were coded in MATLAB. In these experiments, a robot
with some sensors moves in a predetermined trajectory and
some SLAM algorithms are used to map the environment
and keep track of the robot position simultaneously (see
Figure 2). In these experiments, the noise model is unknown.
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FIGURE 2: The simulation environment of the SLAM task.

TABLE 1: The values of parameters in the experiments.

Parameters Value Remarks
A, and A, 1 The pas.sive decay rate of the
inputs to EKF
The upper bounds of the inputs
B, and B 15
1 ane s to EKF
D, and D, 15 The lower bounds of the inputs
to EKF

For simplification without loss of generality, the noise is given
out artificially in the simulation experiments. The specific
type of sensors and the noise function for a given sensor are
ignored in this paper. To show the advantages of the proposed
bioinspired neural model based EKF approach (B-EKF), it
is compared with the standard EKF algorithm (S-EKF) and
the fuzzy logic based EKF algorithm (F-EKF). To remove the
random effects on the SLAM algorithms, every experiment
was conducted 15 times (about 5000 steps). The parameters in
all of the experiments are the same, which are listed in Table 1.

3.1. The Experiment under Normal Noise Condition. In this
experiment, the noise of the observation is under normal
condition; namely, the noise will fluctuate in a little range
during the whole moving process of the robot (see Figure 3).
The results of the SLAM based on the proposed approach
in this experiment are shown in Figure 4. Figure 5 is the
localization error of the robot and the estimated error of
the landmarks based on the S-EKF method, F-EKF method,
and B-EKF method, respectively. The comparisons of the
localization errors in the SLAM task are listed in Table 2.

Remark 3. The root mean squared error (RMSE) in Table 2 is
calculated by

RMSE = lZ(ei -g), (14)
nia
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FIGURE 3: The noise distribution designed for the first experiment:
(a) the error of the distance observation; (b) the error of the angle
observation.
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FIGURE 4: The results of the SLAM task based on the proposed
approach in the first experiment.

where ¢; and ¢; are the real value and the predicted value of
the robot position at the ith step, respectively.

The results in Figure 4 show that the trajectory calculated
by B-EKEF is closest to the actual trajectory of the robot, and
the estimated landmarks are closest to the actual landmarks.
The results of the localization error and the estimated error of
the landmarks in Figure 5 show that all the three methods can
complete the SLAM task under the normal noise condition.

TABLE 2: The root mean square error of the SLAM task in the first
experiment.

The algorithms The root mean square error
for the SLAM task AX/m AY/m AAngle/rad
The S-EKF based method 0.2707 0.2366 0.0829
The F-EKF based method 0.1205 0.1473 0.0472
The B-EKF based method 0.0976 0.0816 0.0105

TaBLE 3: The root mean square error of the SLAM task in the second
experiment.

The algorithms The root mean square error
for the SLAM task AX/m  AY/m  AAngle/rad
The S-EKF based method 0.4064  0.3922 0.0921
The F-EKF based method 0.3083 0.3316 0.0496
The B-EKF based method 0.1132 0.0918 0.0204

However, the error of the proposed approach is less than
both the F-EKF and S-EKF methods (see Table 2) and the
fluctuation of errors in the proposed approach is very little,
which shows that the proposed approach can deal with the
SLAM problem stably (see Figure 5). The results in this
experiment show that the proposed approach has a good
performance to deal with the SLAM problem under normal
noise condition.

3.2. The Experiment under Abnormal Noise Condition. To
further test the performance of the proposed approach, this
experiment is conducted, where the noise will fluctuate with
the time violently (see Figure 6), which would happen if the
performance of the onboard sensors becomes bad (such as
the temperature effects). The results of the SLAM task based
on the proposed approach are shown in Figure 7. Figure 8
is the localization error of the robot and the estimated error
of the landmarks in this experiment. The comparisons of the
localization errors in the SLAM task are listed in Table 3.

In this experiment, with the increase of noises, it is
hard for the S-EKF method to adapt to this change; the
reliability of the observations reduces and the filter becomes
unstable, so the localization error and the estimated error
will increase and fluctuate violently (see Figure 8(a)). In the
F-EKF method, the error will increase obviously too (see
Figure 8(b)), although it is less than the S-EKF method. The
main reason is that the fuzzy rule in the F-EKF method is
fixed, which cannot deal with this abnormal noise condition
very well. However, in the proposed approach, with the
increasing of noises, the bioinspired adaptive controller of
the B-EKF method adjusts the weights of system noise and
observation noise in real time, and the positioning accuracy
will be significantly improved. During the whole exploration
process of the robot, the localization error and the estimated
error always fluctuate in a small range (see Figure 8(c)).
The results in Figure 8 and Table 3 show that the proposed
approach can deal with this abnormal noise condition in the
SLAM task efficiently.
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4. Discussions

The results of the simulation experiments in Section 3 show
that the proposed approach can satisfy the SLAM task
under various situations. The parameter sensitivity and some
performances of the proposed approach are discussed in this
section.

TABLE 4: The root mean square error of the SLAM task by different

parameters A, and A,.

The value of the parameters

The root mean square error

A,and A, AX/m AY /m AAngle/rad
0.5 0.1176 0.0982 0.0218
1 0.1132 0.0918 0.0204
1.5 0.1148 0.0942 0.0270
2 0.1262 0.1114 0.0385

At first, the parameters of the proposed approach are
discussed. There are many discussions on the parameters
of the bioinspired neural model in our previous work [41,
43, 45]. The upper and lower activity bounds B and D in
the proposed bioinspired neural model will only effect the
relative range of the weights a(k) and b(k) for the system noise
and observation noise in the EKF based SLAM algorithm (see
(8) and (12)), which can be decided by the real noise range
in the SLAM tasks. So here just the parameters A, and A,
are discussed, which are very important in the bioinspired
neural model. To analyze the influence of parameters A,
and A,, some simulations were carried out under the same
conditions as the second experiment in Section 3. The results
are listed in Table 4. The results in Table 4 show that the
proposed approach is not very sensitive to the variations
of the parameters A, and A, even in the abnormal noise
conditions. So the parameters can be chosen in a very wide
range. All the cases studied in this paper use the same
parameters, which are listed in Table 1.

To discuss the adaptability of the proposed approach in
different SLAM tasks, two simulation experiments were con-
ducted, where the noise distribution and the parameters of
the proposed approach are the same as the second experiment
in Section 3, except that the trajectory of the robot and the
distribution of the landmarks are different. The results of
these experiments based on the proposed approach are shown
in Figure 9. The root mean square errors of the proposed
approach in these SLAM tasks with the simple trajectory and
the complex trajectory are {AX/m = 0.1020, AY/m = 0.0921,
AAngle/rad = 0.0217} and {AX/m = 0.1103, AY/m = 0.0928,
AAngle/rad = 0.0209}, respectively. The errors in the two
experiments are both very little, which show that the pro-
posed approach can deal with various SLAM tasks efficiently.

The process introduced in Section 2 and the simulation
results of the SLAM tasks show that the proposed approach
has some good performances. For example, the adaptivity of
the proposed approach is good, which can adjust the filter
in real time based on the noise conditions. Furthermore,
the proposed approach can extend to real-world SLAM
applications, and nothing needs to be done on the algorithm.
The proposed approach is different from other algorithms,
which need a priori knowledge or learning process [30, 46].

5. Conclusions

The EKF based SLAM approach of robot is investigated in
this paper. When the noise model is unknown, the robustness
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FIGURE 8: The localization error and the estimated error in the second experiment: (a) based on S-EKF method; (b) based on F-EKF method;
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FIGURE 9: The results of the SLAM task based on the proposed approach with different trajectory and landmark distribution: (a) with a simple

trajectory; (b) with a complex trajectory.

and accuracy of the EKF based SLAM algorithm will reduce.
A novel adaptive EKF based SLAM algorithm structure
is therefore proposed to adjust the weights of noises in
the EKF based SLAM algorithm adaptively. Furthermore, a
bioinspired neural model is integrated into this EKF based
SLAM algorithm, which can reduce the error of the EKF
based SLAM algorithm. As our approach is based on a
bioinspired neural model, the SLAM task can be achieved
efficiently, without any a priori knowledge of the noise
model, nor any learning procedures. The feasibility and
efficiency of the proposed approach have been discussed
and illustrated through simulation studies. The proposed
approach can deal with the searching and exploring problem
in unknown environments, which has broad applications,
such as the perceiving and understanding for the underwater
and exoplanetary exploration.

In our research, there still remain some problems to be
addressed. The first arises when the robot works in real and
more complex environments. The second problem is the
theoretical analysis of the bioinspired neural model based
EKEF for robot SLAM. In future work, some new bioinspired
learning method and the 3D vision based method will be
studied in the SLAM algorithm for robot.
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