49 research outputs found

    Optimal Scheduling of Energy Storage for Energy Shifting and Ancillary Services to the Grid

    Get PDF
    This thesis is mainly focused on developing optimization-based models for scheduling of energy storage units. At first, a real-time optimal scheduling algorithm is developed seeking to maximize the storage revenue by exploiting arbitrage opportunities available due to the inter-temporal variation of electricity prices. The electricity price modulation is proposed as an approach to competitively offer incentive by the utility regulator to storage to fill the gap between current and a stable rate of return. Subsequently, the application of large-scale storage for congestion relief in transmission systems as an ancillary service to the grid is investigated. An algorithm is proposed for the following objectives: (i) to generate revenue primarily by exploiting electricity price arbitrage opportunities and (ii) to optimally prepare the storage to maximize its contribution to transmission congestion relief. In addition, an algorithm is proposed to enable independently operated, locally controlled storage to accept dispatch instructions issued by Independent System Operators (ISOs). While the operation of locally controlled storage is optimally scheduled at the owner’s end, using the proposed algorithm, storage is fully dispatchable at the ISO’s end. Finally, a model is proposed and analyzed to aggregate storage benefits for a large-scale load. The complete model for optimal operation of storage-based electrical loads considering both the capital and operating expenditures of storage is developed. The applications of the proposed algorithms and models are examined using real-world market data adopted from Ontario’s electricity market and actual load information from a large-scale institutional electricity consumer in Ontario

    Thermo-mechanical energy storage applications for energy system decarbonisation

    Get PDF
    This research explores the prospective application of thermo-mechanical energy storage technologies for energy system decarbonisation. It characterises, first, the techno-economic performance of one such technologies, Liquid Air Energy Storage (LAES), when operated within the power system to supply energy and reserve services. Then, Liquid Air Energy Storage operation as a multi-energy asset is studied. To conclude, the potential of six between established and novel thermo-mechanical energy storage concepts is cross-compared and benchmarked with incumbent storage technologies for long-duration energy storage applications

    A Computational Efficient Pumped Storage Hydro Optimization in the Look-ahead Unit Commitment and Real-time Market Dispatch Under Uncertainty

    Full text link
    Pumped storage hydro units (PSHU) are great sources of flexibility in power systems. This is especially valuable in modern systems with increasing shares of intermittent renewable resources. However, the flexibility from PSHUs, particularly in the real-time market, has not been thoroughly studied. The storage optimization in a real-time market hasn't been well addressed. To enhance the use of PSH resources and leverage their flexibility, it is important to incorporate the uncertainties, properly address the risks and avoid increasing too much computational burdens in the real-time market operation. To provide a practical solution to the daily operation of a PSHU in a single day look-ahead commitment (LAC) and real-time market, this paper proposes two pumped storage hydro (PSH) models that only use probabilistic price forecast to incorporate uncertainties and manage risks in the LAC and real-time market operation. The price forecast scenarios are formulated only on PSHUs that minimizes the computational challenges to the Security Constrained Unit Commitment (SCUC) problem. Numerical studies in Mid-continent Independent System Operator (MISO) demonstrate that the proposed models improves market efficiency. Compared to traditional stochastic and robust unit commitment, the proposed methods only moderately increase the solving time from current practice of deterministic LAC. Probabilistic forecast for Real Time Locational Marginal Price (RT-LMP) on PSH locations is created and embedded into the proposed stochastic optimization model, an statistical robust approach is used to generate scenarios for reflecting the temporal inter-dependence of the LMP forecast uncertainties.Comment: 10 pages, 8 figure

    Service Revenue Evaluation Methodologies to Maximize the Benefits of Energy Storage

    Get PDF
    The objective of this research is to develop novel methodologies and tools for service revenue evaluation of electrical energy storage systems. Energy storage systems can provide a wide range of services and benefits to the entire value chain of the electricity industry and, therefore, are becoming a favorable technology among stakeholders. The U.S. Government and various states have set initiatives and mandated energy storage deployment as part of their grid modernization roadmap. The key to an increased deployment of energy storage projects is their economic viability. Because of the significant potential value of energy storage as well as the complexity of the decision-making problem, sophisticated service evaluation methodologies and service optimization tools are highly needed. The maximum potential value of energy storage cannot be captured with the evaluation methodologies that have been developed for conventional generators or other distributed energy resources. Previous research studies mostly operational strategies for energy storage coupled with renewable energy sources and the benefits and business models of privately-owned energy storage systems are not well understood. Most of the existing literature focuses on evaluating energy storage systems providing a single service while multiservice operation and evaluation is often not considered. The few available methods for multiservice evaluation study a limited number of services and cannot be readily implemented into a computational tool due to complexity and scalability issues. Accordingly, this research proposes novel service evaluation methodologies with two main objectives: a. Discover the maximum value of energy storage systems for single and multiservice applications, b. Provide flexibility, scalability and tractability of implementation. In order to meet these objectives, various methodologies based on statistical analysis, dynamic control, mixed integer linear programming, convex optimization and decomposition have been proposed. The challenges, complexities, and the benefits of modeling energy services using a scalable approach are analyzed, solutions are proposed and simulated with realistic data in three main chapters of this research: a) energy storage in wholesale energy markets, b) generic multiservice revenue analysis of energy storage, and c) temporal complexities of energy storage optimization models: value and decomposition. Simulation results show the feasibility of the proposed approaches, and significant added values to the economic viability of energy storage projects using the proposed methodologies. Energy storage decision makers including public utility commissioners, transmission/distribution system operators, aggregators, private energy storage owners/investors, and end-use customers (residential and commercial loads) can benefit from the proposed methodologies and simulation results. A software tool has been developed for multiservice benefit cost analysis of energy storage projects. It is hoped that with the significant unlocked value of energy storage systems using the proposed tools and methodologies, more of these technologies be deployed in the future grids to help communities with their sustainability and environmental goals.Ph.D

    Energy storage systems and grid code requirements for large-scale renewables integration in insular grids

    Get PDF
    This thesis addresses the topic of energy storage systems supporting increased penetration of renewables in insular systems. An overview of energy storage management, forecasting tools and demand side solutions is carried out, comparing the strategic utilization of storage and other competing strategies. Particular emphasis is given to energy storage systems on islands, as a new contribution to earlier studies, addressing their particular requirements, the most appropriate technologies and existing operating projects throughout the world. Several real-world case studies are presented and discussed in detail. Lead-acid battery design parameters are assessed for energy storage applications on insular grids, comparing different battery models. The wind curtailment mitigation effect by means of energy storage resources is also explored. Grid code requirements for large-scale integration of renewables are discussed in an island context, as another new contribution to earlier studies. The current trends on grid code formulation, towards an improved integration of distributed renewable resources in island systems, are addressed. Finally, modeling and control strategies with energy storage systems are addressed. An innovative energy management technique to be used in the day-ahead scheduling of insular systems with Vanadium Redox Flow battery is presented.Esta tese aborda a temática dos sistemas de armazenamento de energia visando o aumento da penetração de energias renováveis em sistemas insulares. Uma visão geral é apresentada acerca da gestão do armazenamento de energia, ferramentas de previsão e soluções do lado da procura de energia, comparando a utilização estratégica do armazenamento e outras estratégias concorrentes. É dada ênfase aos sistemas de armazenamento de energia em ilhas, como uma nova contribuição no estado da arte, abordando as suas necessidades específicas, as tecnologias mais adequadas e os projetos existentes e em funcionamento a nível mundial. Vários casos de estudos reais são apresentados e discutidos em detalhe. Parâmetros de projeto de baterias de chumbo-ácido são avaliados para aplicações de armazenamento de energia em redes insulares, comparando diferentes modelos de baterias. O efeito de redução do potencial de desperdício de energia do vento, recorrendo ao armazenamento de energia, também é perscrutado. As especificidades subjacentes aos códigos de rede para a integração em larga escala de energias renováveis são discutidas em contexto insular, sendo outra nova contribuição no estado da arte. As tendências atuais na elaboração de códigos de rede, no sentido de uma melhor integração da geração distribuída renovável em sistemas insulares, são abordadas. Finalmente, é estudada a modelação e as estratégias de controlo com sistemas de armazenamento de energia. Uma metodologia de gestão de energia inovadora é apresentada para a exploração de curto prazo de sistemas insulares com baterias de fluxo Vanádio Redox

    Improving Performance Assessment for Technologies of Energy Transition: Emissions, Economics, and Policy Implications

    Get PDF
    University of Minnesota Ph.D. dissertation. August 2018. Major: Natural Resources Science and Management. Advisors: Timothy Smith, Elizabeth Wilson. 1 computer file (PDF); vii, 104 pages.Global climate change requires immediate actions to mitigate emissions from energy related sectors. Specifically, the electricity system plays a pivotal role in achieving the global emission reduction goals that many countries have publicly committed to. In the United States (U.S.), energy policies have focused on increasing electricity production from renewables, decreasing electricity consumption by improving energy efficiency, and shifting demand by using energy storage technology. This dissertation explores the specific challenges and information gaps that confront practitioners in three separate case studies, consequently contributing to electricity system and energy policy literature. It is the hope of the author that information provided helps to inform policy makers, electricity system operators, and private investors toward critical transition and transformation of the U.S. energy system. The studies, taking the form of independent chapters, are summarized as follows. The first study presents an improved methodology for estimating the marginal emission factors (MEFs) of electricity generation in the Midcontinent Independent System Operator (MISO) system. Findings highlight the importance of including emitting and nonemitting resources in MEFs calculation in regions with high and growing renewables penetration and compare this approach to competing conventional approaches within the context of energy storage technologies. The second study demonstrates a multi-regional energy and emissions assessment of the ground source heat pump (GSHP) technology in comparison to the conventional heating and cooling technologies in residential houses. Findings indicate that applying EFs with higher spatial and temporal resolutions and using MEFs instead of average emission factors (AEFs) both give more accurate emission estimates. The third study assesses economics and emissions of grid-scale battery storage that arbitrages as a price taker in the MISO wholesale electricity market. Findings demonstrate specific locations where battery storage might initially be most profitable under historical pricing dynamics and reveal the heterogeneity in storage’s economics and emissions throughout the MISO grid

    Computational intelligence techniques for energy storage management

    Get PDF
    Ph. D. ThesisThe proliferation of stochastic renewable energy sources (RES) such as photovoltaic and wind power in the power system has made the balancing of generation and demand challenging for the grid operators. This is further compounded with the liberalization of electricity market and the introduction of real-time electricity pricing (RTP) to reflect the dynamics in generation and demand. Energy storage sources (ESS) are widely seen as one of the keys enabling technology to mitigate this problem. Since ESS is a costly and energy-limited resource, it is economical to provide multiple services using a single ESS. This thesis aims to investigate the operation of a single ESS in a grid-connected microgrid with RES under RTP to provide multiple services. First, artificial neural network is proposed for day-ahead forecasting of the RES, demand and RTP. After the day-ahead forecast is obtained, the day-ahead schedule of energy storage is formulated into a mixed-integer linear programming and implemented in AMPL and solved using CPLEX. This method considers the impact of forecasting errors in the day-ahead scheduling. Empirical evidence shows that the proposed nearoptimal day-ahead scheduling of ESS can achieve a lower operating cost and peak demand. Second, a fuzzy logic-based energy management system (FEMS) for a grid-connected microgrid with RES and ESS is proposed. The objectives of the FEMS are energy arbitrage and peak shaving for the microgrid. These objectives are achieved by controlling the charge and discharge rate of the ESS based on the state-of-charge (SoC) of ESS, the power difference between RES and demand, and RTP. Instead of using a forecasting-based approach, the proposed FEMS is designed with the historical data of the microgrid. It determines the charge and discharge rate of the ESS in a rolling horizon. A comparison with other controllers with the same objectives shows that the proposed controller can operate at a lower cost and reduce the peak demand of the microgrid. Finally, the effectiveness of the FEMS greatly depends on the membership functions. The fuzzy membership functions of the FEMS are optimized offline using a Pareto based multi-objective evolutionary algorithm, nondominated sorting genetic algorithm- II (NSGA-II). The best compromise solution is selected as the final solution and implemented in the fuzzy logic controller. A comparison was made against other control strategies with similar objectives are carried out at a simulation level. Empirical evidence shows that the proposed methodology can find more solutions on the Pareto front in a single run. The proposed FEMS is experimentally validated on a real microgrid in the energy storage test bed at Newcastle University, UK. Furthermore, reserve service is added on top of energy arbitrage and peak shaving to the energy management system (EMS). As such multi-service of a single ESS which benefit the grid operator and consumer is achieved
    corecore