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A Highly Effective and Robust Membrane Potential
Driven Supervised Learning Method for Spiking
Neurons
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Abstract—Spiking neurons are becoming increasingly popular
owing to their biological plausibility and promising computa-
tional properties. Unlike traditional rate-based neural models,
spiking neurons encode information in the temporal patterrs of
the transmitted spike trains, which makes them more suitaké for
processing spatio-temporal information. One of the fundarental
computations of spiking neurons is to transform streams of
input spike trains into precisely timed firing activity. How ever,
the existing learning methods used to realise such compuian
result in relatively low accuracy performance and poor robustness

to noise. In order to address these limitations, we propose a

novel highly effective and robust MEMbrane POtential driven
supervised LEARNing method (MemPo-Learn), which is able
to generate desired spike trains with higher precision, higer
efficiency and better noise robustness than current statefdahe-
art spiking neuron learning methods. While traditional spike-
driven learning methods use an error function based on the
difference between the actual and desired output spike trais,
the proposed MemPo-Learn method employs an error function

based on the difference between the output neuron membrane

potential and its firing threshold. The efficiency of the proposed
learning method is further improved through the introducti on of
an adaptive strategy, called Skip Scan Training Strategy (STS),
that selectively identify the time steps when to apply weigh
adjustment. The proposed strategy enables the MemPo-Learn
method to effectively and efficiently learn the desired outpt
spike train even when much smaller time steps are used. In
addition, we improve the learning rule of MemPo-Learn to hep
mitigate the impact of the input noise on the timing accuracyand
reliability of the neuron firing dynamics. The proposed leaming
method is thoroughly evaluated on synthetic data and is futther
demonstrated on real world classification tasks. Performaoe
comparisons against competitive learning methods for spikg
neurons and state-of-the-art rate-based neural networksr pre-
sented. Experimental results show that the proposed methodan
achieve high learning accuracy with a significant improvemet
in learning time and better robustness to different types ofnoise.

Index Terms—Spiking neurons, supervised learning, spiking
neural networks, membrane potential, gradient descent, elssifi-
cation.
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I. INTRODUCTION

Traditional rate coded artificial neural networks encode
information through the firing rate of their biological coun
terparts. Although rate coding is commonly used in artificia
neural networks, it is unlikely that rate-based coding can
convey all the information related to rapid processing stiai
scenes, odor, and sound [1]-[4]. As precise spike-timingale
activities have been observed in many brain regions, ifmetud
the retina [5]-[7], the lateral geniculate nucleus [8] ahe t
visual cortex [9], the view that information is represented
by explicit timing of spikes rather than mean firing rate
has received increasing attention [10], [11]. These finsling
have led to a new way of simulating neural networks based
on spiking neurons which encode information by the firing
times of spikes [12]-[14]. Theoretical analysis indicatkat
networks of spiking neurons can arbitrarily approximatg an
continuous function [15]. Furthermore, it has been demon-
strated that networks of spiking neurons are computatipnal
more powerful than traditional rate-based neurons [18]-[2
However, their application to real world problems remain
relatively limited due to the computational complexity of
spiking neural networks and the lack of effective and effi-
cient learning methods. Therefore the development of kighl
effective and robust learning methods is more importam tha
ever to leverage the computational power of these bioldlgica
plausible neural networks and to increase their appliitgil
solving real world problems.

Supervised learning was proposed as a successful concept
of information processing in traditional neural networkée
most documented evidence for supervised learning in the
central nervous system (CNS) comes from the studies on
the cerebellum and the cerebellar cortex [21], [22]. Howeve
the exact mechanisms underlying supervised learning in the
biological neurons remain an open problem [23], [24]. Inesrd
to train the spiking neurons to generate desired sequences
of spikes, many supervised learning algorithms have been
proposed. They can be broadly classified into two groups:
spike-driven methods and membrane potential-driven nakstho
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spikes as the relevant signals for controlling synaptiongea
Typical examples of these methods include SpikeProp [25]
and the multispike learning algorithm [26] which construct
an error function using the difference between the desired
and actual output spikes, then use its gradient to update the
synaptic connection weights. ReSuMe [23] is another spike-
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driven method, in which synaptic weight changes are driversed during the training phase, and their response to other
by the joint effect of two opposite processes: 1) strengtigen stimuli not seen during the training is highly unreliable]2
of the synaptic weights through STDP based on the inpUherefore, improving the robustness of learning methods fo
and the desired output spike trains, and 2) weakening gdiking neurons remains an open problem.
the synaptic weights through anti-STDP based on the inputin order to address the above mentioned limitations of
and the actual output spike trains. To enhance the learniexjsting supervised learning methods for spiking neureres,
performance of ReSuMe, DL-ReSuMe [24] has recently be@nopose in this paper a novel highly effective and noise sbbu
proposed to integrate the delay shift approach with ReSuMeembrane potential driven supervised learning method for
based weight adjustment. Both the Chronotron E-learnifey rispiking neurons with significant improvement in the leagnin
[27] and the SPAN learning rule [28] try to minimize theefficiency. The proposed learning method, called MemPo-
distance between the desired and actual output spike trainsarn (MEMbrane POtential driven supervised LEARNIng),
The distance in the Chronotron E-learning rule is defined Iy able to generate desired spike trains with higher acgurac
the Victor and Purpura (VP) metric [29], while in the case dfiigher efficiency and better robustness to input jitter aff we
the SPAN rule the distance is based on a metric similar to the voltage noise. The efficiency of the MemPo-Learn is
van Rossum metric [30]. Common disadvantages of the abaignificantly improved through the introduction of an adgt
mentioned methods include relatively low learning efficien strategy, called Skip Scan Training Strategy (SSTS), which
and accuracy. enables the MemPo-Learn method to accurately and effigientl
In an attempt to improve the learning efficiency and acclearn the desired output spike train even when much smaller
racy in spiking neurons, membrane potential-driven methotime steps are used. In addition, we analyse the noise ro-
emerged recently. Typical examples of these methods iaclualistness of the proposed MemPo-Learn method and introduce
the Tempotron [31], PBSNLR [32], HTP [33] and EMPDfurther improvements to make it significantly more robust to
[34]. Compared with their spike-driven counterparts, ttelge noise. The performance of the proposed learning method is
an entirely different approach where the relevant signal fthoroughly evaluated on synthetic data and is further demon
synaptic change is the postsynaptic membrane potenti@mratstrated on real world classification tasks. Experimentsilte
than spike times. For instance, the Tempotron implementsdemonstrate that the proposed method is superior to other
gradient descent dynamics that minimizes an error definedsapervised methods in terms of the three key performance
the difference between the maximum membrane potential afladtors of supervised learning for spiking neurons, namely
the firing threshold. However, this reliance on the maximutearning accuracy, learning efficiency, and robustnes®isen
membrane potential as its objective function prevents theThe remainder of this paper is organised as follows: Section
binary Tempotron learning rule from controlling the numbér Il introduces the neuron model and the learning rule of the
spikes beyond one [35]. PBSNLR [32] and HTP [33] performproposed MemPo-Learn method. Section Ill and IV present a
a perceptron classification on discretely sampled timetpoirdetailed description of the proposed strategies for imingv
of the membrane potential, with the aim to keep membrattee efficiency and noise robustness of MemPo-Learn. Section
potential below threshold at undesired spike times and tkemaV presents a comprehensive experimental evaluation of the
sure a threshold crossing occurs at desired spike times [3@joposed MemPo-Learn method on synthetic spatio-temporal
As they are based on the perceptron learning rule, in theotigta including extensive experiments to explore the effect
if the sampled time points of the membrane potential acé different learning parameters on its learning perforoan
not linearly separable, the desired output spike train eanrFurther demonstration of the proposed learning methodan re
be learned successfully [32]. In addition, when the timg stevorld applications are also presented in this section.Ikina
is small, the memory usage of the training samples as w8kction VI discusses the results and draw conclusions.
as the training time increase greatly [32]. EMPD employs
two different error functions at desired and undesired wutp Il. THE MEMPO-LEARN LEARNING RULE

time and uses gradient descent method to adjust the synaptiﬁ] this section, we begin by presenting the neuron model.

weights. prvever, EMPD [34] imposes additionql restriesio Then, the main idea of MemPo-Learn learning rule is de-
on the spiking neuron model, and the calculation of MOoNk.rined.
toring time points (MPs) is time consuming. Therefore, more
performance improvements are still needed for this type of
learning methods. A. Neuron model

Another important aspect often overlooked when designingThere are many spiking neuron models that aim to capture
learning strategies for spiking neural networks is the stbuthe dynamics of biological neurons [12], [40], [41]. Thelkspi
ness to noise. Noise is common in spiking neural networks aresponse model (SRM) offers a generalization of the integra
can significantly affect the learning performance as wethas and-fire model and can give a faithful description of biotzgi
timing accuracy and reliability of neural responses [39}[ neurons [12]. In addition, the SRM model is easily reducible
In order to improve noise robustness of the trained neuromsa numerical method that can be implemented on a computer;
most of the existing supervised learning methods use noisgnce it is used in this paper.
samples during the training phase (i.e., noisy training),[2 In the SRM model, the membrane potential of a neuron
[32]. However, the neurons trained under noisy conditiaes as represented by a variable which remains at the resting
found to show relatively robust responses only to the siimwotential,u,..s; = 0, when there is no spike received from the



presynaptic neurons. When a spike produced at a pre-sgnapfiike pattern. Therefore, the running time of an outputiegik
neuronyj, a postsynaptic potential (PSP) is induced in neurareuroni can be divided into two sets: the times of desired
i. After the integration of the PSPs resulting from severalutput spikes denoted bty (tq={tq(1),ta(2),...,ta(i),...}.)
incoming spikes, the post-synaptic neuidires a spike when and the remaining times, denoted by,. Based on these two
its membrane potential; reaches a certain firing threshald different time classes, the proposed MemPo-Learn learning
Let’s suppose neurohhas fired its last spike at time After method employs two weight update processes: (1) Adjusting
firing the evolution ofu; is given by synaptic weights to make the membrane potential reach the fir
. ing threshold at desired output timegs (2) Adjusting synaptic
ui(t) =t —1) + Z“ji Zsﬂ(t - tf) T Urest (1) weights to maintain the membrane potential lower than the
J f threshold at undesired output timég,. These two weight
wheretf is the fth spike of presynaptic neurofy andw;; update processes are introduced in the following sections.
is the synaptic weight from neuropto neuroni. The PSP 1) Weight Update Rule at Desired Output Spikgs For

induced by the spike/ is determined by the spike respons@ny time point int,, in order to fire a spike, the value
function  ;; (¢ 7tf) defined as of the neuron membrane potential is expected to cross the
v J

firing threshold from below. To achieve this, MemPo-Learn
implements a gradient descent learning rule operating en th
t—t; exp(l _ t*tf> it t-+/>0 membrane potential at desired output times, with the aim
tf) _ T T J ) to increase it towards the neuron firing threshold. When the
I membrane potential is below the firing threshold at desired
output times, in order to make the membrane potentjé&)

wherer is a time decay constant that determines the spre%euaCh the.f|r|ng threshold, an error function is constructed
. . : as follows:
shape of the spike response function. The refractoriness fu

!

€ji(t —

0, otherwise

tion n(t — t) is defined as %[ui (t) — 9], it wi(t) < 9,t € ty,
—X-dexp(— EL),if t—i>0 Ey, = 4
n(t—1t) = (3) 0, otherwise

0, otherwise where ¥ represents the neuron firing threshold aagdt)

TR is a time decay constant ands a constant that determinesrepresents its postsynaptic membrane potential.

the amplitude of the refractoriness function. An illusivat In gradient-based learning, changes in the synaptic weight
of the output produced by this neuron model in response @ce given by

spatio-temporal spiking pattern is shown in in Fig. 1.
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e | .. . . synaptic update at desired spiking times, andis the synap-
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If the membrane potential;(¢) is below the firing threshold
9 at desired output time, according to Eq. 5, synaptic weight
wj; is increased by the following amount:

Awji = =ilui(t) 0] Y et 1)) (6)
7

2) Weight Update Rule at Undesired Output SpiRgs:
For any time point inV;4, in order to avoid the occurrence of
undesired output spikes, the membrane potential is redjuire
to remain below the neuron firing threshold. The proposed

Fig. 1. Dynamics of the neuron model. (a) Examples of two igatterns - MemPo-Learn achieves this by again using a gradient descent
(blue and green). Each input spike is represented by a dadtleoron response | . le. Wh th b tential i |t
to the two input spiking patterns in (a). Blue trace: the peuresponse to €arning rule. en the membrane potential Is equal to or
produce four spikes. Green trace: The neuron did not firelat al greater than the neuron firing threshold, to make the menabran
potentialu;(t) below the firing threshold), an error function
at N4 is defined as Eq. (7)

B. MemPo-Learn Learning Rule 1 9 -
. . - _ “[ui(t) — (9 = p)|%, if wi(t) > V,t € Nyg,
The goal of supervised learning for spiking neurons is th%t )2 )
the adjustable synaptic weights are modified to make an butp™**
neuron emit a desired spike train in response to a given input 0, otherwise



where the parameterdetermines the magnitude of modificawill occur at an undesired time (e.g. earlier than the ddsire
tion on the synaptic weights af.,;. Then, the synaptic weightstime or with an additional undesired spike as illustrated in
at N4 are updated according to the following equation:  Fig. 2b). This time step related problem arises not because
9Ey,, of the mathematical equations of spiking neuron model but
Awjs = =Pa—5 (8) the discrete-time simulation. In order to achieve a sudakss
I learning with a small time step, the update of synaptic wisigh
where 3, is the learning rate, which defines the size of thenould take the following constraints into account: (1) The
synaptic update at undesired spiking times. membrane potential should remain below the firing threshold
In order to drive the membrane potential below the thresholg a1 undesired output times; (2) The membrane potential at
at N:q, the synaptic efficacy;; is decreased by the following desired times, should equal to the firing threshold (as shown
amount: in Fig. 2c). However, like the existing learning methods, it
L () — (9 _ (4T is not easy for MemPo-Learn to meet these two constraints
By = =Palui(t) = 0 = p) zf:E”(t ) ®) combined. The reasons are outlined below.

C. Correlation-Based Metric. I

To quantitatively evaluate the learning performance, a @™~~~ 4~ N ]
correlation-based, metric introduced in [42], is adopted t
measure the similarity between the desired and actual butpt
spike trains. The metric, defined in Eq. 10, is calculatedraft
each learning epoch as follows:

— ]

Membrane potential

|
t - t,
. N .
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2 ty

R ®) _ ‘
— , 10 g | |
Tt U
where v, and v, are vectors representing a convolution (in g
discrete time) of desired and actual output spike traink wit £ of
low-pass Gaussian filtet; - v, is the inner product, anfiy| =
and|v;| are the Euclidean norms af andv,, respectively. 01 2 3 1, 5 6 7 8 9 10 11 12 13 14 15 16
The Gaussian filter function with parameteiis given by ] [
2 (©
t,0) =exp(—5 11
f(t, o) p(53) (11)

Membrane potential

where the parameter determines the width of the function.
In this paperg is set to 2. The closer the value 6fis to 1,
the more similar the two spike trains with a value @f= 1
indicating identical spike trains. On the other hand, treset
the value ofC' is to 0, the less similar (i.e. weakly correlated)

the two spike trains. Fig. 2. Learning performance is related to time step. (a) kieme potential
trace after a successful learning with a time step of 1 msir@ksutput time

ty and actual output time are marked by red vertical bar and béargcal

I1l. ENHANCING MEMPO-LEARN EFFICIENCY THROUGH  par, respectively. (b) When the time step is 0.01 ms, thestiuld crossing

THE SKIP SCAN TRAINING STRATEGY (SSTS) of the membrane potential withift1, t2] and [¢s, t4] will produce undesired
. . . . spikes. (c) Membrane potential trace after a successfuhiteg with a time
In this section, we first analyse the effect of using a smalep of 0.01 ms.

time step on the learning complexity then we propose a
strategy, called Skip Scan Training Strategy (STSS), whichy §yar-Adiustment afV..-
helps improve both the effectiveness and the efficiency %Bt) J -

e

L T
5 6 7 8 9 10 11 12 13 14 15 16
Time (ms)

Fig. 3 shows the membrane
ential trace of a neuron before learning, in which the
mbrane potential is above threshold where [53,70]
ms (as depicted by the grayed area). In order to push the
membrane potential below the firing threshold with a smaller
A. Learning with a small time step time step, as shown in Fig. 3(b), the synaptic weight willdhee
Fig. 2a shows that using a time step of 1 ms, the membraieebe adjusted continuously and be decreased great deal to be
potential has been kept below the threshold (i.e< ) at brought below the firing threshold. This over-adjustment at
undesired spike times (namely time points 1, 2, 3, 5, 6, N;s may also drive the membrane potential much lower than
...) ms, and it has been pushed above the firing threshold (tke firing threshold at desired spiking timggs and also results
u > ¥) at desired output time (i.e. at time point 4 ms). As # a much increased synaptic weights needed at desiredgpiki
result, a perfect learning of the desired output spikingetims timest,.
been achieved. However, this learning may fail when a smalle 2) Inadequate Learning fot;: The use of the error func-
time step (such as 0.01 ms) is usdxkbcausethe threshold tion proposed in Eq. 4 for synaptic update results in the
crossing of the membrane potential witHin, ¢2] and[ts,t4] membrane potential exceeding the firing threshold at désire

MemPo-Learn when small time steps are used to calcul
the neuron dynamics.



(@)

The MemPo-Learn rule combined with SSTS

Membrane potential

1) Divide one learning epoch into many sub-epochs accorthingSTS
Forn =1:1:se,/ts
a) Choosing the first training time point atth sub-epoch:
(b) t;} =s¢+ (n— 1)ts;
b) Continue to add;.,, to get other training time points until we reach
the end of the spike traifi"
Sub(n) = [t?v t?+slen7 t}L+2><Slen7 t?+3><8len, ]7

c) Add all the desired output times into the training timenp®iof each
. sub-epoch:
Sub(n) = [t?v t?“"slenv td(l)v t?+2><slenv t?’+3><315n, td(z)v ]7

0 1‘0 2‘0 3‘0 4‘0 5‘0 6‘0 7‘0 {;0 9‘0 l‘ EndFOr . . .
2) Update synaptic weights according to the MemPo-Leara rul
Forn =1:1:se,/ts
Fori=1:1:length(Sub(n))
if Sub(n,i) € tq
Update synaptic weight according to Eq. (12) and Eq. (6);

Weight

Time (ms)

Fig. 3. Learning with a smaller time step is easy to fall int@madjustment.
(a) The membrane potential is above thresholdVay (as depicted by the
grayed area). (b) Weight changing during one learning epdch make

the membrane potential below the thresholdN\at;, the synaptic weight is Endif .
decreased too much after one learning epoch if Sub(n, i) ¢ ta . )
Update synaptic weight according to Eq. (7) and Eq. (8);
Endif
Endfor

spiking timest, (i.e. u(tq) > ). However, when a smaller g 4o
time step is used, the membrane potentiakais required

to equal to the firing threshold. Therefore, we use a modifiedty jjustrate the proposed SSTS strategy more clearly, an
form of Eq. 4 as follows example of SSTS is shown in Fig. 4. The parameters are set
1 as follows:s; = 0.01 ms,t, = 0.01 mS, sie,, =2 ms, T = 10

_ Loy a2 :
By, = 5[“’(t) Il if tete (12) g The steps for generating training time points in each sub

It is easy to find that making membrane potential exactfPOch are shown in Table. Il. In theth sub-epochs, + (n—
equal to the firing threshold at desired spiking timesis _)ts is qhosgn as the first training time pomt,. and.the training
difficult, and more learning opportunities should be given {iMe POINts in thenth sub-epoch can be obtained in the same
t4. However, all the existing learning methods give only on&2Y- It is easy to find whem = sie, /1 = 2/0.01 = 200, )
learning chance ta, during one learning epoch. Inadequate>S 1> reaches the last sub-epoch, and one learning epoch is
learning fort, is one of the reasons that make a small timg°mpleted.
step learning time-consuming.

TABLE Il
MAIN STEPS TO GENERATE TRAINING TIME POINTS IN EACH SUEEPOCH

B. Skip Scan Training Strategy (SSTS)

a) The first training time point:

The SSTS strategy is proposed to address over-adjustment at th = st +(n—1)ts = 0.01 ms;
undesm_ad spike time8/;, and madequa?e Iearnlng at desw_e:i sub(l) b) Continue to adds,, o get other training time points:
output timest,. The reason of over-adjustment is that, with Sub(1) = {0.01,2.01,4.01, 6.01, 8.01} ms;
a small time step, the synaptic weights would be decreased Y 1 of the desired imes(L), ta(2)

H H H F ; c) Insert all of the desired output timeg , tg .
F:ontmuously. To avoid this, SSTS divides one learning epo; Sub(1) = {0.01,2.01, 4.01, £4(1), 6.01, 8.01, £4(2)} ms.
into many sub-epochs. In each sub-epoch, MemPo-Learn skips a) The first training time point:

a period of time denoted by, to train the synaptic weights. 2 = st + (n— 1)ts = 0.02 ms;

On the other hand, in order to guarantee enough learning
opportunities att;, the MemPo-Learn is applied to update Sub(2)
the synaptic weight at; in each sub-epoch. The meanings

of the symbols used in SSTS and the detailed pseudocode of ¢) Insert all of the desired output times(1), tq(2):
the SSTS are shown below. Sub(2) = {0.02,2.02,4.02, t4(1),6.02,8.02, £4(2)} ms.

a) The first training time p-c.>-int:
TABLE | t?oo =5+ (1—1)ts =2 ms;

b) Continue to adds;.,, to get other training time points:
Sub(2) = {0.02,2.02,4.02, 6.02, 8.02} ms;

MAIN SYMBOLS USED INSSTS

Symbols Means Sub(200) b) g;&g%%? LO {a;(ileél ;0190? r$1tsher training time points:
St The starting time point of desired output spike trair| W Em ’
ts The simulation time step ) ! .
= - —. - - c) Insert all of the desired output timeg(1), t4(2):
t} The first training time point of:th sub-epoch Sub(200) = {2,4,t4(1),6,8,t4(2), 10} ms.
Sub(n) | The set of all the training time points inth sub-epoch
Slen A fixed time length of skip.
T The Tength of the desired output spike train; Fig. 4b shows the weight update process using SSTS, and
ta (i) The ith spike of the desired output time. Fig. 4c shows the weight update process without using SSTS.



® from a desired spike) an®/'T;, (near a desired spike):

E

NTy = {t[ta(i) < t < ta(i+1) — 6} (13)

Membrane potential

NT, = {tlta(i +1) =6 <t <ta(i+1)}  (14)

wheret4(i) andt4(i+1) denote the moment of théh and
(i+1)th spike in the desired spike train. The parameter
determines the length V7, and NT%.

0.02 2.02 4.021,(1) 6.02 8.02 14
T

1.99 399 (1) 5.99 7.99 1,2 9.99

T T T T

%gl T 1 " } (1) Whent € NTY, to avoid undesired firing, the membrane
=7 o e o e PSR potential is expected to keep a big distance from the firing
s L ——+1 = © ©~ ] threshold. Therefore, the error function of MemPo-Learn at
. o4, e NTy is modified as
‘ T T ] E=su)-@-p)P i w(t)>9-pteNT (15)

; o , — 110 According to Eq. 15, ifu;(t) > 9 — p, the synaptic weights
would be reduced to keep the membrane potential lower than
the firing thresholdy at leastp.

(2) Whent € NT,, the error function is defined as

4j- E= 1[ui(t) — (W —p)? if w(t)>9,te NT,. (16)

R 2

(c

Weight

° ! 2 s R 7 ¢ w1 EQ. 16 is different from Eq. 15, because the periodVdf,, is
close to the desired output time the membrane potential is

Fig. 4. An illustrative example of SSTS. (a) The membranepiil trace  kept much lower than the threshold it will make the spiking

before learning. (b) The weight updating process using S&)SThe weight ;
update process without using SSTS. In this examples 0.01 ms,ts = 0.01 neuron hard to output a Splke at
ms, sje, = 2 MS.

thr
In Fig. 4b, SSTS divides one learning epdalo many sub- 2
epochs. In each sub-epoch, all desired output times aredadde 2
into the training time points. In this way, inadequate léagn %
for ¢4 is resolved. On the other hand, SSTS divides the 8
continuous N, period into many sub-epochs. In each sub- 3
epoch, persistent decrease of synaptic weights is avoided, *
which resolves the problem of over-adjustment.
ta(i) ta(i+1)- 6 t(i+1)
IV. IMPROVING THE ROBUSTNESS OFMEMPO-LEARN Time

In this section, we first analyse the robustness of MemPgg: 5. lllustration of the robust MemPo-Learn. The undasioutput time

learn to noise. then we introduce a strategy that ma is divided into two classesN7;, and NTf: After a successf_ul learning, the
’ ; e of the neuronal membrane potential only appears irsitiaeled part,

MemPo-Learn more robust to noise. which is far away from the firing threshold a7y and strong enough at

Noise is common in biologically plausible neural network§ 7
and can significantly affect the timing accuracy and religbi
of the neural responses [37]-[39]. The noise disturbs theThe error function of the robust MemPo-Learn @t is
neuron response main|y by (]_) Causing spurious Spikes a-'@ilar to that of MemPo-Learn, i.e. it is also defined by Eq.
appear or (2) by causing desired output spikes to vanisk. It4, Which ensures a threshold crossing at desired outpustime
easy to find that if the membrane potential is close to thegirififter a successful learning with the robust MemPo-Learn, as
threshold atV,4, the probability of triggering a wrong spikeshown in Fig. 5, the trace of the neuronal membrane potential
will increase. Therefore, in order to prevent the generatib ©only appears in the shaded part.
additional undesired spikes, the membrane potentiaNat
should be kept much lower than the firing threshaloh the
other handto make sure that the neuron will fire nearhy
the membrane potential arourtgd should be strong enough We conducted extensive experiments to thoroughly evaluate
[23]. the performance of the proposed learning method and test its

Based on the above analysis, as shown in Fig. 5, we divittderance to parameter variation. We further demonstiate t
the undesired output tim¥,, into two classesV1 (far away proposed learning method on real world classification tasks

V. SIMULATION RESULTS



A. Learning performance of MemPo-Learn proposed MemPo-learn is maintained’at 1 until the length

In this section, we investigate the effect of different pan spike train exceeds 2800 ms. In addition, Fig. 6b shows

rameters on the learning performance, including the length thadt MemPo-Learn rdequires much Lewher epochs than ReSuMe
spike trains, the number of the synaptic inputs and the firid)d PBSNLR in-order to to reach the maximum accuracy.
rate of spike trains. We compare our method against co! Instance, for a spike train length of 2000 ms, ReSuMe

petitive learning rules for spiking neurons, namely ReSuN@d ,PBSNLR require abo.ut 600 learning epochs 'FO reach the
and PBSNLR which are typical learning methods of spikélaximum value ofC', while MemPo- Learn requires only

driven methods and membrane potential- driven metho&’@,om 200 learning epochs (i.e. a third of the number of epoch
required by its competitors). Moreover, as shown in Fig. 6c¢,

respectively. In these simulations, the time step is set to q . X
ms. the learning time of MemPo-Learn and PBSNLR are much
1) Effect of the Spike Trains Lengthn these simulations, petter than that of ReSgMe. In addition, .the required lewyni

a neuron with400 synaptic inputs is trained to reproduc ime of MemPo-Lt_earn is comparable with _that of PBSNLR

a desired sequence of spikes. Every input spike train short Sp'.ke tralins (up to 1.200 ms) but it is clearly much
the desired output spike train are generated according t oWer for spike trains of duration greater or equal than %600
homogeneous Poisson process with firing ratesoHz and ms. For example, PBSNLR learning takes almost four times

100 Hz, respectively. Each experiment is repeated for 20 triel%nzgfé Othan Merr]]_wio.—Learn_ Wf}.e” t?? length of ﬂ][e. s?ike t_rain
for different input and desired output pairs. The initiahaptic IS ms, which 15 a sighificant improvement In fearning

weights are randomly drawn from the interval [0, 0.05] using €TTICIENCY- _ N
uniform distribution. In Fig. 6, the length of the desirecmut 2) Effect of the Number of the Synaptic Inpults:this part,

spike trains varies from00 ms t02800 ms with an interval of W€ investigate the effect of the number of synaptic inputs.

400 ms. The average maximu@value scored during training, 1€ length of the input and the desired output spike train is
the average number of epochs and the average computing tifib 10800 ms. Every input spike train and the desired output

required to reach the maximuéi are calculated and reportedSP!<€ train are generated according to a homogeneous Roisso
for benchmarking process with firing rates of0 Hz and 100 Hz, respectively.

The number of synaptic inputs varies frofd to 500. The
experimental results are shown in Fig. 7.
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Fig. 6. The comparison of learning performance when thetten§ desired

spike trains increases gradually. Time step=1 ms. Fig. 7. The comparison of learning performance when the raunob the
synaptic input increases gradually. Time step=1 ms.

Fig. 6a illustrates the change in learning accuracies of
MemPo-Learn, PBSNLR and ReSuMe. The learning accura-Fig. 7a shows that a small number of synaptic inputs results
cies of all the methods are very high (withi reaching 1) in a low learning accuracy for the three learning methods
when the length of spike trains varies from 400 ms to 80demPo-Learn, ReSuMe and PBSNLR. However their learning
ms. While the learning accuracy for ReSuMe and PBSNL&curacy increases with the increase of the number of signapt
starts declining when the length of spike train exceeds 120{puts. MemPo-Learn can quickly reach a very high valu€'of
ms and 2000 ms, respectively, the learning accuracy of tfetose to 1) using a relatively small number of synaptic iispu



For example, when the number of synaptic inputs is 100, thates of 10 Hz and 100 Hz, respectively. Each experiment
learning accuracy of MemPo-Learn is almost 1, while thie repeated for 20 trials for different input and desiredpoitit
learning accuracies of ReSuMe and PBSNLR are much lowgairs, and average learning accurd¢yn each learning epoch
at 0.85 and 0.75, respectively. In terms of learning efficjen is reported. The experimental results are shown in Fig. 9.
Fig. 7b shows a downtrend in the required number of lean
epochs for different methods. However, the number of regu
epochs for the proposed MemPo-Learn remains much I 0.95r
than that of PBSNLR and ReSuMe irrespective of the nun 09
of inputs used. Fig. 7c clearly illustrates the superiooty
MemPo-Learn in terms of the required learning time. Agi
the learning efficiency of MemPo-Learn is better than tha
PBSNLR and ReSuMe irrespective of the number of inp
For example, when the number of synaptic input is 100,
learning time of ReSuMe, PBSNLR and MemPo-Learn 0.65 T e ™ 1
53.1s, 6.4 s and 4.3 s, respectively. PoonR ot |
3) Effect of the Firing Rate of the Spike Trainghe 055 ‘ ‘ ‘ ‘ ‘
following experiments aim to evaluate the effect of the {ri "0 20 40 60 80 100 120 140 160 180 200
rate of the spike trains. The firing rates of the input spikéns Leaming epoch
(Fin) vary from 2 Hz to 18 Hz with an interval of 4 Hz. TheFig. 9. The comparison of learning performance with différéme step
firing rates of the desired output spike trairfg,{;) vary from
20 Hz to 160 Hz with an interval of 20 Hz. The number of From Fig. 9, when time step is 1 ms, both MemPo-Learn
the synaptidnputsis 400, and the length of the spike trains i&ind PBSNLR reach a value 6f = 1 at epochs of 47 and 124,
800 ms. The learning is continued for 1000 learning epochespectively, then the learning parameters become sthble.
and the maximum obtained learning accuracy is reportedthiis case, MemPo-Learn reach@s= 1 after 47 epochs which

1

o
©
a

o
©

0.75

Learning accuracy

MemPo-Learn with SSTS (0.01 ms)
T T T T

Fig. 8. amounts to47 x 0.006 = 0.282 s, and PBSNLR react' =1
- . " after 124 ep_ochs which amounts 1@4 x 0.0058 = 0.719
140 o6 140 05 10 wse S- The I_earr_ung perf(_)rman_ce of MemPo-Learn and _PBSNLR
F 100 008 T 100 098 ¥ 100 00s drops significantly with a time step of 0.01 ms. For instance,
£ 07 E oo o5 F e osr  the C value for MemPo-Learn (0.01 ms) at epoch 47 is 5%
20 09 e 06 P oss  |ower than that obtained using a time step of 1 ms, and the
% 2 0011 o % 2.6 lo1as 098 % 2 00141 *® ¢ value for PBSNLR (0.01 ms) at epoch 124 is 6% lower
(2) MemPo-Learn (6) PESNLR (©) ReSuMe that obtained using a time step of 1 ms. Moreover, both

MemPo-Learn and PBSNLR are unable to reath- 1 even
if it is allowed to run for as long as 1000 learning epochs,
which take a total ofl000 x 0.67 = 670 s for MemPo-

From Fig. 8, MemPo-Learn, PBSNLR and ReSuMe reatj:‘r?am' andeOO x 0.66 = 660 s for PBSNLR. Th(,erefore,_
the highest learning accuracy for the lowest valueFof,, with a small time step, Mequ-Learn and PBSNLR; learning
and there is a trend that the learning accuracies of all nosth@ccuracy drops and the required number of learning epochs
decrease with the increase &f,... On the other hand, the area®S Well as the leaming time increase. These observations
in which MemPo-Learn achieves high performance is |arggpnf|rm our theoretical prediction that the time step ggeatl
than that of PBSNLR and ReSuMe. For example, wAgn— affects the learning performance. On the other hand, the
18 Hz, the performance of MemPo-Learn is 1 for all value@arning efficiency of MemPo-Learn combined with SSTS is
of F,.; in [20, 160] Hz. However, in the case @, — 18 significantly improved. For example, MemPo-Learn combined
Hz, the learning accuracy of PBSNLR is 1 only whEg,; in with SSTS can reach a learning high accura€y dlose to

[20, 120] Hz, and the learning accuracy of ReSuMe is 1 ony after only 5 epochs which amounts to learning time of

when F,,; in [20, 40] Hz. x093=465s. . . .
out 1N | ] 2) Effect of the Spike Trains Lengtln these simulations,

) ) the number of synaptic inputs is 400. Every input spike train

B. Learning Performance of MemPo-Learn combined withhq the desired output spike train are generated according t
SSTS a homogeneous Poisson process with ratesddflz and100

In this section, we investigate the learning performance biz, respectively. The length of the desired output spikimsra
MemPo-Learn combined with SSTS with a time step of 0.0daries from100 ms to800 ms with an interval ofl00 ms, and
ms. the time step is set to 0.01 ms.

1) Effect of the Time Stepin the following experiments, As shown in Fig. 10, MemPo-Learn combined with SSTS
a neuron withd00 input synapses is trained to emit a desiredchieves better learning performance than MemPo-Learn, PB
sequence of spikes with a length4if0 ms. Every input spike SNLR and ReSuMe. The learning accuracy of MemPo-Learn
train and desired output spike train are generated randomtymbined SSTS is higher than that of the other methods when
according to the homogeneous Poisson process with firitige spike train length varies from 100 ms to 800 ms. For

Fig. 8. The comparison of learning performance when thedfirates of the
input and desired output spike trains increase gradualiyeTtep=1 ms.
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Fig. 11. The comparison of learning performance when thebmurof the

Fig. 10. The comparison of learning performance when thgttenf desired synaptic input increases gradually. Time step=0.01 ms.

spike trains increases gradually. Time step=0.01 ms.

example, when the length of the desired spike train is 700

ms, the average learning accuracy of MemPo-Learn combirfg86. As for learning efficiency, the proposed MemPo-Learn
with SSTS is about 0.98, while the learning accuracies 6¢mbined with SSTS remarkably outperforms both MemPo-
MemPo-Learn, PBSNLR and ReSuMe are about 0.95, 0.bgarn, PBSNLR and ReSuMe in terms of both required
and 0.91, respectively. Moreover, the required learningchp number of epochs as well as required learning time. This
and learning time for MemPo-Learn combined with SSTS agéearly reflected ira dramatic reduction in both the required
much lower. For example, when the length of spike trairfgumber of epochs, which is illustrated by the red bars in Fig.
is set to 700 ms, MemPo-Learn takes almost 60 times londé, and the required learning time which is illustrated by
than MemPo-Learn combined with SSTS to complete learnirige red curve in Fig. 11c. For example, when the number
PBSNLR takes almost 110 times longer. Thus, the learniff) synaptic inputs is 500, the required number of learning
efficiency of MemPo-Learn combined with SSTS is clearlgpochs for MemPo-Learn, PBSNLR and ReSuMe are 248, 686
improved in comparison with MemPo-Learn without SST8nd 468, respectively. However, MemPo-Learn combined with
and PBSNLR. SSTS requires only about 3 learning epochs which clearly is

3) Effect of the Number of the Synaptic Inputst the an impressive improvement.
following experiments, the performance of MemPo-Learn - . .
combined with SSTS is evaluated for various values of tl?e"Ag I_Er:‘fecet Ogr%eer::tmngeR:.ﬁ ?; ;hZI Saptteth-(gi?fg::tﬂ;? the
number of the synaptic inputs 500, 400, 300, 200, 100, 50. i eragt’e g? th'e iéV\tlra'nl The ‘f’rz - toe of the hout
these simulations, the length of spike train is 400 ms, apd t ng Spi ns. rng S Inpu

time step is 0.01 ms Every input spike train and the desirgglke trains £7,) vary from 6 Hz to 18 Hz with an interval

output spike train are generated according to a homogene lgs?' Hz. The firing rates of the desired output spike trains

. . . «t) vary from 20 Hz to 160 Hz with an interval of 20 Hz.
Poisson process with rates bf Hz and100 Hz, respectively. Thoet)numger of the synaptic input is 400, and the length of

the spike trains is 400 ms. The learning is continued for 1000

From Fig. 11, when the number of syn.aptlc Inputs Var'eféarning epochs, and the maximum obtained learning acgurac
from 50 to 100, we can see that the learning accuracy Cur\fgsreported in Fig. 12.

of different methods are comparable. However, when the

number of synaptic input exceeds 200, the learning accuracyrrom Fig. 12, all of the learning methods reach their highest
of MemPo-Learn combined with SSTS is overall higher thaearning accuracy whef;,, = 6 Hz andF,,,,; = 20 Hz. When
that of other methods. When the number of synaptic inputsi$, = 18 Hz and F,,,; = 160 Hz, all of these three methods
500, the learning accuracy of MemPo-Learn combined witikach their lowest values of performance. On the other hand,
SSTS is very high (measui@€ is almost equal to 1), while the area in which MemPo-Learn combined with SSTS achieves
the highest learning accuracy of other three methods is otligh learning accuracy is larger than that of other methods.
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C of the neuron trained by R-MemPo-Learn always maintains
high values with the increase of, and is significantly higher
than other methods. These results confirm that the neuron
trained by R-MemPo-Learn is significantly less sensitive to
noise.

2) Robustness to Input Spike Time Jittdn this case,
input jittering noise is considered as the noise sourceerAft
learning, we jitter the input spike times. The jitter intaly
are randomly drawn from a Gaussian distribution with mean
0 and variance; € [0.3, 3.3] ms. In addition, some spikes are
randomly removed (with a probability of 0.05) or added (at
the times generated by a 1Hz homogeneous Poisson process).
The resulting plots of” are presented in Fig. 14.
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Fig. 12. The comparison of learning performance when thadfirates of
the input and desired output spike trains increase graduBifne step=0.01
ms.
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C. Robustness to Noise

In this part, we investigate the noise robustness of theameul
trained by different learning methods. A neuron wih0
synaptic inputs is trained to output the desired spike twath
a length of800 ms. Every input spike train and the desireu
output spike train are Poisson spike trains with ratesHz Fig. 14. Anti-noise capability of different learning alffbms against jittering
and 100 Hz, respectively. After training, the reliability of thenoise.
target recall is tested against two noise cases: 1) backgrou
noise on the membrane potential, and 2) input jittering@ois As shown in Fig. 14, as the intensity of noise increases,

1) Robustness to Membrane Potential Noisethis case, the noise greatly reduces the degree of correlation between
background membrane potential noise is considered as the desired and the actual output spike trains. The medaSure
noise source. After training, the trained neuron is subj¢d scored by MemPo-Learn, PBSNLR and ReSuMe drops more
simulated background Gaussian white noise. The mean vafiigrply than that of the robust MemPo-Learn. That is, neuron
of the added noise is 0, and its varianggis systematically trained by the robust MemPo-Learn is clearly more robust to
increased within the range of [0.03, 0.33] mV. For each valu@ise than the neuron trained by other methods.
op, 20 experiments are carried out. A correlation meagure
[42] of a distance between the desired and actual outpuéspflf, Effect of Learning Parameters and s;..,
trains is calculated. The experimental results are shoviign
13.
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Two major learning parameters involved in our method are
p ands;.,,. In this section, we aim to investigate the effect of
these parameters on the learning performance.

1) Effect of Parametep: The role ofp is to make the
membrane potential below the firing threshold at undesired
firing times Ny4. It determines the magnitude of modification
on the synaptic weights aV;,. To look into the effect of,
we conduct several experiments with a time step of 1 ms. A
neuron with200 synaptic inputs is trained to emit a desired
sequence of spikes with a length&f0 ms. Every input spike

0.95

0.9

0.851 -

Correlation measure

——&—— Robust MemPo-Learn
—=&— MemPo-Learn

—%— PBSNLR
ReSuMe

0.8

0.75

i i i i i i
012 015 018 021 024 027 0.30

Variance of the voltage noise o, (mV)

T T T I
0.03 0.06 0.09 0.33

Fig. 13.  Anti-noise capability of different learning al@oms against
background voltage noise.

Fig. 13 shows that the correlatianof all the three methods

train and desired output spike train are generated randomly
according to a homogeneous Poisson process with-raté0

Hz and 100 Hz, respectively. Here we chooge0.01, 0.05,

0.1, 1, 3, 6 and9 mv. If the number of learning epochs exceeds
500, we regard this training as a failure. The accuracy value
C and the number of epochs needed to re@care shown in
Table III.

is high when the intensity of noise is small. However, it Table Il reveals that” equals1, though the values of

decreases when the noise intensity is gradually increddes.
correlationC' curves of MemPo-Learn, PBSNLR and ReSuM
decline relatively early and quickly. However, the cortiela

10

range from 0.01 mv to 6 mv, and it means that MemPo-
eearn has the advantage of parameter insensitivity. A tgrge
can result in a faster learning speed, but wheis increased



TABLE Il

THE IMPACT OF p ON THE LEARNING PERFORMANCE the corresponding sequences of precisely timed firing. Here
we illustrate this ability of our method in a classificatiask
& 2’01 2'05 10'1 11 13 16 Fga”ure proposed by Qiang Yu and Huajin Tang [54], [55], where
Epochs 87 79 65 92 119 189 - a spiking neuron based computational model (as shown in

Fig. 15) is proposed for spike sequences classificatiorhin t
experiment, we adopt this computational model to evaluate
the capability of the proposed learning method in practical
applications, including optical character recognitiod apund

above a critical value (e.g0.1 mv in our experiments), the o
event classification.

learning will slow down or even fail. A smallep means
a smaller adjustment for synaptic weights, which results in encoding learning

. . . . . neurons neurons
more learning epochs. Weight updating inevitably changes

—

not only the membrane potential at current time but also
the membrane potential at other times, so it will affect the e
precious learning results. A larggrhas a bigger interference
on the previous learning results, and it results in moreniegr Stimuli ——)
epochs. Moreover, if the value @fis too large, the learning
process will fall into over-adjustment or even fail.

2) Effect of Parametes;.,,: We have proposed the SSTS

—time—>

strategy to resolve the problems of over-adjustment and-ina —
equate learning chancestat The most important parameter
in SSTS iss;.,. TO investigate the effect of;.,,, we conduct
several experiments with a setup similar to Table Il buthwitFig. 15. General structure and information process of th&l SiNcontains
a time step of 0.01 ms and the neuron is trained by MemPBree functional parts: encoding, learning, and recognitirhe encoding part
L bined with SSTS. Th . ied is used to convert the input patterns into different spikéns. The learning

earn combine W!t e € .paramemn IS varie part tunes the synaptic weights to ensure that the outputgaar respond
between 1 and 7 with a unit step (i€., = 1,2,3,4,5,6,7 to certain patterns correctly. The readout part extradtsrimation about the
ms). If the number of learning epochs exceeds 10, we reg&fignulus from a given neural response.

this training as a failure. The value of accuracyand the . . .
number of epochs needed to reach it are shown in Table v, 1) Optical Character RecognitionAn Optical Character
Recognition (OCR) task is considered in this experiment

Encoding Learning Recognition

TABLE IV where images of digits 0-9 are used. Each image has a size of
THE IMPACT OF s1¢;, ON THE LEARNING PERFORMANCE 20 x 20 black/white (B/W) pixels. Sample images are shown
s Ims 2Zms 3ms  4ms  Sms  6ms  7ms in Fig. 16a. In the epcoding part, a phase encoding method is
C 1 1 1 1 1 1 1 used to convert the images into spatiotemporal spike petter
Epochs 5 3 3 2 1 1 1

[54], [55]. The mechanism of the phase encoding is shown
in Fig. 16b. Each encoding unit consists of a positive neuron
(Pos), a negative neuron (Neg) and an output neuron. Each

As shown in Table IV,s;., has little effect on accuracy encoding neuron is assigned to a pixel and a subthreshold
since the values of' are all equal tol. A large s;.,, results membrane potential oscillation (SMO). (More details about
in a smaller number of learning epochs, but whep, is Phase coding, please see references [54], [55]).
increased above a critical value (e.g., 5 ms in our experiipen The learning part of the spiking neural network is composed
the number of learning epochs keeps the same. For SSTS,2h@ne layer of 10 spiking neurons, with each learning neuron
number of sub-epochs = .., /t,, a largers,, means more corr_espondln_g to one category. E:_:tch learning neuron isadai
sub-epochs. According to SSTS, the times of desired outg@tfire a desired sequence of spikes ([40, 80, 120, 160] ms)
spikes are added into each sub-epoch. So a laggewill give when a corresponding pattern is present, and not to spika whe
more learning chances t. When s, is large enought, ©Other patterns are presented.

has adequate learning chances to make the membrane potenti? the recognition part, the relative confidence criterien i
equal to the threshold. In this case, if we continue to irmeeaUSed for decision making, where the input pattern will be
the value ofs;.,, it may not do much to raise the IearningdeF'dEd _by one of the neurons th_at generates the most similar
speed. spike train to the target spike train.

After phase coding, different images can be converted into
corresponding spatiotemporal spike patterns. Fig. 17aodem
strates an encoding result of a given image sample, in which

Spiking neural networks have been applied to various claslie output spikes are sparsely distributed over the engodin
fication tasks [45]-[56]. In most case, the spiking neurosdola time window. To further illustrate the learning process o t
classifiers make decisions using single spike only [25]],[3IMemPo-Learn rule, Fig. 17b shows the learning performance
[46]-[48] or by using analog or binary signal representatioof digit “8”. The learning neuron corresponding to digit “8”
[23], [51]. Only a few of the spiking neuron based classifiersan successfully produce the desired spike train aftertétou
considered the ability to represent the classified categdyy learning epochs.

E. Classification

11
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Fig. 18. Robustness of different methods against theijiienoise
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Fig. 16. (a) OCR samples. (b)lllustration of the phase eimgpgichema. Each
encoding unit is assigned with a subthreshold membranenpaitescillation 0
(SMO) and an inpute. The encoding schema is adapted from [54], [55].)
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ik g 1o .’ 4 without the robustness strategy and PBSNLR. In additios, th
’ / robust of ReSuMe is relatively lower than that of other three
% 50 100 150 200 methods.
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From Fig. 19, we can see that when the intensity of noise
is small, the classification accuracy of all four methods is
very high and comparable. The classification accuracy of all

(a) Phase encoding results of a given image sample. Each
dot denotes a spike.

o, . e 1 four methods decreases with increasing noise level. Howeve

wl 09 the classification accuracy of PBSNLR, ReSuMe and MemPo-
5 08 Learn without the robustness strategy decreases morelgharp
2;30 o % than the robust MemPo-Learn. The computational model
g2 06 trained by the robust MemPo-Learn rule can maintain a high
- i 05 classification accuracy~90%) even when the voltage noise

: 04 reaches a considerably high leveld.4 mV).
R '16?";”1‘55""250 o B @ @ 2) Sound Event Classificationn this section, we carry out
Time (ms; earning epocl

experiments to show the performance of our proposed legrnin
(b) Output spike signals of the learning neuron correspunb digit method on a sound recognition task. A total of 10 sounds are
8" selected from the Real Word Computing Partnership (RWCP)
Fig. 17.  Learing performance of the proposed method on t@R O [57] Sound Scene Database in Real Acoustic Environments.
recognition task. The selected categories cover a wide range of sound events,
including horn, bells5, bottlel1, buzzer, cymbals, karataii®,
phone4, whistlel and whistle3. For each event, 40 files are

To study the noise robustness of the proposed metheghdomly selected as training samples and another 40 files
on classification, after learning, the reliability of therdat are selected for testing samples. Therefore, the total Bumb
recall is tested against two noise cases: 1) backgroune nais training samples and testing samples are both 400. After
on the membrane potential; 2) input jittering noise. Fig. 1ffaining, the average classification accuracy for each aueth
and Fig. 19 show the classification accuracies of differer{reported in clean and a6, 10 and0 dB signal-to-noise ratio
learning algorithms against jittering noise and backgtbufSNR) for the “Speech Babble” noise environment, taken from
voltage noise, respectively. the NOISEX'92 database [58].

As can be seen from Fig. 18, the performance of all four The encoding method proposed in [59] is used to convert the
methods decreases with increasing noise level. While batbund events into spatiotemporal spike patterns. Accgridin
PBSNLR and MemPo-Learn without the noise robustnefise encoding method, the sound is converted from its origina
strategy show comparable response, the robust versiondofmain to a representation in the frequency domain by Fast
MemPo-Learn remarkablyputperformsboth MemPo-Learn Fourier Transform (FFT) over several windows. Then, a one-
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dimensional order filter is used in the feature extracti@yst show that the classification accuracy of CNN and DNN is high
to select the local maximum in the power spectrum as umder clean and low-noise environment, while the perforcean
keypoint followed by the temporal coding scheme to producgecreases dramatically with the increase of the noise.level
the output spatiotemporal spike patterns. Fig. 20 dematestr For example, the CNN-5 model can achieve a classification
an encoding result of a bottle sound in both clean and 10@Bcuracy 0f08.7% under clean condition, while the accuracy
noise. It can be seen that the encoded spatiotemporal spleereases t88.5% under the 0dB SNR condition. Therefore,
patterns of clean and noise patterns are very similar. Whilee robustness of the proposed method is better than the
there are some random spikes in Fig. 20(d) due to the noisaditional neural networks.

the important information is still represented, thereftine

temporal coding method used here is robust. (For more detail VI. DISCUSSION ANDCONCLUSION

about the coding method, please see reference [59].) Analysis of the experiments revealed that the learning

performance of MemPo-Learn is much better than that of
ReSuMe in terms the learning accuracy and efficiency. The
difference in the learning performance between MemPo-
ik Learn and ReSuMe is due to the difference in the training
e g o mechanisms. MemPo-Learn is a membrane potential driven

10 20 30 40 50 60 10 20 30 40 50 60

Time, , (fames) Time.  (rames) method, using the postsynaptic membrane potential ratlaer t

150 150 postsynaptic spike times as the relevant signal for syoapti

e L changes. In this way, the adjustment of synaptic weights is

direct, and it will decrease the difficulty and complexitytbé

A ) training process. In addition, compared to PBSNLR, MemPo-

0 - ) E— Cw Learn hasobviousadvantage in terms of learning efficiency.

0 10 20 30 40 50 60 0 10 20 30 40 50 60 ) . 3 3 )
Time, . (rames) Time, . (rames) The main reason for this conclusion is that MemPo-Learn is

based on gradient descent, and the size of the weight changes
Fig. 20. Examples of encoded spatiotemporal spike patt@hand (b) show is determined by learning rate and the difference between
the bottle sound in clean and 10 dB noise condition, with tieesponding tha desired and the actual membrane potential. However, the

ded spike trains shown below. i ) .
encoded spike frains shown below adjustment of PBSNLR just relates to learning rate. Theegfo

The learning part of the spiking neural network is Composé\ljemPo-Legrn has higher flexibility and better eff_lmency._
of one layer of 10 spiking neurons, with each learning neuron” Small time step can be much closer to continuous time,
corresponding to one category. Each neuron is trained &8d IS extremely important for real-time applications off&N
fire a spike when a corresponding pattern is present, af@wever, a small time step learning is more difficult and ime
the desired firing time is when the postsynaptic membraf@NSUMINg. SSTS is proposed to improve the efficiency of a
potential reaches its maximum value. When other patteras §Mall time step learning. SSTS divides one learning epoch
presented, the membrane potential of the learning neuroniN® many sub-epochs, in each sub-epoch, SSTS consists of
trained to below the firing threshold. two main operations: 1) all desired output times are added
In the recognition part, the input pattern will be decided!to monitor time points to resolve inadequate learningtfor
by one of the neurons that generates the most similar spfkelUmping to monitor the membrane potential in each sub-
to the desired spike time. In addition, if all learning nenso €POCh to resolve over-adjustment/s;. By using SSTS, we
remain silent, the learning neuron with the strongest atim N0t only overcome over-adjustment and inadequate learning
state represents the class association. Table. V showsuhe s for 4, but also improve the learning efficiency significantly.

-
)
=]

100

Frequency bin, f
Frequency bin, f

Neuron
Neuron

50 | 50 |

event classification performance of different methods. In future work, we will explore how to extend MemPo-
Learn to multiple layer networks (three or more layers).
TABLE V It is expected that such an approach would improve the

CLASSIFICATION ACCURACY OFDIFFERENTMETHODS FOR THESOUND . . . .
application range and memory capacity of spiking neurons.

EVENT TASK . . ) . ‘ -
Another interesting future direction is to search for effiti
Methods [ Clean [ 20dB | 10dB | 0dB_ | Average  and biological plausible input and output encoding methods
I\RA'MegPS-Leam g;-figﬁ’ gg-;gﬁ’ Sg'g’ﬁ? gé-% gi-g’gj for multiple spikes that can further improve the applicatio
empPo-Learn A% 20 270 AN .30 : : H H

PESNLR 96.9% 1 963% 1 95.8% | 872% 1 92.0% performance. Another mterestlng_ldea to pursue in theréutu
ReSuMe 95.3% | 92.3% | 90.3% | 85.29% | 90.7% is to I_ook at how po_ssmly can information-theory be useq
DNN-5 layers 97.5% | 97.2% | 87.5% | 20.2% | 75.6% to derive novel analytic measures of performance and predic
CNN-5 layers 98.0% | 97.3%6 | 91.52%]| 38.5% | 81.5% network performance based on the quality of input.
CNN-7 layers 97.2% | 95.2% | 92.7% | 25.7% | 77.1%

The experimental results are presented in Table. V. It can be APPENDIX
seen that the proposed robust MemPo-Learn method performs EXPERIMENTAL DETAILS.
well for each of the noise conditions, achieving an averageUnless otherwise stated, our experiments run on MATLAB
accuracy 0f95.6%. It can also maintain an accuracy of ove7.12.0 on a quad-core system with 16-GB RAM in Windows
91% in the challenging 0dB SNR condition. The results alsenvironment. All parameters of our algorithm are empirical
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values. For traditional algorithms, the parameter valuwpses [13]
provided by their corresponding references are employed in
our simulations, and many different values in these scopes 14
tested to find the one achieving the highest accuracy. Duripg]

S. Ghosh-Dastidar and H. Adeli, “Spiking neural netksr Interna-
tional journal of neural systems, vol. 19, no. 4, pp. 295;30&9.

W. Maass, “Networks of spiking neurons: the third gexien of neural
network models”Neural networksvol. 10, no. 9, pp. 1659-1671, 2006.
W. Maass, “Fast sigmoidal networks via spiking neufonsleural

the learning process, MemPo-Learn uses the storage space€omput vol. 9, no. 2, pp. 279-304, 1997.

in exchange for substantial savings in calculation timd. At
the PSPs induced by every synapse at different time steps
need to be calculated and stored before training. Unless thd
learning neuron can output the target output spikes phgcise
the experiments will stop at the upper limit of 1000 learningg)
epoch. In all of the experiments, the value of the neuron hode
issetasyy =1mV,\=2,7=7ms andrg = 5 ms. (19]
The experiments of CNN and DNN are run on Python 3.63g)
with TensorFlow 1.3.0 on a quad-core system with 16-GB
RAM in Windows environment, and the CNN and DNN ariznl]
trained on spectrogram using Short-Time Fourier Transfo
(STFT). The STFT is performed with 50 filters and a 16kHz
sampling frequency. The audio signal is down-sampling infé?!
50 frames with50% overlap. The DNN constructure consistg,g
of five fully connected layers with the size set as 1024-512-
256-64-10. The CNN-5 model consists of one convolutional
layer (8 feature maps with a size of x 3 filter), one
pooling layer (with a2 x 2 pooling window), followed by
three fully connected layers. The CNN-7 model consists of
2 convolutional layers wittg x 3 x 3 kernels an®® x 2 x 2
kernels, respectively. Each convolutional layer is fokalby
a pooling layer with the same subsample window2of 2. [26]
Similar to the CNN-5 model, the CNN-7 model is equipped
with three fully connected layers. [27]
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