9 research outputs found

    A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones

    Full text link
    Fully-autonomous miniaturized robots (e.g., drones), with artificial intelligence (AI) based visual navigation capabilities are extremely challenging drivers of Internet-of-Things edge intelligence capabilities. Visual navigation based on AI approaches, such as deep neural networks (DNNs) are becoming pervasive for standard-size drones, but are considered out of reach for nanodrones with size of a few cm2{}^\mathrm{2}. In this work, we present the first (to the best of our knowledge) demonstration of a navigation engine for autonomous nano-drones capable of closed-loop end-to-end DNN-based visual navigation. To achieve this goal we developed a complete methodology for parallel execution of complex DNNs directly on-bard of resource-constrained milliwatt-scale nodes. Our system is based on GAP8, a novel parallel ultra-low-power computing platform, and a 27 g commercial, open-source CrazyFlie 2.0 nano-quadrotor. As part of our general methodology we discuss the software mapping techniques that enable the state-of-the-art deep convolutional neural network presented in [1] to be fully executed on-board within a strict 6 fps real-time constraint with no compromise in terms of flight results, while all processing is done with only 64 mW on average. Our navigation engine is flexible and can be used to span a wide performance range: at its peak performance corner it achieves 18 fps while still consuming on average just 3.5% of the power envelope of the deployed nano-aircraft.Comment: 15 pages, 13 figures, 5 tables, 2 listings, accepted for publication in the IEEE Internet of Things Journal (IEEE IOTJ

    Performance Evaluation of Energy-Autonomous Sensors Using Power-Harvesting Beacons for Environmental Monitoring in Internet of Things (IoT)

    Get PDF
    Environmental conditions and air quality monitoring have become crucial today due to the undeniable changes of the climate and accelerated urbanization. To efficiently monitor environmental parameters such as temperature, humidity, and the levels of pollutants, such as fine particulate matter (PM2.5) and volatile organic compounds (VOCs) in the air, and to collect data covering vast geographical areas, the development of cheap energy-autonomous sensors for large scale deployment and fine-grained data acquisition is required. Rapid advances in electronics and communication technologies along with the emergence of paradigms such as Cyber-Physical Systems (CPSs) and the Internet of Things (IoT) have led to the development of low-cost sensor devices that can operate unattended for long periods of time and communicate using wired or wireless connections through the Internet. We investigate the energy efficiency of an environmental monitoring system based on Bluetooth Low Energy (BLE) beacons that operate in the IoT environment. The beacons developed measure the temperature, the relative humidity, the light intensity, and the CO2 and VOC levels in the air. Based on our analysis we have developed efficient sleep scheduling algorithms that allow the sensor nodes developed to operate autonomously without requiring the replacement of the power supply. The experimental results show that low-power sensors communicating using BLE technology can operate autonomously (from the energy perspective) in applications that monitor the environment or the air quality in indoor or outdoor settings

    Optimized machine learning model for air quality index prediction in major cities in India

    Get PDF
    Industrial advancements and utilization of large amount of fossil fuels, vehicle pollution, and other calamities increases the Air Quality Index (AQI) of major cities in a drastic manner. Major cities AQI analysis is essential so that the government can take proper preventive, proactive measures to reduce air pollution. This research incorporates artificial intelligence in AQI prediction based on air pollution data. An optimized machine learning model which combines Grey Wolf Optimization (GWO) with the Decision Tree (DT) algorithm for accurate prediction of AQI in major cities of India. Air quality data available in the Kaggle repository is used for experimentation, and major cities like Delhi, Hyderabad, Kolkata, Bangalore, Visakhapatnam, and Chennai are considered for analysis. The proposed model performance is experimentally verified through metrics like R-Square, RMSE, MSE, MAE, and accuracy. Existing machine learning models, like k-nearest Neighbor, Random Forest regressor, and Support vector regressor, are compared with the proposed model. The proposed model attains better prediction performance compared to traditional machine learning algorithms with maximum accuracy of 88.98% for New Delhi city, 91.49% for Bangalore city, 94.48% for Kolkata, 97.66% for Hyderabad, 95.22% for Chennai and 97.68% for Visakhapatnam city

    Real-Time Profiling of Fine-Grained Air Quality Index Distribution Using UAV Sensing

    No full text
    corecore