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Abstract—Spiking neurons are becoming increasingly popular
owing to their biological plausibility and promising computa-
tional properties. Unlike traditional rate-based neural models,
spiking neurons encode information in the temporal patterns of
the transmitted spike trains, which makes them more suitable for
processing spatio-temporal information. One of the fundamental
computations of spiking neurons is to transform streams of
input spike trains into precisely timed firing activity. How ever,
the existing learning methods used to realise such computation
result in relatively low accuracy performance and poor robustness
to noise. In order to address these limitations, we propose a
novel highly effective and robust MEMbrane POtential driven
supervised LEARNing method (MemPo-Learn), which is able
to generate desired spike trains with higher precision, higher
efficiency and better noise robustness than current state-of-the-
art spiking neuron learning methods. While traditional spike-
driven learning methods use an error function based on the
difference between the actual and desired output spike trains,
the proposed MemPo-Learn method employs an error function
based on the difference between the output neuron membrane
potential and its firing threshold. The efficiency of the proposed
learning method is further improved through the introducti on of
an adaptive strategy, called Skip Scan Training Strategy (SSTS),
that selectively identify the time steps when to apply weight
adjustment. The proposed strategy enables the MemPo-Learn
method to effectively and efficiently learn the desired output
spike train even when much smaller time steps are used. In
addition, we improve the learning rule of MemPo-Learn to help
mitigate the impact of the input noise on the timing accuracyand
reliability of the neuron firing dynamics. The proposed learning
method is thoroughly evaluated on synthetic data and is further
demonstrated on real world classification tasks. Performance
comparisons against competitive learning methods for spiking
neurons and state-of-the-art rate-based neural networks are pre-
sented. Experimental results show that the proposed methodcan
achieve high learning accuracy with a significant improvement
in learning time and better robustness to different types ofnoise.

Index Terms—Spiking neurons, supervised learning, spiking
neural networks, membrane potential, gradient descent, classifi-
cation.
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I. I NTRODUCTION

Traditional rate coded artificial neural networks encode
information through the firing rate of their biological coun-
terparts. Although rate coding is commonly used in artificial
neural networks, it is unlikely that rate-based coding can
convey all the information related to rapid processing of visual
scenes, odor, and sound [1]-[4]. As precise spike-timing neural
activities have been observed in many brain regions, including
the retina [5]-[7], the lateral geniculate nucleus [8] and the
visual cortex [9], the view that information is represented
by explicit timing of spikes rather than mean firing rate
has received increasing attention [10], [11]. These findings
have led to a new way of simulating neural networks based
on spiking neurons which encode information by the firing
times of spikes [12]-[14]. Theoretical analysis indicatesthat
networks of spiking neurons can arbitrarily approximate any
continuous function [15]. Furthermore, it has been demon-
strated that networks of spiking neurons are computationally
more powerful than traditional rate-based neurons [15]-[20].
However, their application to real world problems remain
relatively limited due to the computational complexity of
spiking neural networks and the lack of effective and effi-
cient learning methods. Therefore the development of highly
effective and robust learning methods is more important than
ever to leverage the computational power of these biologically
plausible neural networks and to increase their applicability in
solving real world problems.

Supervised learning was proposed as a successful concept
of information processing in traditional neural networks.The
most documented evidence for supervised learning in the
central nervous system (CNS) comes from the studies on
the cerebellum and the cerebellar cortex [21], [22]. However,
the exact mechanisms underlying supervised learning in the
biological neurons remain an open problem [23], [24]. In order
to train the spiking neurons to generate desired sequences
of spikes, many supervised learning algorithms have been
proposed. They can be broadly classified into two groups:
spike-driven methods and membrane potential-driven methods.

Spike-driven methods use the desired and actual output
spikes as the relevant signals for controlling synaptic change.
Typical examples of these methods include SpikeProp [25]
and the multispike learning algorithm [26] which construct
an error function using the difference between the desired
and actual output spikes, then use its gradient to update the
synaptic connection weights. ReSuMe [23] is another spike-
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driven method, in which synaptic weight changes are driven
by the joint effect of two opposite processes: 1) strengthening
of the synaptic weights through STDP based on the input
and the desired output spike trains, and 2) weakening of
the synaptic weights through anti-STDP based on the input
and the actual output spike trains. To enhance the learning
performance of ReSuMe, DL-ReSuMe [24] has recently been
proposed to integrate the delay shift approach with ReSuMe-
based weight adjustment. Both the Chronotron E-learning rule
[27] and the SPAN learning rule [28] try to minimize the
distance between the desired and actual output spike trains.
The distance in the Chronotron E-learning rule is defined by
the Victor and Purpura (VP) metric [29], while in the case of
the SPAN rule the distance is based on a metric similar to the
van Rossum metric [30]. Common disadvantages of the above
mentioned methods include relatively low learning efficiency
and accuracy.

In an attempt to improve the learning efficiency and accu-
racy in spiking neurons, membrane potential-driven methods
emerged recently. Typical examples of these methods include
the Tempotron [31], PBSNLR [32], HTP [33] and EMPD
[34]. Compared with their spike-driven counterparts, theytake
an entirely different approach where the relevant signal for
synaptic change is the postsynaptic membrane potential rather
than spike times. For instance, the Tempotron implements a
gradient descent dynamics that minimizes an error defined as
the difference between the maximum membrane potential and
the firing threshold. However, this reliance on the maximum
membrane potential as its objective function prevents the
binary Tempotron learning rule from controlling the numberof
spikes beyond one [35]. PBSNLR [32] and HTP [33] perform
a perceptron classification on discretely sampled time points
of the membrane potential, with the aim to keep membrane
potential below threshold at undesired spike times and to make
sure a threshold crossing occurs at desired spike times [36].
As they are based on the perceptron learning rule, in theory,
if the sampled time points of the membrane potential are
not linearly separable, the desired output spike train cannot
be learned successfully [32]. In addition, when the time step
is small, the memory usage of the training samples as well
as the training time increase greatly [32]. EMPD employs
two different error functions at desired and undesired output
time and uses gradient descent method to adjust the synaptic
weights. However, EMPD [34] imposes additional restrictions
on the spiking neuron model, and the calculation of moni-
toring time points (MPs) is time consuming. Therefore, more
performance improvements are still needed for this type of
learning methods.

Another important aspect often overlooked when designing
learning strategies for spiking neural networks is the robust-
ness to noise. Noise is common in spiking neural networks and
can significantly affect the learning performance as well asthe
timing accuracy and reliability of neural responses [37]-[39].
In order to improve noise robustness of the trained neurons,
most of the existing supervised learning methods use noisy
samples during the training phase (i.e., noisy training) [23],
[32]. However, the neurons trained under noisy conditions are
found to show relatively robust responses only to the stimuli

used during the training phase, and their response to other
stimuli not seen during the training is highly unreliable [23].
Therefore, improving the robustness of learning methods for
spiking neurons remains an open problem.

In order to address the above mentioned limitations of
existing supervised learning methods for spiking neurons,we
propose in this paper a novel highly effective and noise robust
membrane potential driven supervised learning method for
spiking neurons with significant improvement in the learning
efficiency. The proposed learning method, called MemPo-
Learn (MEMbrane POtential driven supervised LEARNing),
is able to generate desired spike trains with higher accuracy,
higher efficiency and better robustness to input jitter as well
as voltage noise. The efficiency of the MemPo-Learn is
significantly improved through the introduction of an adaptive
strategy, called Skip Scan Training Strategy (SSTS), which
enables the MemPo-Learn method to accurately and efficiently
learn the desired output spike train even when much smaller
time steps are used. In addition, we analyse the noise ro-
bustness of the proposed MemPo-Learn method and introduce
further improvements to make it significantly more robust to
noise. The performance of the proposed learning method is
thoroughly evaluated on synthetic data and is further demon-
strated on real world classification tasks. Experimental results
demonstrate that the proposed method is superior to other
supervised methods in terms of the three key performance
factors of supervised learning for spiking neurons, namely
learning accuracy, learning efficiency, and robustness to noise.

The remainder of this paper is organised as follows: Section
II introduces the neuron model and the learning rule of the
proposed MemPo-Learn method. Section III and IV present a
detailed description of the proposed strategies for improving
the efficiency and noise robustness of MemPo-Learn. Section
V presents a comprehensive experimental evaluation of the
proposed MemPo-Learn method on synthetic spatio-temporal
data including extensive experiments to explore the effect
of different learning parameters on its learning performance.
Further demonstration of the proposed learning method on real
world applications are also presented in this section. Finally,
Section VI discusses the results and draw conclusions.

II. T HE MEMPO-LEARN LEARNING RULE

In this section, we begin by presenting the neuron model.
Then, the main idea of MemPo-Learn learning rule is de-
scribed.

A. Neuron model

There are many spiking neuron models that aim to capture
the dynamics of biological neurons [12], [40], [41]. The spike-
response model (SRM) offers a generalization of the integrate-
and-fire model and can give a faithful description of biological
neurons [12]. In addition, the SRM model is easily reducible
to a numerical method that can be implemented on a computer;
hence it is used in this paper.

In the SRM model, the membrane potential of a neuroni
is represented by a variableui which remains at the resting
potential,urest = 0, when there is no spike received from the
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presynaptic neurons. When a spike produced at a pre-synaptic
neuronj, a postsynaptic potential (PSP) is induced in neuron
i. After the integration of the PSPs resulting from several
incoming spikes, the post-synaptic neuroni fires a spike when
its membrane potentialui reaches a certain firing thresholdϑ.
Let’s suppose neuroni has fired its last spike at timêt. After
firing the evolution ofui is given by

ui(t) = η(t− t̂) +
∑

j

ωji

∑

f

εji(t− tfj ) + urest (1)

where tfj is the f th spike of presynaptic neuronj, andωji

is the synaptic weight from neuronj to neuroni. The PSP
induced by the spiketfj is determined by the spike response
function εji(t− tfj ) defined as

εji(t− tfj ) =



















t− tfj
τ

exp
(

1−
t−t

f
j

τ

)

, if t− tfj > 0

0, otherwise.

(2)

whereτ is a time decay constant that determines the spread
shape of the spike response function. The refractoriness func-
tion η(t− t̂) is defined as

η(t− t̂) =











−λ · ϑexp
(

− t−t̂
τR

)

, if t− t̂ > 0

0, otherwise.

(3)

τR is a time decay constant andλ is a constant that determines
the amplitude of the refractoriness function. An illustration
of the output produced by this neuron model in response to
spatio-temporal spiking pattern is shown in in Fig. 1.
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Fig. 1. Dynamics of the neuron model. (a) Examples of two input patterns
(blue and green). Each input spike is represented by a dot. (b) Neuron response
to the two input spiking patterns in (a). Blue trace: the neuron response to
produce four spikes. Green trace: The neuron did not fire at all.

B. MemPo-Learn Learning Rule

The goal of supervised learning for spiking neurons is that
the adjustable synaptic weights are modified to make an output
neuron emit a desired spike train in response to a given input

spike pattern. Therefore, the running time of an output spiking
neuroni can be divided into two sets: the times of desired
output spikes denoted bytd (td={td(1), td(2), ..., td(i), ...}.)
and the remaining times, denoted byNtd. Based on these two
different time classes, the proposed MemPo-Learn learning
method employs two weight update processes: (1) Adjusting
synaptic weights to make the membrane potential reach the fir-
ing threshold at desired output timestd; (2) Adjusting synaptic
weights to maintain the membrane potential lower than the
threshold at undesired output timesNtd. These two weight
update processes are introduced in the following sections.

1) Weight Update Rule at Desired Output Spikestd: For
any time point in td, in order to fire a spike, the value
of the neuron membrane potential is expected to cross the
firing threshold from below. To achieve this, MemPo-Learn
implements a gradient descent learning rule operating on the
membrane potential at desired output times, with the aim
to increase it towards the neuron firing threshold. When the
membrane potential is below the firing threshold at desired
output times, in order to make the membrane potentialui(t)
reach the firing thresholdϑ, an error function is constructed
as follows:

Etd =















1

2
[ui(t)− ϑ]2, if ui(t) < ϑ, t ∈ td,

0, otherwise.

(4)

where ϑ represents the neuron firing threshold andui(t)
represents its postsynaptic membrane potential.

In gradient-based learning, changes in the synaptic weights
are given by

△ωji = −β1

∂Etd

∂ωji

(5)

whereβ1 is the learning rate which defines the size of the
synaptic update at desired spiking times, andωji is the synap-
tic weight from the presynaptic neuronj to the postsynaptic
neuroni.

If the membrane potentialui(t) is below the firing threshold
ϑ at desired output time, according to Eq. 5, synaptic weight
ωji is increased by the following amount:

△ωji = −β1[ui(t)− ϑ]
∑

f

εji(t− tfj ) (6)

2) Weight Update Rule at Undesired Output SpikesNtd:
For any time point inNtd, in order to avoid the occurrence of
undesired output spikes, the membrane potential is required
to remain below the neuron firing threshold. The proposed
MemPo-Learn achieves this by again using a gradient descent
learning rule. When the membrane potential is equal to or
greater than the neuron firing threshold, to make the membrane
potentialui(t) below the firing thresholdϑ, an error function
at Ntd is defined as Eq. (7)

ENtd
=















1

2
[ui(t)− (ϑ− p)]2, if ui(t) ≥ ϑ, t ∈ Ntd,

0, otherwise.

(7)
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where the parameterp determines the magnitude of modifica-
tion on the synaptic weights atNtd. Then, the synaptic weights
at Ntd are updated according to the following equation:

△ωji = −β2

∂ENtd

∂ωji

(8)

whereβ2 is the learning rate, which defines the size of the
synaptic update at undesired spiking times.

In order to drive the membrane potential below the threshold
atNtd, the synaptic efficacyωji is decreased by the following
amount:

△ωji = −β2[ui(t)− (ϑ− p)]
∑

f

εji(t− tfj ) (9)

C. Correlation-Based Metric.

To quantitatively evaluate the learning performance, a
correlation-based, metric introduced in [42], is adopted to
measure the similarity between the desired and actual output
spike trains. The metric, defined in Eq. 10, is calculated after
each learning epoch as follows:

C =
−→vd ·

−→vo
|−→vd||

−→vo |
, (10)

where−→vd and −→vo are vectors representing a convolution (in
discrete time) of desired and actual output spike trains with a
low-pass Gaussian filter.−→vd ·

−→vo is the inner product, and|−→vd|
and |−→vo | are the Euclidean norms of−→vd and−→vo , respectively.

The Gaussian filter function with parameterσ is given by

f(t, σ) = exp(
−t2

2σ2
) (11)

where the parameterσ determines the width of the function.
In this paper,σ is set to 2. The closer the value ofC is to 1,
the more similar the two spike trains with a value ofC = 1
indicating identical spike trains. On the other hand, the closer
the value ofC is to 0, the less similar (i.e. weakly correlated)
the two spike trains.

III. E NHANCING MEMPO-LEARN EFFICIENCY THROUGH

THE SKIP SCAN TRAINING STRATEGY (SSTS)

In this section, we first analyse the effect of using a small
time step on the learning complexity then we propose a
strategy, called Skip Scan Training Strategy (STSS), which
helps improve both the effectiveness and the efficiency of
MemPo-Learn when small time steps are used to calculate
the neuron dynamics.

A. Learning with a small time step

Fig. 2a shows that using a time step of 1 ms, the membrane
potential has been kept below the threshold (i.e.u < ϑ) at
undesired spike times (namely time points 1, 2, 3, 5, 6, 7,
...) ms, and it has been pushed above the firing threshold (i.e.
u ≥ ϑ) at desired output time (i.e. at time point 4 ms). As a
result, a perfect learning of the desired output spiking time has
been achieved. However, this learning may fail when a smaller
time step (such as 0.01 ms) is used, becausethe threshold
crossing of the membrane potential within[t1, t2] and [t3, t4]

will occur at an undesired time (e.g. earlier than the desired
time or with an additional undesired spike as illustrated in
Fig. 2b). This time step related problem arises not because
of the mathematical equations of spiking neuron model but
the discrete-time simulation. In order to achieve a successful
learning with a small time step, the update of synaptic weights
should take the following constraints into account: (1) The
membrane potential should remain below the firing threshold
at all undesired output times; (2) The membrane potential at
desired timestd should equal to the firing threshold (as shown
in Fig. 2c). However, like the existing learning methods, it
is not easy for MemPo-Learn to meet these two constraints
combined. The reasons are outlined below.
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Fig. 2. Learning performance is related to time step. (a) Membrane potential
trace after a successful learning with a time step of 1 ms. Desired output time
td and actual output time are marked by red vertical bar and bluevertical
bar, respectively. (b) When the time step is 0.01 ms, the threshold crossing
of the membrane potential within[t1, t2] and [t3, t4] will produce undesired
spikes. (c) Membrane potential trace after a successful learning with a time
step of 0.01 ms.

1) Over-Adjustment atNtd: Fig. 3 shows the membrane
potential trace of a neuron before learning, in which the
membrane potential is above threshold whent ∈ [53, 70]
ms (as depicted by the grayed area). In order to push the
membrane potential below the firing threshold with a smaller
time step, as shown in Fig. 3(b), the synaptic weight will need
to be adjusted continuously and be decreased great deal to be
brought below the firing threshold. This over-adjustment at
Ntd may also drive the membrane potential much lower than
the firing threshold at desired spiking timestd, and also results
in a much increased synaptic weights needed at desired spiking
times td.

2) Inadequate Learning fortd: The use of the error func-
tion proposed in Eq. 4 for synaptic update results in the
membrane potential exceeding the firing threshold at desired
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Fig. 3. Learning with a smaller time step is easy to fall into over-adjustment.
(a) The membrane potential is above threshold atNtd (as depicted by the
grayed area). (b) Weight changing during one learning epoch. To make
the membrane potential below the threshold atNtd, the synaptic weight is
decreased too much after one learning epoch

spiking timestd (i.e. u(td) ≥ ϑ). However, when a smaller
time step is used, the membrane potential attd is required
to equal to the firing threshold. Therefore, we use a modified
form of Eq. 4 as follows

Etd =
1

2
[ui(t)− ϑ]2 if t ∈ td. (12)

It is easy to find that making membrane potential exactly
equal to the firing threshold at desired spiking timestd is
difficult, and more learning opportunities should be given to
td. However, all the existing learning methods give only one
learning chance totd during one learning epoch. Inadequate
learning fortd is one of the reasons that make a small time
step learning time-consuming.

B. Skip Scan Training Strategy (SSTS)

The SSTS strategy is proposed to address over-adjustment at
undesired spike timesNtd and inadequate learning at desired
output timestd. The reason of over-adjustment is that, with
a small time step, the synaptic weights would be decreased
continuously. To avoid this, SSTS divides one learning epoch
into many sub-epochs. In each sub-epoch, MemPo-Learn skips
a period of time denoted byslen to train the synaptic weights.
On the other hand, in order to guarantee enough learning
opportunities attd, the MemPo-Learn is applied to update
the synaptic weight attd in each sub-epoch. The meanings
of the symbols used in SSTS and the detailed pseudocode of
the SSTS are shown below.

TABLE I
MAIN SYMBOLS USED IN SSTS

Symbols Means
st The starting time point of desired output spike train
ts The simulation time step
tn
f

The first training time point ofnth sub-epoch
Sub(n) The set of all the training time points innth sub-epoch
slen A fixed time length of skip.
T The length of the desired output spike train;

td(i) The ith spike of the desired output time.

The MemPo-Learn rule combined with SSTS

1) Divide one learning epoch into many sub-epochs accordingto SSTS
For n = 1 : 1 : slen/ts

a) Choosing the first training time point ofnth sub-epoch:
tn
f
= st + (n− 1)ts;

b) Continue to addslen to get other training time points until we reach
the end of the spike trainT :

Sub(n) = [tn
f
, tn

f
+slen, t

n
f
+2×slen, t

n
f
+3×slen, ...];

c) Add all the desired output times into the training time points of each
sub-epoch:

Sub(n) = [tn
f
, tn

f
+slen, td(1), t

n
f
+2×slen, t

n
f
+3×slen, td(2), ...];

EndFor
2) Update synaptic weights according to the MemPo-Learn rule
For n = 1 : 1 : slen/ts

For i = 1 : 1 : length(Sub(n))
if Sub(n, i) ∈ td

Update synaptic weight according to Eq. (12) and Eq. (6);
Endif
if Sub(n, i) /∈ td

Update synaptic weight according to Eq. (7) and Eq. (8);
Endif

Endfor

Endfor

To illustrate the proposed SSTS strategy more clearly, an
example of SSTS is shown in Fig. 4. The parameters are set
as follows:st = 0.01 ms, ts = 0.01 ms,slen = 2 ms,T = 10
ms. The steps for generating training time points in each sub-
epoch are shown in Table. II. In thenth sub-epoch,st +(n−
1)ts is chosen as the first training time point, and the training
time points in thenth sub-epoch can be obtained in the same
way. It is easy to find whenn = slen/ts = 2/0.01 = 200,
SSTS reaches the last sub-epoch, and one learning epoch is
completed.

TABLE II
MAIN STEPS TO GENERATE TRAINING TIME POINTS IN EACH SUB-EPOCH

Sub(1)

a) The first training time point:
t1
f
= st + (n− 1)ts = 0.01 ms;

b) Continue to addslen to get other training time points:
Sub(1) = {0.01, 2.01, 4.01, 6.01, 8.01} ms;

c) Insert all of the desired output timestd(1), td(2):
Sub(1) = {0.01, 2.01, 4.01, td(1), 6.01, 8.01, td(2)} ms.

Sub(2)

a) The first training time point:
t2
f
= st + (n− 1)ts = 0.02 ms;

b) Continue to addslen to get other training time points:
Sub(2) = {0.02, 2.02, 4.02, 6.02, 8.02} ms;

c) Insert all of the desired output timestd(1), td(2):
Sub(2) = {0.02, 2.02, 4.02, td(1), 6.02, 8.02, td(2)} ms.

... ...

Sub(200)

a) The first training time point:
t200
f

= st + (1− 1)ts = 2 ms;

b) Continue to addslen to get other training time points:
Sub(200) = {2, 4, 6, 8, 10} ms;

c) Insert all of the desired output timestd(1), td(2):
Sub(200) = {2, 4, td(1), 6, 8, td(2), 10} ms.

Fig. 4b shows the weight update process using SSTS, and
Fig. 4c shows the weight update process without using SSTS.
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Fig. 4. An illustrative example of SSTS. (a) The membrane potential trace
before learning. (b) The weight updating process using SSTS. (c) The weight
update process without using SSTS. In this example,st = 0.01 ms,ts = 0.01
ms,slen = 2 ms.

In Fig. 4b, SSTS divides one learning epochinto many sub-
epochs. In each sub-epoch, all desired output times are added
into the training time points. In this way, inadequate learning
for td is resolved. On the other hand, SSTS divides the
continuousNtd period into many sub-epochs. In each sub-
epoch, persistent decrease of synaptic weights is avoided,
which resolves the problem of over-adjustment.

IV. I MPROVING THE ROBUSTNESS OFMEMPO-LEARN

In this section, we first analyse the robustness of MemPo-
learn to noise, then we introduce a strategy that makes
MemPo-Learn more robust to noise.

Noise is common in biologically plausible neural networks
and can significantly affect the timing accuracy and reliability
of the neural responses [37]-[39]. The noise disturbs the
neuron response mainly by: (1) causing spurious spikes to
appear or (2) by causing desired output spikes to vanish. It is
easy to find that if the membrane potential is close to the firing
threshold atNtd, the probability of triggering a wrong spike
will increase. Therefore, in order to prevent the generation of
additional undesired spikes, the membrane potential atNtd

should be kept much lower than the firing threshold.On the
other hand,to make sure that the neuron will fire nearbytd,
the membrane potential aroundtd should be strong enough
[23].

Based on the above analysis, as shown in Fig. 5, we divide
the undesired output timeNtd into two classesNTf (far away

from a desired spike) andNTn (near a desired spike):

NTf = {t|td(i) < t < td(i+ 1)− δ} (13)

NTn = {t|td(i+ 1)− δ ≤ t < td(i+ 1)} (14)

where td(i) and td(i+1) denote the moment of theith and
(i+1)th spike in the desired spike train. The parameterδ
determines the length ofNTn andNTf .

(1) Whent ∈ NTf , to avoid undesired firing, the membrane
potential is expected to keep a big distance from the firing
threshold. Therefore, the error function of MemPo-Learn at
NTf is modified as

E =
1

2
[ui(t)− (ϑ−p)]2, if ui(t) ≥ ϑ−p, t ∈ NTf (15)

According to Eq. 15, ifui(t) ≥ ϑ − p, the synaptic weights
would be reduced to keep the membrane potential lower than
the firing thresholdby at leastp.

(2) Whent ∈ NTn, the error function is defined as

E =
1

2
[ui(t)− (ϑ− p)]2, if ui(t) ≥ ϑ, t ∈ NTn. (16)

Eq. 16 is different from Eq. 15, because the period ofNTn is
close to the desired output time. If the membrane potential is
kept much lower than the threshold it will make the spiking
neuron hard to output a spike attd.
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Fig. 5. Illustration of the robust MemPo-Learn. The undesired output time
is divided into two classes:NTn andNTf . After a successful learning, the
trace of the neuronal membrane potential only appears in theshaded part,
which is far away from the firing threshold atNTf and strong enough at
NTn.

The error function of the robust MemPo-Learn attd is
similar to that of MemPo-Learn, i.e. it is also defined by Eq.
4, which ensures a threshold crossing at desired output times.
After a successful learning with the robust MemPo-Learn, as
shown in Fig. 5, the trace of the neuronal membrane potential
only appears in the shaded part.

V. SIMULATION RESULTS

We conducted extensive experiments to thoroughly evaluate
the performance of the proposed learning method and test its
tolerance to parameter variation. We further demonstrate the
proposed learning method on real world classification tasks.
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A. Learning performance of MemPo-Learn

In this section, we investigate the effect of different pa-
rameters on the learning performance, including the lengthof
spike trains, the number of the synaptic inputs and the firing
rate of spike trains. We compare our method against com-
petitive learning rules for spiking neurons, namely ReSuMe
and PBSNLR which are typical learning methods of spike-
driven methods and membrane potential- driven methods,
respectively. In these simulations, the time step is set to 1
ms.

1) Effect of the Spike Trains Length:In these simulations,
a neuron with400 synaptic inputs is trained to reproduce
a desired sequence of spikes. Every input spike train and
the desired output spike train are generated according to a
homogeneous Poisson process with firing rates of10 Hz and
100 Hz, respectively. Each experiment is repeated for 20 trials
for different input and desired output pairs. The initial synaptic
weights are randomly drawn from the interval [0, 0.05] usinga
uniform distribution. In Fig. 6, the length of the desired output
spike trains varies from400 ms to2800 ms with an interval of
400 ms. The average maximumC value scored during training,
the average number of epochs and the average computing time
required to reach the maximumC are calculated and reported
for benchmarking.
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Fig. 6. The comparison of learning performance when the length of desired
spike trains increases gradually. Time step=1 ms.

Fig. 6a illustrates the change in learning accuracies of
MemPo-Learn, PBSNLR and ReSuMe. The learning accura-
cies of all the methods are very high (withC reaching 1)
when the length of spike trains varies from 400 ms to 800
ms. While the learning accuracy for ReSuMe and PBSNLR
starts declining when the length of spike train exceeds 1200
ms and 2000 ms, respectively, the learning accuracy of the

proposed MemPo-learn is maintained atC = 1 until the length
of spike train exceeds 2800 ms. In addition, Fig. 6b shows
that MemPo-Learn requires much fewer epochs than ReSuMe
and PBSNLR in order to to reach the maximum accuracy.
For instance, for a spike train length of 2000 ms, ReSuMe
and PBSNLR require about 600 learning epochs to reach the
maximum value ofC, while MemPo- Learn requires only
about 200 learning epochs (i.e. a third of the number of epochs
required by its competitors). Moreover, as shown in Fig. 6c,
the learning time of MemPo-Learn and PBSNLR are much
better than that of ReSuMe. In addition, the required learning
time of MemPo-Learn is comparable with that of PBSNLR
for short spike trains (up to 1200 ms) but it is clearly much
lower for spike trains of duration greater or equal than 1600
ms. For example, PBSNLR learning takes almost four times
longer than MemPo-Learn when the length of the spike train
is 2400 ms, which is a significant improvement in learning
efficiency.

2) Effect of the Number of the Synaptic Inputs:In this part,
we investigate the effect of the number of synaptic inputs.
The length of the input and the desired output spike train is
set to800 ms. Every input spike train and the desired output
spike train are generated according to a homogeneous Poisson
process with firing rates of10 Hz and100 Hz, respectively.
The number of synaptic inputs varies from50 to 500. The
experimental results are shown in Fig. 7.
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Fig. 7. The comparison of learning performance when the number of the
synaptic input increases gradually. Time step=1 ms.

Fig. 7a shows that a small number of synaptic inputs results
in a low learning accuracy for the three learning methods
MemPo-Learn, ReSuMe and PBSNLR. However their learning
accuracy increases with the increase of the number of synaptic
inputs. MemPo-Learn can quickly reach a very high value ofC
(close to 1) using a relatively small number of synaptic inputs.
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For example, when the number of synaptic inputs is 100, the
learning accuracy of MemPo-Learn is almost 1, while the
learning accuracies of ReSuMe and PBSNLR are much lower
at 0.85 and 0.75, respectively. In terms of learning efficiency,
Fig. 7b shows a downtrend in the required number of learning
epochs for different methods. However, the number of required
epochs for the proposed MemPo-Learn remains much lower
than that of PBSNLR and ReSuMe irrespective of the number
of inputs used. Fig. 7c clearly illustrates the superiorityof
MemPo-Learn in terms of the required learning time. Again,
the learning efficiency of MemPo-Learn is better than that of
PBSNLR and ReSuMe irrespective of the number of inputs.
For example, when the number of synaptic input is 100, the
learning time of ReSuMe, PBSNLR and MemPo-Learn are
53.1 s, 6.4 s and 4.3 s, respectively.

3) Effect of the Firing Rate of the Spike Trains:The
following experiments aim to evaluate the effect of the firing
rate of the spike trains. The firing rates of the input spike trains
(Fin) vary from 2 Hz to 18 Hz with an interval of 4 Hz. The
firing rates of the desired output spike trains (Fout) vary from
20 Hz to 160 Hz with an interval of 20 Hz. The number of
the synapticinputsis 400, and the length of the spike trains is
800 ms. The learning is continued for 1000 learning epochs,
and the maximum obtained learning accuracy is reported in
Fig. 8.
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Fig. 8. The comparison of learning performance when the firing rates of the
input and desired output spike trains increase gradually. Time step=1 ms.

From Fig. 8, MemPo-Learn, PBSNLR and ReSuMe reach
the highest learning accuracy for the lowest value ofFout,
and there is a trend that the learning accuracies of all methods
decrease with the increase ofFout. On the other hand, the area
in which MemPo-Learn achieves high performance is larger
than that of PBSNLR and ReSuMe. For example, whenFin =
18 Hz, the performance of MemPo-Learn is 1 for all values
of Fout in [20, 160] Hz. However, in the case ofFin = 18
Hz, the learning accuracy of PBSNLR is 1 only whenFout in
[20, 120] Hz, and the learning accuracy of ReSuMe is 1 only
whenFout in [20, 40] Hz.

B. Learning Performance of MemPo-Learn combined with
SSTS

In this section, we investigate the learning performance of
MemPo-Learn combined with SSTS with a time step of 0.01
ms.

1) Effect of the Time Step:In the following experiments,
a neuron with400 input synapses is trained to emit a desired
sequence of spikes with a length of400 ms. Every input spike
train and desired output spike train are generated randomly
according to the homogeneous Poisson process with firing

rates of 10 Hz and 100 Hz, respectively. Each experiment
is repeated for 20 trials for different input and desired output
pairs, and average learning accuracyC in each learning epoch
is reported. The experimental results are shown in Fig. 9.
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Fig. 9. The comparison of learning performance with different time step

From Fig. 9, when time step is 1 ms, both MemPo-Learn
and PBSNLR reach a value ofC = 1 at epochs of 47 and 124,
respectively, then the learning parameters become stable.In
this case, MemPo-Learn reachesC = 1 after 47 epochs which
amounts to47× 0.006 = 0.282 s, and PBSNLR reachC = 1
after 124 epochs which amounts to124 × 0.0058 = 0.719
s. The learning performance of MemPo-Learn and PBSNLR
drops significantly with a time step of 0.01 ms. For instance,
the C value for MemPo-Learn (0.01 ms) at epoch 47 is 5%
lower than that obtained using a time step of 1 ms, and the
C value for PBSNLR (0.01 ms) at epoch 124 is 6% lower
that obtained using a time step of 1 ms. Moreover, both
MemPo-Learn and PBSNLR are unable to reachC = 1 even
if it is allowed to run for as long as 1000 learning epochs,
which take a total of1000 × 0.67 = 670 s for MemPo-
Learn, and1000 × 0.66 = 660 s for PBSNLR. Therefore,
with a small time step, MemPo-Learn and PBSNLR’s learning
accuracy drops and the required number of learning epochs
as well as the learning time increase. These observations
confirm our theoretical prediction that the time step greatly
affects the learning performance. On the other hand, the
learning efficiency of MemPo-Learn combined with SSTS is
significantly improved. For example, MemPo-Learn combined
with SSTS can reach a learning high accuracy (C close to
1) after only 5 epochs which amounts to learning time of
5× 0.93 = 4.65 s.

2) Effect of the Spike Trains Length:In these simulations,
the number of synaptic inputs is 400. Every input spike train
and the desired output spike train are generated according to
a homogeneous Poisson process with rates of10 Hz and100
Hz, respectively. The length of the desired output spike trains
varies from100 ms to800 ms with an interval of100 ms, and
the time step is set to 0.01 ms.

As shown in Fig. 10, MemPo-Learn combined with SSTS
achieves better learning performance than MemPo-Learn, PB-
SNLR and ReSuMe. The learning accuracy of MemPo-Learn
combined SSTS is higher than that of the other methods when
the spike train length varies from 100 ms to 800 ms. For
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Fig. 10. The comparison of learning performance when the length of desired
spike trains increases gradually. Time step=0.01 ms.

example, when the length of the desired spike train is 700
ms, the average learning accuracy of MemPo-Learn combined
with SSTS is about 0.98, while the learning accuracies of
MemPo-Learn, PBSNLR and ReSuMe are about 0.95, 0.93
and 0.91, respectively. Moreover, the required learning epochs
and learning time for MemPo-Learn combined with SSTS are
much lower. For example, when the length of spike trains
is set to 700 ms, MemPo-Learn takes almost 60 times longer
than MemPo-Learn combined with SSTS to complete learning,
PBSNLR takes almost 110 times longer. Thus, the learning
efficiency of MemPo-Learn combined with SSTS is clearly
improved in comparison with MemPo-Learn without SSTS
and PBSNLR.

3) Effect of the Number of the Synaptic Inputs:In the
following experiments, the performance of MemPo-Learn
combined with SSTS is evaluated for various values of the
number of the synaptic inputs 500, 400, 300, 200, 100, 50. In
these simulations, the length of spike train is 400 ms, and the
time step is 0.01 ms Every input spike train and the desired
output spike train are generated according to a homogeneous
Poisson process with rates of10 Hz and100 Hz, respectively.

From Fig. 11, when the number of synaptic inputs varies
from 50 to 100, we can see that the learning accuracy curves
of different methods are comparable. However, when the
number of synaptic input exceeds 200, the learning accuracy
of MemPo-Learn combined with SSTS is overall higher than
that of other methods. When the number of synaptic inputs is
500, the learning accuracy of MemPo-Learn combined with
SSTS is very high (measureC is almost equal to 1), while
the highest learning accuracy of other three methods is only
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Fig. 11. The comparison of learning performance when the number of the
synaptic input increases gradually. Time step=0.01 ms.

0.96. As for learning efficiency, the proposed MemPo-Learn
combined with SSTS remarkably outperforms both MemPo-
Learn, PBSNLR and ReSuMe in terms of both required
number of epochs as well as required learning time. Thisis
clearly reflected ina dramatic reduction in both the required
number of epochs, which is illustrated by the red bars in Fig.
11b, and the required learning time which is illustrated by
the red curve in Fig. 11c. For example, when the number
of synaptic inputs is 500, the required number of learning
epochs for MemPo-Learn, PBSNLR and ReSuMe are 248, 686
and 468, respectively. However, MemPo-Learn combined with
SSTS requires only about 3 learning epochs which clearly is
an impressive improvement.

4) Effect of the Firing Rate of the Spike Trains:In the
following experiments, we aim to evaluate the effect of the
firing rate of the spike trains. The firing rates of the input
spike trains (Fin) vary from 6 Hz to 18 Hz with an interval
of 4 Hz. The firing rates of the desired output spike trains
(Fout) vary from 20 Hz to 160 Hz with an interval of 20 Hz.
The number of the synaptic input is 400, and the length of
the spike trains is 400 ms. The learning is continued for 1000
learning epochs, and the maximum obtained learning accuracy
is reported in Fig. 12.

From Fig. 12, all of the learning methods reach their highest
learning accuracy whenFin = 6 Hz andFout = 20 Hz. When
Fin = 18 Hz andFout = 160 Hz, all of these three methods
reach their lowest values of performance. On the other hand,
the area in which MemPo-Learn combined with SSTS achieves
high learning accuracy is larger than that of other methods.
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Fig. 12. The comparison of learning performance when the firing rates of
the input and desired output spike trains increase gradually. Time step=0.01
ms.

C. Robustness to Noise

In this part, we investigate the noise robustness of the neuron
trained by different learning methods. A neuron with400
synaptic inputs is trained to output the desired spike trainwith
a length of800 ms. Every input spike train and the desired
output spike train are Poisson spike trains with rates10 Hz
and100 Hz, respectively. After training, the reliability of the
target recall is tested against two noise cases: 1) background
noise on the membrane potential, and 2) input jittering noise.

1) Robustness to Membrane Potential Noise:In this case,
background membrane potential noise is considered as the
noise source. After training, the trained neuron is subjected to
simulated background Gaussian white noise. The mean value
of the added noise is 0, and its varianceσb is systematically
increased within the range of [0.03, 0.33] mV. For each value
σb, 20 experiments are carried out. A correlation measureC
[42] of a distance between the desired and actual output spike
trains is calculated. The experimental results are shown inFig.
13.
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Fig. 13. Anti-noise capability of different learning algorithms against
background voltage noise.

Fig. 13 shows that the correlationC of all the three methods
is high when the intensity of noise is small. However, it
decreases when the noise intensity is gradually increased.The
correlationC curves of MemPo-Learn, PBSNLR and ReSuMe
decline relatively early and quickly. However, the correlation

C of the neuron trained by R-MemPo-Learn always maintains
high values with the increase ofσb, and is significantly higher
than other methods. These results confirm that the neuron
trained by R-MemPo-Learn is significantly less sensitive to
noise.

2) Robustness to Input Spike Time Jitter:In this case,
input jittering noise is considered as the noise source. After
learning, we jitter the input spike times. The jitter intervals
are randomly drawn from a Gaussian distribution with mean
0 and varianceσj ∈ [0.3, 3.3] ms. In addition, some spikes are
randomly removed (with a probability of 0.05) or added (at
the times generated by a 1Hz homogeneous Poisson process).
The resulting plots ofC are presented in Fig. 14.

0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3
0.5

0.6

0.7

0.8

0.9

1

Variance of the jittering noise σ
j
 (ms)

C
or

re
la

tio
n 

m
ea

su
re

 

 
Robust MemPo−Learn

MemPo−Learn

PBSNLR

ReSuMe

Fig. 14. Anti-noise capability of different learning algorithms against jittering
noise.

As shown in Fig. 14, as the intensity of noise increases,
the noise greatly reduces the degree of correlation between
the desired and the actual output spike trains. The measureC
scored by MemPo-Learn, PBSNLR and ReSuMe drops more
sharply than that of the robust MemPo-Learn. That is, neuron
trained by the robust MemPo-Learn is clearly more robust to
noise than the neuron trained by other methods.

D. Effect of Learning Parametersp and slen

Two major learning parameters involved in our method are
p andslen. In this section, we aim to investigate the effect of
these parameters on the learning performance.

1) Effect of Parameterp: The role of p is to make the
membrane potential below the firing threshold at undesired
firing timesNtd. It determines the magnitude of modification
on the synaptic weights atNtd. To look into the effect ofp,
we conduct several experiments with a time step of 1 ms. A
neuron with200 synaptic inputs is trained to emit a desired
sequence of spikes with a length of500 ms. Every input spike
train and desired output spike train are generated randomly
according to a homogeneous Poisson process with rater = 10
Hz and100 Hz, respectively. Here we choosep=0.01, 0.05,
0.1, 1, 3, 6 and9 mv. If the number of learning epochs exceeds
500, we regard this training as a failure. The accuracy value
C and the number of epochs needed to reachC are shown in
Table III.

Table III reveals thatC equals1, though the values ofp
range from 0.01 mv to 6 mv, and it means that MemPo-
Learn has the advantage of parameter insensitivity. A larger p
can result in a faster learning speed, but whenp is increased
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TABLE III
THE IMPACT OFp ON THE LEARNING PERFORMANCE.

p 0.01 0.05 0.1 1 3 6 9
C 1 1 1 1 1 1 Failure
Epochs 87 79 65 92 119 189 -

above a critical value (e.g.,0.1 mv in our experiments), the
learning will slow down or even fail. A smallerp means
a smaller adjustment for synaptic weights, which results in
more learning epochs. Weight updating inevitably changes
not only the membrane potential at current time but also
the membrane potential at other times, so it will affect the
precious learning results. A largerp has a bigger interference
on the previous learning results, and it results in more learning
epochs. Moreover, if the value ofp is too large, the learning
process will fall into over-adjustment or even fail.

2) Effect of Parameterslen: We have proposed the SSTS
strategy to resolve the problems of over-adjustment and inad-
equate learning chances attd. The most important parameter
in SSTS isslen. To investigate the effect ofslen, we conduct
several experiments with a setup similar to Table III but with
a time step of 0.01 ms and the neuron is trained by MemPo-
Learn combined with SSTS. The parameterslen is varied
between 1 and 7 with a unit step (i.e.slen = 1, 2, 3, 4, 5, 6, 7
ms). If the number of learning epochs exceeds 10, we regard
this training as a failure. The value of accuracyC and the
number of epochs needed to reach it are shown in Table IV.

TABLE IV
THE IMPACT OFslen ON THE LEARNING PERFORMANCE.

slen 1 ms 2 ms 3 ms 4 ms 5 ms 6 ms 7 ms
C 1 1 1 1 1 1 1
Epochs 5 3 3 2 1 1 1

As shown in Table IV,slen has little effect on accuracy
since the values ofC are all equal to1. A large slen results
in a smaller number of learning epochs, but whenslen is
increased above a critical value (e.g., 5 ms in our experiment),
the number of learning epochs keeps the same. For SSTS, the
number of sub-epochsn = slen/ts, a largerslen means more
sub-epochs. According to SSTS, the times of desired output
spikes are added into each sub-epoch. So a largerslen will give
more learning chances totd. When slen is large enough,td
has adequate learning chances to make the membrane potential
equal to the threshold. In this case, if we continue to increase
the value ofslen, it may not do much to raise the learning
speed.

E. Classification

Spiking neural networks have been applied to various classi-
fication tasks [45]-[56]. In most case, the spiking neuron based
classifiers make decisions using single spike only [25], [31],
[46]-[48] or by using analog or binary signal representation
[23], [51]. Only a few of the spiking neuron based classifiers
considered the ability to represent the classified categories by

the corresponding sequences of precisely timed firing. Here,
we illustrate this ability of our method in a classification task
proposed by Qiang Yu and Huajin Tang [54], [55], where
a spiking neuron based computational model (as shown in
Fig. 15) is proposed for spike sequences classification. In this
experiment, we adopt this computational model to evaluate
the capability of the proposed learning method in practical
applications, including optical character recognition and sound
event classification.

Fig. 15. General structure and information process of the SNN. It contains
three functional parts: encoding, learning, and recognition. The encoding part
is used to convert the input patterns into different spike trains. The learning
part tunes the synaptic weights to ensure that the output part can respond
to certain patterns correctly. The readout part extracts information about the
stimulus from a given neural response.

1) Optical Character Recognition:An Optical Character
Recognition (OCR) task is considered in this experiment
where images of digits 0-9 are used. Each image has a size of
20× 20 black/white (B/W) pixels. Sample images are shown
in Fig. 16a. In the encoding part, a phase encoding method is
used to convert the images into spatiotemporal spike patterns
[54], [55]. The mechanism of the phase encoding is shown
in Fig. 16b. Each encoding unit consists of a positive neuron
(Pos), a negative neuron (Neg) and an output neuron. Each
encoding neuron is assigned to a pixel and a subthreshold
membrane potential oscillation (SMO). (More details about
phase coding, please see references [54], [55]).

The learning part of the spiking neural network is composed
of one layer of 10 spiking neurons, with each learning neuron
corresponding to one category. Each learning neuron is trained
to fire a desired sequence of spikes ([40, 80, 120, 160] ms)
when a corresponding pattern is present, and not to spike when
other patterns are presented.

In the recognition part, the relative confidence criterion is
used for decision making, where the input pattern will be
decided by one of the neurons that generates the most similar
spike train to the target spike train.

After phase coding, different images can be converted into
corresponding spatiotemporal spike patterns. Fig. 17a demon-
strates an encoding result of a given image sample, in which
the output spikes are sparsely distributed over the encoding
time window. To further illustrate the learning process of the
MemPo-Learn rule, Fig. 17b shows the learning performance
of digit “8”. The learning neuron corresponding to digit “8”
can successfully produce the desired spike train after about 25
learning epochs.
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(a) OCR samples

(b) Illustration of the phase encoding schema

Fig. 16. (a) OCR samples. (b)Illustration of the phase encoding schema. Each
encoding unit is assigned with a subthreshold membrane potential oscillation
(SMO) and an inputx. The encoding schema is adapted from [54], [55].)
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(a) Phase encoding results of a given image sample. Each
dot denotes a spike.
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(b) Output spike signals of the learning neuron corresponding to digit
“8”.

Fig. 17. Learning performance of the proposed method on the OCR
recognition task.

To study the noise robustness of the proposed method
on classification, after learning, the reliability of the target
recall is tested against two noise cases: 1) background noise
on the membrane potential; 2) input jittering noise. Fig. 18
and Fig. 19 show the classification accuracies of different
learning algorithms against jittering noise and background
voltage noise, respectively.

As can be seen from Fig. 18, the performance of all four
methods decreases with increasing noise level. While both
PBSNLR and MemPo-Learn without the noise robustness
strategy show comparable response, the robust version of
MemPo-Learn remarkablyoutperformsboth MemPo-Learn
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Fig. 18. Robustness of different methods against the jittering noise
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Fig. 19. Robustness of different methods against the background voltage
noise

without the robustness strategy and PBSNLR. In addition, the
robust of ReSuMe is relatively lower than that of other three
methods.

From Fig. 19, we can see that when the intensity of noise
is small, the classification accuracy of all four methods is
very high and comparable. The classification accuracy of all
four methods decreases with increasing noise level. However,
the classification accuracy of PBSNLR, ReSuMe and MemPo-
Learn without the robustness strategy decreases more sharply
than the robust MemPo-Learn. The computational model
trained by the robust MemPo-Learn rule can maintain a high
classification accuracy (∼90%) even when the voltage noise
reaches a considerably high level (∼0.4 mV).

2) Sound Event Classification:In this section, we carry out
experiments to show the performance of our proposed learning
method on a sound recognition task. A total of 10 sounds are
selected from the Real Word Computing Partnership (RWCP)
[57] Sound Scene Database in Real Acoustic Environments.
The selected categories cover a wide range of sound events,
including horn, bells5, bottle1, buzzer, cymbals, kara, metal15,
phone4, whistle1 and whistle3. For each event, 40 files are
randomly selected as training samples and another 40 files
are selected for testing samples. Therefore, the total number
of training samples and testing samples are both 400. After
training, the average classification accuracy for each method
is reported in clean and at20, 10 and0 dB signal-to-noise ratio
(SNR) for the “Speech Babble” noise environment, taken from
the NOISEX’92 database [58].

The encoding method proposed in [59] is used to convert the
sound events into spatiotemporal spike patterns. According to
the encoding method, the sound is converted from its original
domain to a representation in the frequency domain by Fast
Fourier Transform (FFT) over several windows. Then, a one-
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dimensional order filter is used in the feature extraction stage
to select the local maximum in the power spectrum as a
keypoint, followed by the temporal coding scheme to produce
the output spatiotemporal spike patterns. Fig. 20 demonstrates
an encoding result of a bottle sound in both clean and 10dB
noise. It can be seen that the encoded spatiotemporal spike
patterns of clean and noise patterns are very similar. While
there are some random spikes in Fig. 20(d) due to the noise,
the important information is still represented, thereforethe
temporal coding method used here is robust. (For more details
about the coding method, please see reference [59].)
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Fig. 20. Examples of encoded spatiotemporal spike patterns. (a) and (b) show
the bottle sound in clean and 10 dB noise condition, with the corresponding
encoded spike trains shown below.

The learning part of the spiking neural network is composed
of one layer of 10 spiking neurons, with each learning neuron
corresponding to one category. Each neuron is trained to
fire a spike when a corresponding pattern is present, and
the desired firing time is when the postsynaptic membrane
potential reaches its maximum value. When other patterns are
presented, the membrane potential of the learning neuron is
trained to below the firing threshold.

In the recognition part, the input pattern will be decided
by one of the neurons that generates the most similar spike
to the desired spike time. In addition, if all learning neurons
remain silent, the learning neuron with the strongest activation
state represents the class association. Table. V shows the sound
event classification performance of different methods.

TABLE V
CLASSIFICATION ACCURACY OFDIFFERENTMETHODS FOR THESOUND

EVENT TASK

Methods Clean 20dB 10dB 0dB Average

R-MemPo-Learn 97.8% 97.1% 96.4% 91.1% 95.6%
MemPo-Learn 97.1% 96.2% 95.2% 88.7% 94.3%
PBSNLR 96.9% 96.3% 95.8% 87.2% 94.0%
ReSuMe 95.3% 92.3% 90.3% 85.2% 90.7%
DNN-5 layers 97.5% 97.2% 87.5% 20.2% 75.6%
CNN-5 layers 98.7% 97.3% 91.52% 38.5% 81.5%
CNN-7 layers 97.2% 95.2% 92.7% 25.7% 77.7%

The experimental results are presented in Table. V. It can be
seen that the proposed robust MemPo-Learn method performs
well for each of the noise conditions, achieving an average
accuracy of95.6%. It can also maintain an accuracy of over
91% in the challenging 0dB SNR condition. The results also

show that the classification accuracy of CNN and DNN is high
under clean and low-noise environment, while the performance
decreases dramatically with the increase of the noise level.
For example, the CNN-5 model can achieve a classification
accuracy of98.7% under clean condition, while the accuracy
decreases to38.5% under the 0dB SNR condition. Therefore,
the robustness of the proposed method is better than the
traditional neural networks.

VI. D ISCUSSION ANDCONCLUSION

Analysis of the experiments revealed that the learning
performance of MemPo-Learn is much better than that of
ReSuMe in terms the learning accuracy and efficiency. The
difference in the learning performance between MemPo-
Learn and ReSuMe is due to the difference in the training
mechanisms. MemPo-Learn is a membrane potential driven
method, using the postsynaptic membrane potential rather than
postsynaptic spike times as the relevant signal for synaptic
changes. In this way, the adjustment of synaptic weights is
direct, and it will decrease the difficulty and complexity ofthe
training process. In addition, compared to PBSNLR, MemPo-
Learn hasobviousadvantage in terms of learning efficiency.
The main reason for this conclusion is that MemPo-Learn is
based on gradient descent, and the size of the weight changes
is determined by learning rate and the difference between
the desired and the actual membrane potential. However, the
adjustment of PBSNLR just relates to learning rate. Therefore,
MemPo-Learn has higher flexibility and better efficiency.

A small time step can be much closer to continuous time,
and is extremely important for real-time applications of SNNs.
However, a small time step learning is more difficult and time-
consuming. SSTS is proposed to improve the efficiency of a
small time step learning. SSTS divides one learning epoch
into many sub-epochs, in each sub-epoch, SSTS consists of
two main operations: 1) all desired output times are added
into monitor time points to resolve inadequate learning fortd;
2) jumping to monitor the membrane potential in each sub-
epoch to resolve over-adjustment atNtd. By using SSTS, we
not only overcome over-adjustment and inadequate learning
for td, but also improve the learning efficiency significantly.

In future work, we will explore how to extend MemPo-
Learn to multiple layer networks (three or more layers).
It is expected that such an approach would improve the
application range and memory capacity of spiking neurons.
Another interesting future direction is to search for efficient
and biological plausible input and output encoding methods
for multiple spikes that can further improve the application
performance. Another interesting idea to pursue in the future
is to look at how possibly can information-theory be used
to derive novel analytic measures of performance and predict
network performance based on the quality of input.

APPENDIX

EXPERIMENTAL DETAILS.

Unless otherwise stated, our experiments run on MATLAB
7.12.0 on a quad-core system with 16-GB RAM in Windows
environment. All parameters of our algorithm are empirical
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values. For traditional algorithms, the parameter value scopes
provided by their corresponding references are employed in
our simulations, and many different values in these scopes are
tested to find the one achieving the highest accuracy. During
the learning process, MemPo-Learn uses the storage space
in exchange for substantial savings in calculation time. All
the PSPs induced by every synapse at different time steps
need to be calculated and stored before training. Unless the
learning neuron can output the target output spikes precisely,
the experiments will stop at the upper limit of 1000 learning
epoch. In all of the experiments, the value of the neuron model
is set as:ϑ = 1 mV, λ = 2, τ = 7 ms andτR = 5 ms.

The experiments of CNN and DNN are run on Python 3.6.1
with TensorFlow 1.3.0 on a quad-core system with 16-GB
RAM in Windows environment, and the CNN and DNN are
trained on spectrogram using Short-Time Fourier Transform
(STFT). The STFT is performed with 50 filters and a 16kHz
sampling frequency. The audio signal is down-sampling into
50 frames with50% overlap. The DNN constructure consists
of five fully connected layers with the size set as 1024-512-
256-64-10. The CNN-5 model consists of one convolutional
layer (8 feature maps with a size of3 × 3 filter), one
pooling layer (with a2 × 2 pooling window), followed by
three fully connected layers. The CNN-7 model consists of
2 convolutional layers with8 × 3 × 3 kernels and8 × 2 × 2
kernels, respectively. Each convolutional layer is followed by
a pooling layer with the same subsample window of2 × 2.
Similar to the CNN-5 model, the CNN-7 model is equipped
with three fully connected layers.

REFERENCES

[1] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “Training
spiking neural networks to associate spatio-temporal inputCoutput spike
patterns”. Neurocomputing, vol. 107, pp. 3-10, May 2013.

[2] P. A. Cariani, “Temporal codes and computations for sensory represen-
tation and scene analysis”. IEEE Trans. Neural Netw., vol. 15, no. 5,
pp. 1100-1111, Sep. 2004.

[3] J. J. Hopfield, “Pattern recognition computation using action potential
timing for stimulus representation”. Nature, vol. 376, no.6535, pp. 33-
36, 1995.

[4] J. Gautrais and S. Thorpe, “Rate coding versus temporal order coding:
A theoretical approach”. BioSystems, vol. 48, no. 1-3, pp. 57-65, 1998.

[5] M. J. Berry and M. Meister, “Refractoriness and neural precision”. J.
Neurosci, vol. 18, no. 6, pp. 2200-2211, Mar. 1998.

[6] V. J. Uzzell and E. J. Chichilnisky, “Precision of spike trains in primate
retinal ganglion cells”.J. Neurophysiol, vol. 92, no. 2, pp. 780-789, Aug.
2004.

[7] T. Gollisch and M. Meister, “Rapid neural coding in the retina with
relative spike latencies”.Science, vol. 319, no. 5866, pp. 1108-1111,
2008.

[8] P. Reinagel and R. C. Reid, “Temporal coding of visual information
in the thalamus”.J. Neuroscience, vol. 20, no. 14, pp. 5392-5400, Jul.
2000.

[9] W. Bair and C. Koch, “Temporal precision of spike trains in extrastriate
cortex of the behaving macaque monkey”.Neural Comput., vol. 8, no.
6, pp. 1185-1202, Aug. 1996.

[10] W. Wang, B. Subagdja, A.-H. Tan and J. A. Starzyk, “Neural Modeling
of Episodic Memory: Encoding, Retrieval, and Forgetting”.IEEE Trans.
Neural Netw. Learn. Syst., vol. 23, no. 10, pp. 1574-1586, 2012.

[11] V. A. Nguyen, J. A. Starzyk, W. B. Goh and D. Jachyra, “Neural
Network Structure for Spatio-Temporal Long-Term Memory”.IEEE
Trans. Neural Netw. Learn. Syst., vol. 23, no. 6, pp. 971-983, 2012.

[12] W. Gerstner and W. M. Kistler, “Spiking Neuron Models: Single
Neurons, Populations, Plasticity”. 1st ed. U.K. CambridgeUniversity
Press, Aug. 2002

[13] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks”. Interna-
tional journal of neural systems, vol. 19, no. 4, pp. 295-308, 2009.

[14] W. Maass, “Networks of spiking neurons: the third generation of neural
network models”.Neural networks, vol. 10, no. 9, pp. 1659-1671, 2006.

[15] W. Maass, “Fast sigmoidal networks via spiking neurons”. Neural
Comput., vol. 9, no. 2, pp. 279-304, 1997.

[16] W. Maass, “Noisy spiking neurons with temporal coding have more
computational power than sigmoidal neurons”. http://www.igi. tugraz.
at/psfiles/90.pdf.

[17] R. Kempter, W. Gerstner and J. L. Van Hemmen, “Spike-based com-
pared to rate-based Hebbian learning”.Advances in neural information
processing systems, vol. 11, pp. 125-131, 1999.

[18] A. Borst, and F. E. Theunissen, “Information theory andneural coding”.
Nature neuroscience, vol. 2, no. 11, pp. 947-957, 1999.

[19] E. I. Knudsen, “Supervised learning in the brain”.J. Neuroscience, vol.
14, no. 7, pp. 3985-3997, 1994.

[20] H. Qu, X. Xie, et al. “Improved perception-based spiking neuron
learning rule for real-time user authentication”.Neurocomputing, vol.
151, pp. 310-318, 2015.

[21] W. T. Thach, “On the specific role of the cerebellum in motor learning
and cognition: Clues from PET activation and lesion studiesin man”.
Behavioral Brain Sci., vol. 19, no. 3, pp. 411-431, 1996.

[22] M. Ito, “Mechanisms of motor learning in the cerebellum”. Brain Res.,
vol. 886, no. 1-2, pp. 237-245, Dec. 2000.

[23] F. Ponulak, and A. Kasinski, “Supervised learning in spiking neural
networks with ReSuMe: Sequence learning, classification, and spike
shifting”. Neural Comput., vol. 22, no. 2, pp. 467-510, 2010.

[24] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, “DL-ReSuMe:
A Delay Learning-Based Remote Supervised Method for Spiking Neu-
rons”. IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3137-
3149, Dec. 2015.

[25] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation in
temporally encoded networks of spiking neurons”.Neurocomputing, vol.
48, no. 1, pp. 17-37, 2002.

[26] Y. Xu, X. Zeng, L. Han and J. Yang, “A supervised multi-spike learning
algorithm based on gradient descent for spiking neural networks”.
Neural Networks, vol. 43, pp. 99-113, 2013.

[27] R. V. Florian, “The chronotron: a neuron that learns to fire temporally
precise spike patterns”.PloS one, vol. 7, no. 8, e40233, 2013.

[28] A. Mohemmed, S. Schliebs, S. Matsuda and N. Kasabov, “Span: Spike
pattern association neuron for learning spatio-temporal spike patterns”.
International journal of neural systems, vol. 22, no. 4, 2012.

[29] J. D. Victor and K. P. Purpura, “Metric-space analysis of spike trains:
theory, algorithms and application”.Network: computation in neural
systems, vol. 8, no. 2, pp. 127-164, 1997.

[30] M. Rossum, “A novel spike distance”.Neural Comput., vol. 13, no. 4,
pp. 751-763, 2001.

[31] R. Gütig and H. Sompolinsky, “The tempotron: A neuron that learns
spike timing-based decisions”.Nature Neuroscience, vol. 9, no. 3, pp.
420-428, Feb. 2006.

[32] Y. Xu, X. Zeng and S.Zhong, “A new supervised learning algorithm for
spiking neurons”.Neural Comput., vol. 25, no. 6, pp. 1472-1511, 2013.

[33] R. M. Memmesheimer, R. Rubin, B. P.Ölveczky, and H. Sompolinsky.
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