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SUMMARY 

The objective of this research is to develop novel methodologies and tools for service 

revenue evaluation of electrical energy storage systems. Energy storage systems can 

provide a wide range of services and benefits to the entire value chain of the electricity 

industry and, therefore, are becoming a favorable technology among stakeholders. The 

U.S. Government and various states have set initiatives and mandated energy storage 

deployment as part of their grid modernization roadmap. The key to an increased 

deployment of energy storage projects is their economic viability. Because of the 

significant potential value of energy storage as well as the complexity of the decision-

making problem, sophisticated service evaluation methodologies and service optimization 

tools are highly needed.  

The maximum potential value of energy storage cannot be captured with the evaluation 

methodologies that have been developed for conventional generators or other distributed 

energy resources. Previous research studies mostly operational strategies for energy 

storage coupled with renewable energy sources and the benefits and business models of 

privately-owned energy storage systems are not well understood. Most of the existing 

literature focuses on evaluating energy storage systems providing a single service while 

multiservice operation and evaluation is often not considered. The few available methods 

for multiservice evaluation study a limited number of services and cannot be readily 

implemented into a computational tool due to complexity and scalability issues. 

Accordingly, this research proposes novel service evaluation methodologies with two main 

objectives: 
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a. Discover the maximum value of energy storage systems for single and multiservice 

applications, 

b. Provide flexibility, scalability and tractability of implementation.  

In order to meet these objectives, various methodologies based on statistical analysis, 

dynamic control, mixed integer linear programming, convex optimization and 

decomposition have been proposed. The challenges, complexities, and the benefits of 

modeling energy services using a scalable approach are analyzed, solutions are proposed 

and simulated with realistic data in three main chapters of this research: a) energy storage 

in wholesale energy markets, b) generic multiservice revenue analysis of energy storage, 

and c) temporal complexities of energy storage optimization models: value and 

decomposition. Simulation results show the feasibility of the proposed approaches, and 

significant added values to the economic viability of energy storage projects using the 

proposed methodologies. Energy storage decision makers including public utility 

commissioners, transmission/distribution system operators, aggregators, private energy 

storage owners/investors, and end-use customers (residential and commercial loads) can 

benefit from the proposed methodologies and simulation results. A software tool has been 

developed for multiservice benefit cost analysis of energy storage projects. It is hoped that 

with the significant unlocked value of energy storage systems using the proposed tools and 

methodologies, more of these technologies be deployed in the future grids to help 

communities with their sustainability and environmental goals.   
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CHAPTER 1. INTRODUCTION 

1.1 Grid Modernization and Challenges 

The electrical power grid is a strategically important infrastructure of every nation. A 

modern power grid plays a crucial role in the nation’s prosperity and economic growth. 

Therefore, many nations worldwide are conducting grid modernization projects including 

the integration of new physical and information technologies to transform the traditional 

power grid making it smart, resilient, and sustainable. The U.S. Department of Energy’s 

Grid Modernization Multi-Year Program [1] defines six key attributes of a modernized grid 

[2]: 

• Resilient: Quick recovery from any situation or power outage 

• Reliable: Improves power quality and fewer power outages 

• Secure: Increases protection to our critical infrastructure 

• Affordable: Maintains reasonable costs to consumers 

• Flexible: Responds to the variability and uncertainty of conditions at one or more 

timescales, including a range of energy futures 

• Sustainable: Facilitates broader deployment of clean generation and efficient end 

use technologies 

Many new technologies can provide some of these attributes while imposing challenges on 

others. For example, renewable energy sources provide clean energy. However, they 

challenge the reliable delivery of electricity due to the uncertain and intermittent nature of 
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solar irradiance and wind speed. Therefore, the reliable integration of these new 

technologies requires a great amount of operational flexibility.  

1.2 Energy Storage Solutions 

Energy storage systems (ESSs) can provide the operational flexibility for reliable operation 

of renewable energies. ESSs are available in multiple sizes and technologies ranging from 

large pumped hydroelectric systems to small-scale electrochemical battery cells [3]. Some 

technologies such as pumped hydro have been operating for more than a century [4] while 

many of them are in their nascent stage e.g., Vanadium-Redox battery and gravity energy 

storage (GES) [5]. An extensive list of energy storage technologies and their characteristics 

are available in [6]. Figure 1 compares ESS technologies based on their range of power 

and energy ratings and regarding their main use in the electricity industry [7]. 

 

Figure 1 – Energy storage technology ratings 
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Each energy storage technology has physical characteristics that make it more suitable for 

different types of applications. For example, the large capacity1 of pumped hydro storage 

is favorable for bulk energy management. On the other hand, flywheels can store less 

energy relative to their maximum output power, but their extremely fast response is favored 

for regulation and power quality applications. Because of these unique characteristics, 

several applications of energy storage have been identified [8]. Figure 2 presents 

applications based on EES physical characteristics i.e. power and energy requirements [9].  

 

Figure 2 – Grid-scale energy storage applications [9] 

ESS applications can contribute to improving the grid modernization attributes. They 

improve resiliency by securing backup power. Also, power system operators can call ESS 

owners to provide rapid responses to better compensate for the variability of renewable 

energy sources. Thus, ESSs improve power system reliability. They can also provide clean 

and affordable energy by shifting the time of energy use. Excess clean energy produced at 

a lower cost during off-peak hours is stored and time-shifted to the peak hours when the 

 
1 The number of continuous hours that energy storage can be discharged at its maximum output power 
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energy price is high. Due to their numerous benefits, ESSs are favored by various 

stakeholders from generation and transmission level to distribution and behind-the-meter 

customers. Figure 3 shows the stakeholders and beneficiaries of energy storage 

technologies. 

 

Figure 3 – Energy storage stakeholders and beneficiaries 

Because of the variety of storage technologies, applications, and stakeholders, several 

business models are being proposed for ESSs. Economic viability analysis is the key to 

assess a business model. Such analyses try to answer questions including but not limited 

to: 

• Ownership: Who owns and who operates the ESS? 

• Planning: 
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o What are the main requirements for ESS operator/owner? For example, a 

system operator may require more flexibility in terms of faster response 

times, or the market operator wants to incentivize more reserved backup 

power to improve resiliency. A private ESS owner requires higher revenues 

from participating in the electricity markets. 

o What are the best applications and services of ESS that can meet emerging 

requirements? And given the applications, what are the best storage 

technologies that should be deployed? 

o Where is the ESS located? Generation, transmission or distribution level or 

at the customer’s site? What are the environmental regulations and market 

rules? Where is the optimal site to place the ESS? What is the optimal size 

of ESS? 

o How to perform a cost-benefit analysis of ESS? How to monetize all the 

benefits of ESS? What are the revenue streams and associated costs? What 

are the risks associated with the cash flows? Who else will benefit from the 

ESS? 

• Operations: How to optimally operate to ensure maximum profit? 

Such questions are not trivial to answer since they depend on numerous factors. 

Meanwhile, analysis of ESS service benefits and revenues can directly help answering 

many of these questions. Also, since most of the energy storage technologies are relatively 

new in the electricity industry, less research has been done in developing new 

methodologies and tools for ESS service benefits evaluation. A better understanding of 

ESS benefits and revenue streams leads to an increased deployment of these technologies 



 6 

which further facilitates the integration of renewable energies and paves the way for grid 

modernization goals. 

1.3 Research Need 

Several publications and reports by the U.S. Department of Energy and the National 

Laboratories have identified energy storage applications and benefits [6]–[8], [10]. 

Reference [10] differentiates between applications and benefits and defines application as 

a use while a benefit is a source of a value. It further defines the internalizable benefits as 

those that can be readily captured and monetized by a stakeholder. With all the various 

potential benefits identified for ESSs, their profitable deployments in large-scale systems 

are still hindered. The U.S. Energy Storage Association (ESA) has set the goal of “35 by 

25” where by 2025, the installed capacity of energy storage in the U.S. should reach 35 

GW [11]. As of June 2018, there needs to be an additional deployment of 9 GW to reach 

that goal [12]. However, the annual deployment was 0.3 GW in 2018 and estimated to be 

less than 0.5 GW in 2019 [13]. With the current rate of deployment, the goal cannot be 

reached unless profitable ESS is viable. The profitability of most of the current ESS 

projects is impacted by the high capital costs and low estimated revenues.  

It is expected that as the new ESS technologies become more mature, their capital costs 

decrease in the next few years [14]–[17]. On the other hand, low estimated revenues are 

due to the lack of understanding of how ESS benefits can be monetized and evaluated as 

revenue streams that can be collected by a stakeholder [8], [18]. Figure 4 illustrates the 

proposed concept of the lost revenues of ESS on the way from applications as potential 

benefits to internalizable service revenues. Shortcomings in the ESS modeling [8], 
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regulatory barriers [18], and implementation challenges are the main sources of ESS 

revenue loss. 

Services

Potential Values 
(Applications)

 Monetized
Benefits

Applications 
not modeled 
as a benefit

Benefits without a 
established 

regulatory framework

Services not 
implemented due 
to IT drawbacks

Revenue 
Streams

M
o

d
elin

g

R
egu

lation
s

IT

 

Figure 4 – The lost revenues of ESS 

The focus of this dissertation is on the first component of lost revenues, i.e. values that are 

not captured due to the lack of proper modeling. A better modeling of ESS would reveal 

higher values of ESS that can help regulators and policy makers to better remove the 

regulatory barriers. The tools and methodologies used by industry for evaluation and 

revenue analysis of new technologies, e.g. distributed generation, are not specifically 

designed for ESS and thus, cannot capture the maximum benefits that can be provided by 

ESS flexibility and unique characteristics. Four of the salient differences of ESS with other 

energy resources are as follows [7]: 

- ESSs are “net-zero energy” resources within a horizon, ignoring roundtrip 

efficiency, and their operation do not follow a standard pattern as, for example, in 

solar energy. ESS operation can change the dispatch of the system in each time 

period rather than net generation within a horizon. 
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- ESSs are “limited-generating-energy” resources due to their limited stored energy 

capacity. 

- ESSs are “state-dependent” and their operation highly depends on their previous 

state. They impose intertemporal constraints that should be considered in the model. 

- ESSs can provide multiple services simultaneously. However, the optimal 

operation cannot be determined based on a rule-based or priority dispatch approach 

requiring sophisticated optimization methods.  

Potential service revenues need to be better understood with optimal methodologies and 

operating strategies to ensure maximum profitability of ESS projects while capturing the 

above key considerations. 

Most of the literature on ESS analyzes its value for integration of renewable energy 

resources while the privately-owned ESS benefits and business models are not well-

understood, which deter private third-party from investments. As the capital cost of energy 

storage continues to decrease, especially in the case of battery systems with up to 49% in 

the next five years [14], more private investments are expected in these systems. Thus, 

benefit analyses of privately-owned storage systems are timely and crucial. Also, many 

ESS projects depend on either a single or a just a few services as their revenue streams. In 

both cases, ESS operation is mostly determined by heuristic rules that are not optimal and 

therefore underestimate the maximum potential value of ESS. With more than 25 

applications identified for ESS [6], [8], and the complexity of modeling due to service 

synergies and interdependencies, it is virtually impossible to model all the combination of 

services without a structured information model. Also, ESS evaluation studies are mainly 
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dependent on local input parameters such as market prices at the specific location or the 

local network capacity. Thus, it is quite challenging that for each location, a separate 

analysis be conducted and the ESS operation be modeled differently. A systematic 

approach and advanced methodologies to address these challenges are, therefore, timely 

and highly important to many stakeholders. 

1.4 Research Contributions 

In this dissertation, novel methodologies for evaluation of energy storage services have 

been proposed and developed to: 

- Maximize the revenues of ESS from providing services, and 

- Improve the computational analysis of ESS. 

The main contributions of this dissertation are: 

• Developing a straightforward method for analyzing the ESS revenues in the day-

ahead energy market: Day-ahead energy market service revenues are analyzed by 

using realistic data, and novel methods for estimating the expected revenue are 

developed based on classification, regression, and optimization algorithms. The 

results provide a straightforward method for analyzing the ESS revenues in the day-

ahead energy market. Private investors and market operators can directly benefit 

from these results to determine the best location in the grid with the maximum 

energy arbitrage revenue.  

• Developing an optimal market participation strategy for ESS to capture the 

significant value of real-time energy time shift using a dynamic optimization 
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model: The proposed method is shown to be quite robust against price forecast 

uncertainty and can capture the high value of energy time shift in the real-time 

market. Results disclose that the value of energy time shift in the real-time market 

is almost twice of that in the day-ahead market.  

• Developing a risk-averse market participation strategy for ESS for day-ahead and 

real-time energy arbitrage: These participation strategies are also modeled with 

optimization problems and analyzed using realistic market data. The proposed 

approach hedges the owner’s revenue against the uncertainty of the real-time prices.  

• Designing a systematic approach for the optimal analysis of ESS multiservice 

operation: besides energy markets, ESS participation in other markets and local 

services are also studied. Due to the complexity of the problem, a systematic 

approach is designed to analyze the multiservice operation of ESS. A generic 

optimization approach is proposed that can analyze multiple service operations and 

revenues and can be scalable to analyze any combination of services.  

• Implementing an interactive software tool for the optimal revenue analysis of ESS: 

An optimization-based software tool is also designed for multiservice revenue 

analysis of ESS. Test cases have been analyzed based on realistic data from CAISO 

market and Georgia Power tariff rates to quantify the benefits of multiservice ESS. 

• Developing a stochastic optimization model for multiservice participation of ESS: 

The proposed model jointly optimizes the scheduling and real-time dispatch 

decisions. The value of the added complexity of the problem is quantified with 

realistic data.  
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• Developing decomposition techniques to efficiently solve large-scale ESS 

optimization problems: Simulation results show that intractable ESS problems can 

be solved efficiently with the proposed techniques and parallel computing. 

1.5 Organization 

The rest of this dissertation is organized as follows. Chapter 2 reviews the literature on 

energy storage service modeling methodologies. Chapter 3 presents the proposed 

methodologies on estimating the ESS revenues from participating in the wholesale energy 

markets. Chapter 4 proposes the generic multiservice revenue analysis framework, 

introduces the developed software tool, and provides test cases results. Chapter 5 addresses 

the temporal complexities of ESS optimization models. It quantifies the value of the 

complexities and proposes decomposition techniques accordingly. Chapter 6 concludes 

this dissertation and discusses future work. An overview of the developed software tool is 

provided in Appendix A. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter reviews literature on ESS applications and their benefits as well as 

methodologies for ESS revenue evaluation, service modeling, electricity market 

participation and optimal dispatch. The organization of this chapter is as follows. Section 

2.1 presents a comprehensive set of energy storage benefits and applications identified in 

the literature. Section 2.2 reviews the ESS service modeling and revenue evaluation 

methodologies based on key modeling considerations. Sections 2.3, 2.4, and 2.5, 

respectively review the literature on 

- Energy storage participation in wholesale energy markets, 

- Multiservice revenue analysis of energy storage, and  

- Temporal complexities of energy storage optimization problems, 

Each of these sections describes the problem, reviews the literature and identifies the 

research gap.  

2.1 Energy Storage Applications, Services, and Benefits 

Energy storage technologies can bring significant value to the entire value chain of the 

electricity industry. Several publications and reports have identified energy storage 

applications and benefits including the Grid Energy Storage report by the Department of 

Energy [8], a whitepaper by Electric Power Research Institute (EPRI) [7], and two reports 

by SANDIA National Laboratories [6], [10]. Reference [10] differentiated between 

applications and benefits, and defined application as a use while a benefit is a source of a 
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value. It further defined the internalizable benefits as those that can be readily captured and 

monetized by a stakeholder.  

Energy storage applications are grouped into six main categories while some may belong 

to multiple categories: 

1. Bulk energy services:  

a. Energy time-shift/arbitrage (in day-ahead and real-time markets),  

b. Supply capacity (long term forward contracts in the capacity market) 

c. Reduced fossil fuel generation and air emissions 

2. Ancillary services: 

a. Frequency regulation 

b. Spinning (synchronous), non-spinning, and supplemental reserves 

c. Voltage support 

d. Black start 

e. Flexible ramping product 

3. Transmission infrastructure support services: 

a. Transmission upgrade deferral 

b. Transmission congestion relief 

c. Transmission stability and sub-synchronous resonance damping 

d. Under/Over- frequency load shedding reduction 

e. Transient voltage dip improvement 

4. Distribution infrastructure support services: 

a. Distribution upgrade deferral 

b. Volt/VAR support 
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c. Loss reduction 

d. EV load support 

e. Solar back-feeding elimination 

f. Reducing tap regulator actions 

g. Improving asset utilization 

5. Renewable integration services: 

a. Renewable energy time-shift/arbitrage 

b. Renewable capacity firming 

6. Customer energy management services: 

a. Power quality 

b. Power reliability/resiliency 

c. Retail electric energy time-shift/arbitrage 

d. Demand charge management 

e. Demand response participation 

With all these identified applications, the main question is how to model them in order to 

evaluate their potential benefits. The following sections review the existing literature on 

modeling methodologies. 

2.2 Energy Storage Service Modeling and Revenue Evaluation Methodologies 

The literature on energy storage service modeling can be studied from multiple criteria 

including modeled services, ownership assumptions (utility, third-party, etc.), modeling 

approach (rule-based or optimization), market impact, uncertainty modeling. In this 

section, we review the literature considering each criterion. 
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In order to quantify the benefits of ESS services, different models are proposed ranging 

from rule-based algorithms [7], [10], [19], [20] to more advanced optimization methods 

such as linear programming (LP) [21]–[27], mixed-integer linear programming (MILP) 

[28]–[33] and non-linear programming (NLP) [34]–[36]. In rule-based algorithms, the ESS 

operates based on a heuristic rule that is supposed to result in a high benefit. Although not 

optimal, these methods are easily implementable on the storage dispatch controllers with 

limited computational capability. An example of these methods is charging during morning 

hours and discharging in the afternoon hours. Optimization methods, on the other hand, 

result in the optimal operation of ESS during a time horizon. In linear programming 

models, the objective function and the constraints are linear. Although more accurate and 

reliable than rule-based models, LP does not capture all the dynamic characteristics of ESS. 

More detailed modeling is done with MILP and NLP at the expense of extra computational 

burden.  

Regardless of the model, the economic analysis of the ESS market services is based on the 

market prices. Models vary in terms of taking the prices as fixed or variable with respect 

to the storage output. If the ESS output does not impact the market prices, the storage is a 

price-taker, and if it does, it is a price-maker. Price-taker ESS is studied in [19], [20], [23], 

[25]–[29], [32]–[35], [37] while [21], [22], [24], [30], [31], [36] consider price-maker ESS. 

The former is valid for small-scale ESS that does not have a market power. In the case of 

large-scale ESS, the latter approach is more realistic and the owner must submit strategic 

bids to optimally take advantage of price difference and at the same time not depressing 

this price difference [22].  
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The uncertainty of input parameters such as price and renewable output power data can be 

modeled in a deterministic [19]–[22], [24]–[29], [32]–[35], [37] or stochastic/robust 

fashion [23], [30], [31], [36]. In deterministic models, “perfect foresight” and “back-

casting” approaches are mainly used while stochastic models utilize sampling from a 

discretized scenario set or dynamic programs such as Markovian process [23].  

Other relevant issues and considerations such as the ESS optimal sizing as well as 

degradation and life cycle analyses are also explored the impact of storage capacity and 

efficiency on its revenue evaluation and profitability [19], [31], [34], [36]. Furthermore, a 

number of studies considered a physical network in their models to simulate the network 

constraints and to determine locational marginal prices (LMPs) in the market clearing 

process [24], [30] or for the optimal placement of the ESS [35]. 

2.3 Literature on Energy Storage Participation in Wholesale Energy Markets 

ESS owners can participate in wholesale electricity markets, provide services, and collect 

revenues. Wholesale markets can have various services different under each regulatory. 

However, they usually include energy, capacity and ancillary services. In this section, we 

focus on the ESS energy market participation. Literature on the other services are reviewed 

in the next sections. 

ESS participate in the wholesale energy markets to perform energy time-shift or energy 

arbitrage (EA). This is the most well-known application of energy storage also known as 

the “buy low, sell high” approach. Taking advantage of the energy price variation, the ESS 

owner benefits from the EA service by buying cheap energy to charge the ESS during off-

peak periods and discharging it to sell expensive energy during peak periods of the day. 



 17 

The economic evaluation of ESS models the EA service as the only revenue stream in [19], 

[21]–[26], [29]–[31], [34] and as one of the revenue streams stacked with other service 

revenues in [20], [27], [28], [32], [33], [35]–[37].  

The EA service evaluation is studied in the literature using various methodologies. One of 

the main assumptions is related to the market power of energy storage. In price-maker 

models, the storage bids into the market, and the cleared price becomes a function of all 

the power suppliers’ bids. Strategic bidding approaches are proposed to find the optimal 

scheduling of energy storage maximizing the revenue from EA and other market-based 

services [38]–[43]. These approaches are based on bi-level optimization problems where 

the upper problem is the ESS revenue maximization problem. The process of clearing the 

market is the lower level problem, and it requires the bidding information of the other 

market actors. Since the bids are not publicly available data in all market regions, the actual 

applicability of these analyses for realistic storage service evaluation is limited. Moreover, 

these models are computationally involved, and their scalability and computational time 

are other limiting factors. Other price-maker approaches have used the price-load 

sensitivity to model the impact of the ESS operation on the market price [22], [26].  

The EA service evaluation under a price-taker model is analyzed in [44]–[52]. The service 

revenue is optimized separately [44]–[46], or co-optimized with other market products, 

such as frequency regulation [47]–[52]. Linear and mixed integer optimization are used to 

determine the maximum revenue with historical market data as inputs to the optimization 

models. While the market prices contain valuable information about the potential revenue 

from energy arbitrage, no analysis is yet conducted on the price data statistics for the 

evaluation of energy arbitrage service. This research gap is covered in sections 3.2 and 3.3.  
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Energy markets are usually settled in at least two auctions: one held on the day before 

energy delivery time known as the day-ahead (DA) market and the other one held a few 

minutes before the delivery time known as the and real-time (RT) or balancing market [53]. 

These markets are described in sections 3.2 and 3.3, respectively. Previous studies have 

explored the value of storage systems providing the EA service in either the DA or the RT 

energy market [21], [26], [29], [44], [46], [50], [54]–[57]. Linear optimization models are 

proposed and simulated with historical DA market prices of PJM [26], [49], CAISO [50], 

ISONE [48], and ERCOT [51] to evaluate the maximum potential revenue of the EA in the 

U.S. electricity markets. Studies of the EA value in the Australian and European markets 

are presented in [54], [55]. In these analyses, the ESS is assumed to be a price-taker without 

any market power.  

The ownership of a storage as an EA service provider is shown to have a great impact on 

the value of this service [21], [26], [56]. It is very likely that with the trend in the 

deployment of new intermittent renewable generations, the RT price variation will continue 

to increase. As a result, more RT arbitrage opportunities are expected, which will increase 

the profitability of energy storage projects. The energy storage participation and dispatch 

strategies in the RT market are developed in [29], [44], [56], [57]. Almost all the studies 

underline the significance of the forecasting accuracy on the maximum value of the EA 

service. Thus, a robust dispatch can compensate for the low forecast accuracy. 

Furthermore, none of the previous studies has investigated or compared both market values 

for the EA service. Solutions for these research gaps are proposed in section 3.3.  

While the RT market can have a higher EA value compared to the DA market [58], higher 

price volatility with greater forecast errors in the RT market, can limit the profitability of 
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the RT EA if the ESS participates only in this market. This is not desirable for a risk-averse 

ESS operator or owner. Thus, RT market participation should be considered as an extra 

revenue stream for the ESS that is added to the less risky revenue from the DA market. A 

few research has been done on optimizing both DA and RT EA revenues including [59]–

[61]. These works incorporate price uncertainties in the optimal bidding problem via 

stochastic and robust optimization. However, they do not consider ESS degradation which 

is an important modeling consideration especially for electrochemical ESS [62]. They also 

do not provide enough insights on the impact of model parameters on the EA revenues and 

the ESS economics and profitability. These research gaps are studied in section 3.4. where 

optimization-based solutions are proposed and simulated with realistic data. 

2.4 Literature on Multiservice Revenue Analysis of Energy Storage 

Besides the EA service, ESS can provide many other services to increase its utilization and 

profitability. From the various application and potential services listed in section 2.1, only 

a subset of the services is feasible for each ESS project. Feasible services depend on the 

ESS location (transmission, distribution, and behind-the-meter) and its operating 

stakeholder (ESS owner, ISO, utility, customer, etc.) [21]. The benefits of ESS offered by 

these services must be clearly defined for different ESS stakeholders in order to facilitate 

further investment and deployment of ESS. The growing body of research on ESS services 

focuses mostly on the benefits that ESS can offer to the system operator in terms of reduced 

costs [60], [61], [63], [64]. However, due to the decreasing capital costs ESS, merchant 

ESS, i.e. privately-owned and operated ESS as a single entity, can become profitable by 

maximizing their revenue from providing multiple service simultaneously [65]. Thus, 
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analysis of their benefits and revenue streams is valuable and requires significant research 

and advanced methods [38], [43], [65].  

The optimization of ESS operation for multiple services is discussed in the literature [28]–

[50], and [65]–[70]. These works define the ESS location, operator and a few test cases 

based on a subset of feasible services. Accordingly, they proposed models and 

methodologies specifically tuned for the few selected services. In other words, the 

proposed methodologies are application/service-specific. These services include 

participation in wholesale market products, distribution-level services, and behind-the-

meter (BTM) services.  

ESS evaluation methodologies for multiservice wholesale market participation is studied 

in the literature where the authors of [50], [69], [70] investigated the ESS value for 

performing energy arbitrage and frequency regulation. The combined energy and reserve 

services are evaluated in [33], [42], [71]. Optimization models for application of ESS in 

providing wholesale market services as well as local distribution services are proposed in 

[66], [72], [73] with the objective function of maximizing the market service revenues 

subject to constraints modeling the local distribution service requirements. These 

approaches do not necessarily maximize the ESS owner’s revenue since some services are 

modeled as hard constraints. Therefore, the ESS must provide those at any expense unless 

infeasible. While this can be done to ensure the availability of critical services, it is not a 

revenue maximizing approach. Hence a more comprehensive analysis for these services is 

needed from the ESS owner’s perspective. In chapter 4, we propose a generic optimization 

framework for modeling multiservice ESS that covers these research gaps. 
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Customer-sited (BTM) ESS benefits and services are analyzed in the literature for optimal 

sizing, scheduling and real-time dispatch. BTM ESSs have often been used as a 

complement to photovoltaic systems (PV), in order to maximize the benefits derived from 

the solar panels [74]. However, current studies have shown that various optimization 

techniques can utilize standalone ESS to generate reliable revenue streams for BTM 

customers under both time-of-use (TOU) and demand charge (DC) tariffs [10], [74]–[84]. 

Customer bill management and opportunities for EA have been the primary drivers for 

standalone BTM research. Depending on the cost of the ESS, these revenue streams can 

result in reasonable payback periods that demonstrate the economic viability of ESS 

systems in certain conditions [10], [74], [77], [78]. Under a TOU tariff, EA is the primary 

source of revenue, however [10], [78], [79] demonstrate that when the tariff includes a DC, 

then peak shaving is significantly more profitable than EA.  

When optimizing for battery capacity and power under a DC tariff, the quickest pay back 

periods are seen with smaller batteries, because generally the revenue from DC cost 

reduction grows linearly while the cost of energy necessary for peak shaving experiences 

exponential growth [78], [80], [81]. Another benefit of utilizing ESS for peak shaving 

applications is that since the DC is calculated monthly, with proper optimization only the 

peak loads for the month need to be shifted, which can allow operators to avoid daily 

cycling and can extend the operational lifespan of their ESS [81]. Specific use cases of ESS 

can also decrease net emissions. The authors in [80] determined that in specific regions the 

composition of the generation fleet results in a net increase in overall emissions when 

incorporating ESS, which means that tariff redesign may be necessary to reduce overall 

emissions.  
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All these benefits and services can contribute to the economic viability of BTM ESS in a 

variety of use cases. However, in order to generate revenue, the system must be optimally 

operated considering uncertainties and forecast errors. Optimal operation and real-time 

control strategies for BTM ESS are proposed using noncooperative game theoretic analysis 

[85], [86], mixed integer quadratic programming [87] and stochastic dynamic 

programming [88]–[90] that can consider forecast uncertainties. It is shown that even when 

forecasting errors are present in the model, there is a minimal impact on the overall revenue 

of the system and resulting payback period [77]. 

While the existing literature and previous work on BTM ESS analysis provide valuable 

methodologies, they are specifically designed for certain tariff rates and cannot be readily 

used and implemented in a tool to model various rate structures currently used in many 

utilities. For example, Georgia Power has more than 60 tariff rate schedules [91]. A flexible 

tool for BTM ESS analysis must cover a wide range tariff rate structures to aid BTM ESS 

owner/operators in making informed decisions on the procurement and operation of ESS. 

Using our proposed generic optimization modeling approach in chapter 4, we provide a 

flexible model for BTM ESS analysis in section 4.6.2. 

2.5 Literature on Temporal Complexities of Energy Storage Optimization 

Problems 

Optimizing ESS operation for multiple services improves the financial viability of ESS 

projects and helps stakeholders understand the maximum value of these technologies. 

However, different timescales of services and the temporal dependency of ESS operation 

drastically increase the computational complexity of these optimization problems. Some 
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services have monthly resolution, e.g. capacity auctions in market areas such as NYISO, 

while some other services may vary in a few seconds with significant uncertainty, e.g. 

frequency regulation. Joint optimization of these services, one with a high-resolution 

stochastic behavior and other one with long time horizons, is numerically challenging, but 

can provide significant value as shown in section 5.4.  

The current practice is to compromise between the value of the model complexity and the 

computational capabilities in building and solving that model. A typical approach used by 

many researchers and industry actors for long-time horizons in energy storage optimization 

problems is to break the long-time horizon into smaller horizons and then optimize for 

smaller ones [92]. For example, instead of solving the optimal operation for one year, the 

operation is optimized in 365 days separately with the constraint that ESS state-of-charge 

at the beginning and end of each day should be equal. This approach is not globally optimal 

and underestimates the ESS benefits. Moreover, some services have temporal resolution of 

longer than a day. For example, the capacity market in many areas, such as NYISO and 

ISONE, is a monthly service and capacity bids are unique within each month [93]. Thus, 

daily optimization does not yield optimal solution. High resolution temporal complexity is 

usually simplified in the literature where real-time operation models with the high 

resolution (e.g. in seconds) are decoupled from the lower resolution (e.g. hourly) 

scheduling problems. Some models use sequential approaches that first solve the 

scheduling problem and the optimal decisions are passed to the high-resolution operation 

problem for real-time control purposes [94]. Although the numerical tractability is 

improved by these simplifications, the value of jointly optimized scheduling and real-time 
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operation is still compromised. Therefore, these complicating temporal aspects is another 

factor that hinders current optimization models to capture the maximum ESS value. 

Decomposition techniques and variations of distributed optimization methods are proposed 

in the literature for tractable solutions of large-scale optimization problems in power and 

energy systems [70], [95]–[100]. An early work on solving large-scale energy storage 

optimization problems proposes an aggregation-decomposition method for multi-reservoir 

systems [101]. This method deals with the spatial aspect of ESS optimization and does not 

study the temporal aspect. An improved decomposition-coordination and discrete 

differential dynamic programming method is proposed in [102] to effectively solve a large-

scale hydropower system. The objective function is to maximize the generated power, 

which is not the case for market participation. Another method is to exploit periodicity in 

system properties, e.g. diurnal patterns of parameters, using time discretization [103]. The 

method improves the computational time and the objective function compared to daily 

optimization, but it provides conservative results. Although the results of these works 

reduce the solution time of a large-scale system operation optimization problem, none of 

these works studied multiple ESS services and their respective complexities. Also, most of 

them face implementation challenges on the existing solvers and cannot be readily used in 

an ESS simulation software. These research gaps are covered in chapter 5. 
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CHAPTER 3. ENERGY STORAGE IN WHOLESALE ENERGY 

MARKETS 

3.1 Introduction 

This chapter presents novel methodologies for evaluating energy storage revenues from 

participating in wholesale energy markets. The focus is on energy market services and their 

revenues since they can be readily internalized and captured in terms of monetary values 

by the ESS owner. Day-ahead (DA) energy market is analyzed first. A new method based 

on the statistics of realistic energy market data is developed. EA revenue analysis in the 

real-time market (RT) is presented next. Its significant value is captured by the proposed 

shrinking horizon optimization approach. A risk-averse decoupled method maximizing the 

revenues from both day-ahead and real-time markets is also developed and discussed in the 

final section of this chapter. The sections of this chapters were published in [58], [92], and 

[104], respectively. 

3.2 Day-Ahead Energy Arbitrage Revenue Analysis  

This section focuses on the revenue of the EA service in the DA energy market. This 

service is defined as charging the storage by buying energy during periods with low market 

prices and discharging it by selling the stored energy during periods when the market price 

is high. The objective is to understand the expected revenue from this service given a daily 

price data, and to gain insight on the correlation of the optimal revenue with respect to 

price data statistics. While it is known that the price changes would increase the revenue 

from energy arbitrage, no measure of “favorable” volatility is provided that can be used to 
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determine the expected revenue. The proposed method can substitute the complex and 

computationally cumbersome calculations for this analysis, especially in the case of long 

time-horizon market data for multiple pricing nodes. The rest of this section introduces the 

day-ahead energy arbitrage service and the energy storage market participation model. 

Next, the optimization and proposed approaches are discussed. 

3.2.1 Day-Ahead Energy Market 

Day-ahead energy markets are developed in restructured power systems so that market 

actors (power producers, consumers, and traders) buy/sell their consumed/produced energy 

for the next day. It is assumed that the DA market of day d closes at noon of day d-1. 

Market participants submit their bids by then. The independent system operator (ISO) 

receives the buyers’ bids and sellers’ offers and operates the market by solving an 

optimization problem with the objective of maximizing the social welfare, i.e. producers’ 

surplus and consumers’ benefits, subject to the network constraints, i.e. line ratings and 

voltage limits. The ISO clears the market and sets the electricity price for every hour of the 

next day [53]. Both the demand and the cost of generation change during the day, and the 

resulting daily electricity price spread creates a unique business model for energy storage 

owners. They can buy low-cost energy during off-peak hours and sell it back at higher costs 

during peak hours.  

3.2.2 Energy Storage Participation the Day-Ahead Energy Market 

Energy storage owners can participate in the day-ahead market to perform energy arbitrage 

and earn revenues. Since energy storage can operate both as generation and load, owners 

submit both bids and offers to the day-ahead market. Specifically, for the energy arbitrage, 
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they submit bids for off-peak hours when they are expected to be charging, and submit 

offers for peak hours when they expect to be discharging. In order to maximize the energy 

arbitrage service revenue, storage owners forecast day-ahead prices, and optimize the 

dispatch using optimization models. To guarantee that the bids and offers will be cleared, 

they can submit zero prices for both. In this way, all the quantities are cleared in the market 

and will be paid or charged based on the market price of that hour.  

3.2.3 Optimization Approach 

To capture the maximum revenue of the ESS owner from the EA service, mixed integer 

linear programming (MILP) models are proposed in the literature and a common one is 

given in Equations (1)–(7). Equation (1) is the objective of this optimization problem which 

is the energy storage owner’s revenue from the energy arbitrage service given the day-

ahead prices πt as input parameters. The decision variables are output charging and 

discharging powers, , , and chg d DADA

t

is

tP P (continuous variables) as well as  and ch ig s

t t

du u

(binary variables) showing whether storage is being charged or discharged or idle at time 

step t. Equation (2) enforces the constraint that energy storage cannot be charged and 

discharged at the same time step. Equations (3) and (4) limit the output powers by their 

minimum 
min min,chg disP P  and maximum values 

max max,chg disP P . The energy level defined in (5) and 

is also constrained within its limits min max,E E in (6) to ensure a reliable operation. The net 

exchanged energy is zero during the time horizon, modeled by (7) where the final energy 

level TE  equals the initial one 0.E  The charging and discharging efficiencies are denoted 

by
chg and

dis , respectively. The storage energy loss over time is modeled by the self-

discharging efficiency denoted by .s  
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In this model, the storage is assumed to be price-taker, and its operation does not impact 

market prices. It also assumed that all future prices are known for the entire time horizon 

and they require a complete forecast of future prices to provide acceptable accuracy. Since 

storage revenue analysis is conducted for the life span of the project, which is in years, 

knowing all future prices with acceptable accuracy to be used in an optimization model is 

not a realistic assumption and forecasting them is also quite challenging. Therefore, the 

lower accuracy of forecast prices especially for a long time-horizon directly impacts and 

degrades the revenue analysis results and make investment decisions less reliable. 

Moreover, such optimization models and calculation processes are computationally 

demanding for not only long time-horizon price data but also multiple pricing nodes. 

Electricity markets have more than a thousand of pricing nodes and investors would like 

to know the best one to install energy storage that can provide maximum revenues. This 

requires solving giant optimization problems for every single pricing node which is 

extremely time consuming and highly dependent on the accuracy of the price forecast for 

every time step of the entire analysis time horizon. Another drawback of such optimization 

models is that they provide little insight on the expected revenue with respect to the input 
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price data. In other words, it is valuable to know a feature of the input price data, so that 

we can estimate the energy arbitrage service revenue with a good accuracy. Since 

estimating a feature is much easier than knowing all the price data points, it facilitates the 

EA revenue analysis. The proposed methodology is described next and it overcomes these 

difficulties and drawbacks. 

3.2.4 Proposed Approach 

By the definition of the EA service, the price volatility is favorable in terms of the EA 

service revenue but there has been no research on quantifying that feature. Thus, the 

objective of is to find the best statistics of the price data that correlates with the EA service 

revenue. Analyzing DA energy market data from U.S. electricity markets, we observe that 

seasonal prices have different patterns and statistics. This is because the energy demand 

varies continuously creating temporal price spreads. One of the key factors is the seasonal 

weather change resulting energy demand and price variations. Figure 5(a) and (b) 

respectively show a 3D plot and a heat map of annual prices of 2016 in the Pennsylvania-

New Jersey-Maryland (PJM) market at the aggregate node [105]. Besides the daily 

changes, different price shapes are also seen for summer and winter seasons where the 

former has one peak in the evening, and the latter has two daily peaks: one in the morning 

and the other one in the evening. 

Price data for other years in the PJM and also other U.S. electricity markets show similar 

seasonal patterns. Therefore, the price data needs to be classified based on the seasonal 

pattern before finding favorable statistics.  
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Figure 5 – Temporal price variations in the PJM market during 2016 a) 3D plot and 

b) heat map 
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3.2.4.1 Price Clustering 

A novel clustering algorithm that classifies the realistic price data is proposed and 

developed here. This step is necessary since seasonal prices are different in shape and their 

statistics. The proposed algorithm determines when summer and winter start and when they 

end in terms of electricity prices. 

The optimization problem in (1)–(7) is expressed as a linear function of electricity prices. 

In other words, if the price is doubled while maintaining the same shape, so does the 

revenue while the charging/discharging pattern does not change. Leveraging on this fact, 

any set of daily price data with high linear correlation (i.e., similar shapes) would result in 

identical dispatch, and the revenues would be proportional to the correlation coefficient. 

Accordingly, based on the price pattern observation, the prices are classified into summer 

and winter prices using a novel clustering method to determine when each season starts (in 

terms of electricity prices) and how long it lasts. Thus, we developed a clustering algorithm 

inspired by the k-means algorithm used in machine learning [106]. In this algorithm, we 

used the Pearson correlation coefficient (PCC) to measure the linear correlation of two 

daily price data. Generally, for two data samples x and y with respective means of x  and 

,y  the PCC is expressed as: 
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(8) 

The flowchart of the proposed clustering algorithm is illustrated in Figure 6. The algorithm 

starts by choosing two initial base prices for the two seasons. Here, we chose Jan. 15th and 

July 15th for winter and summer initial base prices, respectively. This choice is arbitrary,  
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Figure 6 – The flowchart of the proposed clustering algorithm 

however, in order to reduce the number of iterations, we chose distinct summer and winter 

prices rather than boundary prices in April and October. Then, the algorithm rolls on a 

daily basis, and for each day, it calculates the PCC of the price with the two base prices. 

The day is then added to the set with greater PCC (set  for summer and set  for winter). 
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The total sum of PCCs in each cluster is updated afterwards. This process iterates until all 

the days are clustered. After this process, all the two by two PCCs within each cluster are 

calculated and the daily price with the greatest sum of PCCs is chosen as the new base 

price. If either of the new base prices is different from the old ones, the algorithm reiterates 

from day 1, otherwise terminates. The final results are two clusters including summer and 

winter daily prices, as well as two base prices for each cluster. 

3.2.4.2 The Linear Regression Model 

In order to quantify the value of energy arbitrage with respect to price statistics, a first order 

polynomial (straight line) is fitted to the price data statistics of each cluster using the linear 

regression model:  

y X  = +  (9) 

where y is the vector of daily energy arbitrage revenues, X is the matrix of regressors with 

the first column of all ones and the second column of daily price statistics, β is a two-

element parameter vector (intercept and slope), and ε is the error term. The best estimate 

of the β parameters that minimizes the squared errors is given by least-squares as in (10). 

( )
1ˆ T TX X X y
−

=  (10) 

Using these parameters, we can find the linear relationship between the daily price statistics 

(X) and the estimated daily revenues ( ŷ ). 

( )
1

ˆ T TX Xy X X y
−

=  (11) 

The estimation error is given by: 
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−

= − = −  (12) 
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where I is the identity matrix. The goodness of linear fitting models can be expressed by 

several measures. Here, the R-squared value (also known as coefficient of determination) 

is used. The R-squared value is calculated as:  

2 1 res
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= −  (13) 
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3.2.5 Simulation Results and Discussion 

This section provides the results of the proposed methodology. First, the storage owner’s 

maximum revenue is calculated using Equations (1)–(7). The clustering algorithm results 

are then provided. Prices statistics of dispersion are introduced next, and the results of the 

linear regression model are presented lastly. 

3.2.5.1 Optimization Results    

Using the optimization model (1)–(7) and the PJM historical prices, the owner’s revenue 

from the EA service is computed for the day-ahead market of the last five years. Hourly 

day-ahead market prices at the aggregate node were analyzed from 2013 to 2017 [105]. 

Data was cleaned, and the missing days without the price data were removed from the 

dataset. The missing hours are linearly interpolated using the adjacent hours. The 

simulation parameters corresponding to the energy storage device are 
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max max 100dis chgP P MW= = , max 100 ,E MWh=  m0 ax0.5 ,E E=  min 0,E =  0.95chg dis = = , 

1,s =  1 .t hr =  

As an example, the day-ahead prices and the optimal dispatch for two sample days 

(1/9/2017 and 9/21/2017) are shown in Figure 7. These two days result in maximum winter 

and minimum summer revenues in the year 2017. The price shapes are different such that 

the winter day has two peaks, one in the morning and the other in the evening with the 

price range of $72 during the day. However, the price shape of the summer day has only 

one peak during the evening with the price range of $8. The charging and discharging 

patterns are different due to different price shapes. The revenue in the winter day is $7,785 

while the summer day provides only $490.5, which is 6.3% of that for the winter day. 

3.2.5.2 Clustering Results 

The proposed clustering algorithm is run on the five-year historical price data of PJM and 

converged within 3, 2, 3, 3, and 4 iterations for 2013 to 2017, respectively. The results are 

shown in Figure 8. It can be clearly seen that the proposed algorithm is capable of clustering 

seasonal prices based on their shapes. Figure 8(a) and (b) show the sets of summer and 

winter prices. Final base prices in Figure 8(c) show that the peak prices of the two clusters 

are almost equal while the minimum price of summer is lower than that of winter. Each of 

these prices has a favorable feature for energy arbitrage service. While the daily price 

spread is greater in summer, the winter prices have two peaks providing opportunities for 

two charging and discharging cycles in a day. The analysis of results provided later shows 

that the two-peak feature of winter prices is more favorable for energy arbitrage resulting 

in higher revenues in winter days. 
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(a) 

 

(b) 

Figure 7 – Daily price and optimal dispatch for a) Jan. 9th and b) Sept. 21th 2017 
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Figure 8 – Results of the proposed clustering algorithm: a) summer, and b) winter 

daily price clusters, and c) base prices of clusters 

Clustering results for each year are shown in Figure 9. The range of the boxplots shows the 

middle 95% of the clustered summer days in each year. There are few days in summer and 

winter months with the price of the other shape. These days are considered outliers, and 

are not considered in determining the set of summer and winter days. Apart from 2017, the 

summer days for each year overlaps greatly. Using these results, we consider the set of 
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summer days to include days 101 to 282. The set of winter days include the rest of the days 

in a year.  
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Figure 9 – Boxplot of summer days in each year clustered by the proposed algorithm 

Once daily prices are clustered, we use each cluster’s statistics to find a linear relationship 

with the maximum daily revenue calculated from Equations (1)–(7). Therefore, the 

following daily price statistics of dispersion are tested: 

- range: max min − , 

- standard deviation: ( )
2

1

1 T

T

N

t

tN
  

=

= − , 

- mean absolute deviation (MAD):
1

1 TN

t

tTN
MAD  

=

= − , where
1

1 TN

t

T tN
 

=

=  . i.e. 

the average of absolute difference from the mean price. 

3.2.5.3 Linear Regression Results 

The linear regression model is applied to both summer and winter clusters for different 

price statistics. The tuples of revenue and statistics for each cluster are plotted in Figure 

10, as well as the fitted lines. In these plots, red crosses are for summer and blue circles are 

for winter. The estimated parameters of the fitted lines, and the R-squared values are 

reported in Table 1 for different clusters and price statistics.  
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Figure 10 – Linear regression results: revenue vs. price a) range, b) MAD, and c) 

standard deviation 

 

Table 1 – Linear Regression Model Results 

Parameter Season Range MAD σ 

β0 
summer 

winter 
-2.55 

-4.16 

-2.98 

-5.01 

-1.77 

-5.08 

β1 
summer 

winter 
0.92 

1.21 

3.67 

5.77 

2.96 

4.53 

R-squared 
summer 

winter 
0.9868 

0.9486 

0.9415 

0.9253 

0.9619 

0.9484 
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The results show that winter revenues are in general higher than summer revenues. The 

sensitivity of winter revenues with respect to price data statistics is always larger than those 

of summer. This is justified by the general price shape of winter daily prices. Because 

winter prices have two daily peaks, there is more opportunity for energy arbitrage in those 

days. Furthermore, the results reveal that the energy arbitrage revenue is linearly correlated 

with the electricity price data statistics of dispersion. Among the tested statistics, the 

revenue shows the best linear relationship with the price range. Therefore, given the 

electricity price data of a node, its expected revenue from the energy arbitrage can be easily 

expressed as a linear function of the price range. This simplifies the service benefit analysis 

for the utilities and investors. In addition, with the prices of different pricing nodes in a 

region, the problem of the optimal placement of energy storage in terms of the highest 

energy arbitrage value is simplified to finding the node with the highest sum of daily price 

ranges. 

The results provided are for fixed energy storage parameters, such as efficiency and 

capacity. Sensitivity analysis can be performed within the same framework. While linear 

sensitivities change by varying energy storage parameters, the greater winter revenues and 

their sensitivities remain unchanged. Also, if the capacity of the energy storage is high 

enough to impact the energy market price (price-maker energy storage), the optimization 

model in [22] can again be used in our proposed framework to determine the service value. 

It is expected that higher extreme prices will emerge in the future energy markets with 

more renewables integrated into the grid. This adds to the value of energy arbitrage service 

from energy storage projects promising a unique business opportunity for the future grid. 
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3.3 Revenue Analysis of Energy Storage Participating in the Real-time Energy 

Market 

This section presents a methodology for the revenue analysis of the EA service in the real-

time (RT) electricity market. It is very likely that with the trend in the deployment of new 

intermittent renewable generations, the RT price variation will continue to increase. As a 

result, more RT arbitrage opportunities are expected, which will increase the profitability 

of energy storage projects. Previous studies underline the significance of the forecasting 

accuracy on the maximum value of the EA service. Thus, a robust dispatch can compensate 

for the low forecast accuracy. Furthermore, none of the previous studies has investigated 

or compared the DA and RT market values for the EA service.  

We show the significant value of the EA service in the RT compared to the DA market 

using historical market prices and propose a dynamic optimization approach based on the 

shrinking horizon algorithm to capture the maximum EA revenue. With this objective, we 

first introduce the RT electricity market and provide statistical analysis results based on 

PJM historical market data. Next, we use the optimization model described in Equations 

(1)–(7) to compare the maximum value of the EA service in the RT market with respect to 

the DA market. This model assumes a perfect foresight of the future prices. However, the 

uncertainty of the RT prices limits the applicability of that model and yield to undesirable 

results. Therefore, a more realistic participation model of the storage in the RT market is 

proposed using a shrinking horizon optimized dispatch algorithm to increase the EA 

revenue in the RT market. The simulation results show that the new methodology is a 

robust tool to capture the high value of the RT market even under high levels of uncertainty.   
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3.3.1 Real-Time Energy Market 

Since operating the electricity grid deals with numerous uncertainties, delivering and 

dispatching the required energy cannot be planned with great certainty one day before the 

actual delivery time as it is planned in the DA market. Therefore, almost all the restructured 

power systems have at least another market established for energy trading nearer to the 

actual time of delivery. The DA market is introduced in section 3.2.1 where all the prices 

are known the day before after the DA market is cleared. In the RT market, however, prices 

are updated in RT (e.g., every five minutes), hence they are not known in advance. The 

operator balances the RT generation and load, and based on the amount of energy needed 

for these balancing actions, the RT price is set [53]. Accordingly, the higher variability of 

RT prices is evident with the higher penetration of intermittent renewable generation. To 

illustrate this, a statistical analysis is performed on the PJM historical price data. PJM is 

selected since it serves the greatest number of customers in the U.S. Other market data is 

also observed, and similar results are found. 

3.3.2 Statistical Analysis of the PJM DA and RT price data 

Aggregate hourly DA and RT market prices from 2013 to 2017 were analyzed. Although 

RT market prices are 5-minute data, hourly-averaged RT prices are used to make DA and 

RT sample sets statistically comparable. It should be noted that five-minute prices have 

more variations that can increase the profitability of EA. Data was cleaned, and the missing 

days without the price data were removed from the dataset. The missing hours are linearly 

interpolated using the adjacent hours.  
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Table 2 – Statistical Analysis of PJM Energy Prices in DA and RT Markets 

($/MWh) 

Year 2013 2014 2015 2016 2017 

Mean DA 37.15 49.16 35.61 30.01 30.21 

Mean RT 36.57 48.40 33.43 27.27 28.97 

Median DA 34.62 38.10 30.58 27.48 27.46 

Median RT 32.25 34.48 26.62 24.03 25.28 

IQR DA 11.94 18.64 13.55 11.75 11.66 

IQR RT 11.69 18.67 11.18 8.62 9.68 

Std DA 15.46 51.87 22.63 11.58 12.02 

Std RT 20.69 65.43 27.91 14.64 17.75 

Table 2 shows the relevant statistics of five-year prices in both markets: mean, median, 

interquartile range, and standard deviation of each market. Although the mean price of DA 

is higher than that of RT in all years, the standard deviation of RT prices is much higher 

than that of DA. The analysis shows the higher price variations in the RT market that can 

provide more EA values if exploited properly.  

3.3.3 Energy Storage Participation the Real-Time Energy Market 

The energy storage can participate the RT market to perform EA. Energy storage 

participation in the DA market is described and modeled in section 3.2.2. Storage 

participation in the RT market is based on the RT prices, and the storage owner dispatches 

in RT, and buys and sells at the RT price for charging and discharging, respectively. In 

order to quantify the owner’s revenue from each of these markets, and for a clear 

comparison between them, optimization models are used. 
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3.3.4 Maximum Revenue with Perfect Foresight 

The maximum revenue from the EA service is possible when all future prices are known 

with certainty. To find this maximum in both markets, the optimization model presented in 

(1)–(7) is used. This modeling approach renders a benchmark for the EA service 

evaluation, and it is important for economic decision-making strategies of private storage 

projects. Using the optimization model and the PJM historical prices, the owner’s revenue 

from the EA service is computed for DA and RT markets of the last five years. The 

simulation parameters are set to identical to those in section 3.3.4 The optimization model 

is run for all days with the available price and the revenue is averaged over each year and 

normalized by the storage output power. The results are shown in Figure 11. 

 

Figure 11 – Daily revenues from the EA in DA and RT markets 

The value of the EA service is quantified by the results where the mean revenue is in the 
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between the price variations and the revenues from each market is evident comparing Table 

2 with Figure 11. The results confirm higher revenues (about twice as much) from EA in 

the RT market than in the DA. The above results are for a fixed efficiency and energy 

capacity. Therefore, A sensitivity analysis is conducted to investigate the sensitivity of the 

EA service revenue with respect to the roundtrip efficiency ( chg dis  ) and storage 

capacity, defined here as the number of hours that the storage can operate discharge at 

maximum power, that is equal to 
max max/ disE P . Two simulations are run separately where in 

the first one, the roundtrip efficiency is swept from 50% to 100% while the capacity is set 

to one hour, and in the second one, the capacity is swept from one hour to 24 hours and the 

roundtrip efficiency is set to 90%. The EA daily revenue is computed and averaged over 

all the days of the five-year data. The results are illustrated in Figure 12. 

The results reveal that the EA revenue from the RT market is greater than that of the DA 

market regardless of the storage parameters. The difference in these market revenues grows 

slowly with the roundtrip efficiency, and it is almost constant with respect to the storage 

capacity. Also, in both markets, the average revenue increases with the roundtrip efficiency 

and the storage capacity. However, it reaches saturation for high storage capacities. This is 

reasonable since after a certain capacity, the storage has collected most of the energy 

needed for the EA. More revenues are achieved only if the output power limit increases. 

Moreover, the marginal revenue is higher for lower capacities and higher efficiencies 

meaning that a low capacity but highly efficient storage can capture most of the maximum 

revenue. The marginal revenues for an ideal storage with one-hour capacity are $1.75 per 

efficiency percentage and $31.69 per an hour. These values can be used to evaluate the EA 

revenues in PJM based on the storage parameters.  
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(a) 

 

(b) 

Figure 12 – Average daily revenue from EA in DA and RT markets with respect to: 

a) roundtrip efficiency, and b) storage capacity 

While the RT market is more profitable than the DA for the EA service assuming a perfect 

foresight, its application should consider the larger errors of price forecasts in the RT 

market due to the higher price variability. Thus, the more realistic case of the EA service 

evaluation with forecast errors is discussed next. 
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3.3.5 Impact of Uncertainties and Forecast Errors 

The effect of uncertainty in price forecasts is investigated in this section. Uncertainty is 

modeled with two approaches: back casting and random normal error. The back-casting 

approach considers the realized prices of the day d for the dispatch of the day d+1. In the 

second approach, the assumption of the perfect foresight of future prices ( PF ) is altered 

by adding a random noise that models the uncertainty in the forecast. The altered price 

( )err  is: 

( )1Perr

t

F

t e  +=  t   (16) 

where e is a random variable sampled from a normal distribution ( (0, )e  ) and σ is 

the error standard deviation. The model accounts for larger forecast errors ( err

t

PF

t − ) 

when the actual price is high as in the case of price spikes that are predicted with greater 

errors. The altered price in both DA and RT markets is used for the storage dispatch.  

3.3.5.1 Proposed Algorithm 

The RT forecast errors are larger due to the higher RT price variability. However, the RT 

dispatch can be optimized at the beginning of each time period as soon as the RT price is 

realized. For example, at the beginning of hour t, the RT price for that hour (πt) is set by 

the ISO. Knowing this price, the RT dispatch is optimized for period t up to T, as described 

in the Algorithm 1 where ˆ
i  is the forecast price for period i, which is known by either 

back-casting or random normal error. It is assumed that the updated dispatch is calculated 

right at the beginning of the period t, without any delay. The method is not highly 

dependent on the forecast accuracy compared to the linear optimization since it updates the 
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dispatch for the remaining time of the horizon at the beginning of each time period when a 

new price data is realized. This method is known as the shrinking horizon dynamic 

programing [107]. 

Algorithm 1 Shrinking horizon dispatch 

1:  t = 1 

2:  while t < T do 

3:      Solve:  

             ( ) ( ), ,, ,

1

max - ˆ -dis RT di
T

chg RT chg RT

t t i i

i

s T

t i

t

R tP P P P 
= +

 
+ 

 
  

 Subject to Equation (2),  

                            
,

min max. .dis dis dis RT dis dis

t t tP u P P u 
, 

                            
,

min max. .chg chg chg RT chg chg

t t tP u P P u 
, 

                            
( ), ,

1 /chg RT

t s t chg t t di

RT

s

disE P tPE  −= + −
, 

                            Equations (6), (7). 

4:      t = t + 1 

5:  end while 

3.3.5.2 Simulation Results 

The EA revenue from both markets using the back-casting approach are calculated for 

various efficiencies and capacities. The storage parameters are as in section 3.2.5.1. The 

optimized dispatch based on the price data of the previous day is multiplied by the actual 

price data of the running day to find the actual revenue. Results are then divided by those 

calculated with perfect foresight in section 3.3.53.3.4 to show the ratio of actual collectible 

revenues with forecast uncertainties to the ideal maximum revenues. Figure 13(a) and (b) 

present the percentage of the revenue for DA and RT markets, respectively, using back-

casting as the forecast approach. 
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Figure 13 – Collectible percentage of revenues using back-casting for price forecast 

(a) DA and (b) RT markets, and (c) RT over DA 

a) 

b) 

c) 
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The back-casting method can collect higher percentage of perfect foresight revenues in the 

DA market than in the RT market. This is because DA prices show higher correlations 

within two consecutive days than the RT prices. Thus, the DA prices of the previous day 

is a fair estimate of those of the running day and the optimized dispatch would result in 

higher percentage of the maximum revenue. Across the simulated range of efficiencies and 

capacities, the percentage is between 66%–93% for DA and 39%–72% for the RT market. 

Higher ratios are seen for more efficient storages. Note that even the 39% of the maximum 

potential revenue for the RT market, with twice the DA market value, is still comparable 

to 93% of that in the DA one. The actual collected revenue from the RT market relative to 

that from the DA one is illustrated in Figure 13(c). This ratio ranges between 85%–156%.  

The collectible revenues from both markets under uncertainties modeled with random 

normal errors are also calculated for various efficiencies and error standard deviations and 

compared to the ideal maximum revenues. Capacity is set to be 100 MWh (1hr). The 

parameter σ is taken from the interval 0.02 to 0.1 to model the error of short-term price 

forecasts. Considering that the relative error is within 10% of the nominal value [108] for 

95% of the time, the maximum error with 2σ standard deviation must be less than 10% 

error. As a result, a 0.05   is sufficient. The selection of this parameter considers an 

extra margin for extreme cases such as price spikes. Accordingly, the forecast error is 

expressed as 

% 200_forecast error =  (17) 

The altered price in Equation (16) is input to the optimization models for a range of forecast 

errors between 4%–20% [109]. Using forecast prices, the dispatch is optimized, and the 
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revenues are calculated using actual prices. Average daily revenues from both DA and RT 

markets are calculated and normalized based on the revenue in the perfect foresight case. 

Results are shown in Figure 14(a) and (b) for DA and RT markets, respectively. Modeling 

the forecast uncertainties with random normal errors results in the higher percentage of the 

collectible revenue from the RT market than the DA one. Even in the extreme case of 20% 

error, the RT dispatch captures more than 85% of the maximum potential revenue while 

the DA dispatch cannot capture more than 75% in this case. The higher ratio of the 

collectible revenue in the RT market is due to the dynamic optimization dispatch strategy, 

the proposed shrinking horizon algorithm, which updates the dispatch at the beginning of 

each period just as the price is realized. The inclusion of the most recent price in the 

dispatch enables it to better capture the price spikes resulting in higher revenues. 

In both DA and RT markets, the percentage of revenue decreases with the increase in 

forecast errors, as expected. However, the rate of this decrease is lower for the RT market. 

This is also explained by the less sensitive dynamic dispatch strategy. Moreover, the RT 

revenue with the price forecasts is shown to be more than 15% higher than the back-casting 

approach. For instance, if the error of the RT price forecast is known to be the extreme 

value of 20%, for a 1MW/1MWh storage system with 80% efficiency, higher revenues are 

expected if the RT price forecasts are used to find the optimal dispatch. This strategy can 

collect more than 91% of the maximum potential revenue while the back-casting approach 

cannot collect more than 47%. 
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Figure 14 – Collectible percentage of revenues using random errors for price 

forecast (a) DA and (b) RT markets, and (c) RT over DA   

a) 

b) 

c) 
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The analysis also shows that if the storage participates only in the DA market for the EA, 

the back-casting approach results in relatively higher revenues in case of large forecast 

errors. Generally, the results can help storage owners decide on the optimal dispatch based 

on the accuracy of the DA price forecasts for a wide range of efficiencies and capacities. 

For example, if the error of the DA price forecast is known to be 10%, for a 1MW/1MWh 

storage system with 80% efficiency, higher revenues are expected if the DA price forecasts 

are used to find the optimal dispatch. This strategy can collect almost 95% of the maximum 

potential revenue while the back-casting approach cannot collect more than 82%. 

The value of the RT market with uncertainties relative to the DA with perfect foresight is 

described in Figure 14(c) for a 1MW/1MWh storage system across a wide range of 

efficiencies. Even in the worst-case scenario where the RT price forecast error is 20%, the 

RT market revenue from the EA service is more than 1.8 times the revenue from the DA 

market considering a perfect foresight. Results for larger storage capacities up to 10 hours, 

still show a 10% surplus in the RT market with large errors compared to the DA market 

with perfect foresight. Furthermore, storage units with lower capacities and efficiencies 

show higher relative revenues from the RT compared to the DA. With the high EA value 

of RT market shown with realistic market data, ESS owners can rely on the RT market as 

an additional revenue stream to utilize their assets financially more attractive. 
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3.4 Revenue Analysis of Energy Storage Participating in both Day-Ahead and Real-

time Energy Markets 

The participation of ESS in DA and RT energy markets is studied so far. Here, we propose 

an optimal operating strategy to maximize the revenue of energy storage systems (ESS) 

that participate in both DA and RT energy markets. While we showed that the RT market 

can have more than twice the arbitrage value compared to the DA market higher price 

volatility with greater forecast errors in the RT market, can limit the profitability of the 

ESS energy arbitrage if the ESS participates only in this market. This is not desirable for a 

risk-averse ESS operator or owner. Thus, in this section, RT market participation is 

proposed as an extra revenue stream for the ESS that is added to the less risky revenue 

from the DA market. We seek to optimally stack the arbitrage service values of DA and 

RT energy markets. Moreover, the optimization models are modified in this section to 

account for ESS market power and degradation. The rest of this section is organized as 

follows. First, we describe the proposed decision framework for ESS market participation. 

The mathematical formulation is presented next. We further provide simulation results and 

conclude this section.   

3.4.1 Market Participation Models 

It is proposed that the ESS operator can participate in and collect revenues from both the 

DA and RT energy markets. In this setting, the operator decides the optimal values of the 

ESS output power that maximize the revenue in both markets and submits the 

corresponding bids for each market. The timeline for this decision process is illustrated in 

Figure 15. Two consecutive days are shown and denoted by d-1 and d. 
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d-1 d

DA bids of day d 

submitted before the DA 

market closes at noon on 

day d-1

RT bid of period t 

submitted before the 

RT market closes at 

the end of period t-1

tt-1 T

 

Figure 15 – DA and RT market participation timeline 

3.4.1.1 Day-ahead operation 

It is assumed that the DA market of day d closes at noon of day d-1. Market participants 

submit their bids by then. Next, the market operator computes the DA market prices based 

on the received bids. Market results (cleared prices and bids) are released a few hours later. 

The ESS operator estimates the DA energy prices, solves the proposed quadratic 

optimization program that maximizes the DA net revenue, finds the optimal DA dispatch, 

and submits the charging and discharging bids accordingly to the market. Since ESS has 

no fuel cost for generation, the operator bids at zero price for discharge bids. Charging bid 

prices are assumed to be at the maximum price. Thus, both bids are always cleared at the 

market price with the submitted quantity. However, the ESS operation is assumed to affect 

the market price. The DA price is assumed to be an affine function of the ESS net output 

power [110]:  

( )0 ,,DA dD is DAA chg DA

t t tt P P  = −+  t   (18) 

where the intercept 0DA

t  is the DA forecast price with no ESS operation determined by a 

back-casting method. The slope γ is calculated from linear interpolation of the price versus 
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demand curve in the given market [26]. This assumption is based on the realistic market 

data. For example, Figure 16 shows the DA price versus the system load in the PJM market 

during December 2018 [105]. The price is increasing with more demand. Since the storage 

output ( ), ,dis DA chg DA

t tP P−  can be regarded as a negative demand, the value of γ is the 

negative of the slope of the interpolated line on the price-demand curve. When the DA 

market closes, the ESS operator receives revenues based on the DA cleared prices 

multiplied by the operation of ESS. Obviously, prices can be different from the forecast 

ones. 

 

Figure 16 – DA price versus load data in PJM during December 2018 

3.4.1.2 Real-time operation 

When day d starts, the ESS operator can participate in the RT market by deviating from its 

DA dispatch. It is assumed that the RT market for each hour is run and cleared on an hourly 

basis, and that the RT market for period t is closed and cleared right before it starts. The 

shrinking horizon algorithm [107] is used to optimally exploit this hourly rolling 

framework. Specifically, before period t starts, the ESS operator estimates the RT prices 
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for the rest of the day [t, T], solves an optimization problem that maximizes its net revenue, 

and submits the optimal bid only for period t. This process is repeated for every period. 

The submitted bid represents the ESS output deviation from the DA value. Any deviation 

is transacted at the RT price. It is also assumed that the RT operation of the ESS does not 

affect the RT prices since it operates after the price is cleared. Similar to the DA market, 

price forecasts are used to find the optimal dispatch while the revenue is calculated based 

on actual price data. 

3.4.1.3 Uncertainty  

Uncertainties in price forecasts of DA and RT markets are modeled as follows. For the DA 

market, the ESS operator uses the price data of day d-1 to find the optimal dispatch of day 

d. This is the back-casting method [26]. In section 3.3.5.2, we showed that for ESS with 

efficiencies higher than 70%, the obtained revenue using this method is more than 80% of 

the case with perfect foresight. Thus, the method provides a considerable ratio of maximum 

revenue. For the RT market, the forecast price is determined by a normal relative error 

described by Equation (16). Assuming a constant standard deviation for forecast errors up 

to 20%, the obtained revenue is more than 86% of the case with perfect foresight verifying 

the robustness of the shrinking horizon optimization method. Moreover, a more realistic 

model is proposed here. Since the probability of larger forecast errors increases for later 

time periods, the standard deviation of the normal relative error depends not only on the 

forecast error, but also on the time difference between the forecast period t and the current 

optimization period τ as in (19). 

max( )t t  = −  , ;t t     (19) 
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The maximum standard deviation 
max  is determined by the error of the forecast method 

(17). Several samples of the relative error e must be taken to capture a wide range of price 

scenarios. As an example, price forecast errors for 10 sampled scenarios are shown in 

Figure 17. For each hour t, the standard deviation of the relative error (σt) is determined by 

(17) and (19). Then, a sample is taken from a normal distribution. This sampling is process 

for all the hours is repeated 10 times to generated 10 sampled scenarios shown in Figure 

17. As can be seen, using the model in (19), the variability of the relative error increases 

for later time periods. Note that this linear model can be improved by statistical analysis of 

historical prices and their forecasts. For example, a model with higher variabilities during 

certain hours of the day can also be developed which is out of the scope of this work.  

 

Figure 17 – RT price forecast errors 

3.4.1.4 Degradation 

In formulating the optimization problems for both DA and RT markets, the ESS 

degradation is modeled with a cost term in the objective functions. The cost term represents 

the loss of ESS useful life due to charging and discharging cycles and is modeled by a cost 
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parameter multiplied by the output energy, i.e. the sum of ESS charged and discharged 

energies. The parameter is determined by the total capital cost of ESS divided by the total 

number of life cycles and further divided by total charged and discharged energies in a full 

cycle that is approximated by (20). 

_

_ 2

capital cost
C

life cycles Capacity
=

 
 (20) 

Including this cost term prevents the ESS from frequent charging and discharging cycles 

that adversely affect its useful life. Therefore, it provides a more realistic optimal operation. 

Moreover, the cost term prevents the simultaneous charging and discharging and therefore 

binary variables in Equations (2)–(4) can be relaxed. 

3.4.2 Mathematical Formulation 

Here we provide the mathematical modeling and formulation of the proposed optimal 

dispatch in DA and RT markets.  

3.4.2.1 Quadratic Program for DA Optimization 

The optimal operation of a price-maker ESS in the DA market is found by plugging the 

price and degradation models, Equation (18) and (20), respectively, in the objective 

function of Equation (1) as 

( ) ( ), ,, ,

1

max
T

chg DA chg DA

t t t

DA dis DA dis DA

t t

t

P P C P tP
=

 − 
 

− +  (21) 

subject to Equations (3)–(7), (18), (20). 
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The first term in the objective function, Equation (21), is the DA market revenue, and the 

second one is the cost of degradation due to cycling. The decision variables are , A

t

dis DP  and 

,chg DA

tP . Since the DA market price is a linear function of ESS output powers as in Equation 

(18), the proposed optimization problem is a quadratic program. The formulation is convex 

due to the negative coefficients (γ) of the quadratic terms. Thus, any local optimum is 

global. The operational constraints of ESS are similar to Equations (3)–(7). Note that the 

binary variables can be relaxed; Because the structure of the problem with positive prices 

for all periods, does not require integer variables [66], and no optimal solution exists with 

both , A

t

dis DP  and ,chg DA

tP  being non-zero. 

3.4.2.2 Mixed Integer Linear Program for RT Optimization 

The optimal operation of ESS in the RT market is found by solving the following 

optimization problem on an hourly basis for each period τ in the time horizon.  

( ) ( ), ,, ,max
T

chg RT chg RT

t t t

RT dis RT dis

t

RT

t

t

P P PC P t



=

 
 

− +−  (22) 

subject to (2)–(7), and the following constraints 

( ), ,

max0 dis RT dis dis DA dis

t t tP P P u  −  (23) 

( ), ,

max0 chg RT chg chg DA chg

t t tP P P u  −  (24) 

( ) ( )( ), , ,

1

, /chg DA chg R disT dis RT

t s t chg t t t t dis

DAE E P tP P P  −= + + − +  (25) 

Note that the binary variables are present in the RT formulation since RT prices can become 

negative and therefore, these variables are needed to avoid simultaneous charging and 

discharging operation. Also, DA dispatch decisions are treated as parameters in the RT 
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formulation. The proposed optimization problem is a MILP that can be solved efficiently 

with current available solvers. The optimization problem is solved several times for each 

period to efficiently cover the set of uncertain RT prices. Assuming equiprobable scenarios 

realizations for uncertain prices, the expected value of the revenues is considered for 

further calculations. 

3.4.3 Simulation Results 

The proposed methodology is tested on a 1MW/2MWh energy storage system with 90% 

roundtrip efficiency ( 0.9chg dis  = ), and no self-discharge ( 1s = ). The chosen power and 

energy ratings are the most common ratings based on the DOE energy storage database 

[111]. Charging and discharging efficiencies are assumed to be equal ( 0.9chg dis = = ). 

The initial energy level is assumed one half of the full capacity (E0 = 1 MWh). Hourly 

aggregated load and price data of the PJM market from 2013 to 2017 was used [105]. Data 

was cleaned before any calculations and the missing points were interpolated. The price-

load sensitivity is calculated as 0.00066 $/MWh/MW [22]. The optimization models are 

convex if 
min min 0chg disPP = = , and the global optima are guaranteed in finite time. The models 

are implemented and solved in MATLAB 2017a [112] using quadprog and intlinprog 

functions for DA and RT optimization, respectively. 

Several test cases were simulated to derive the optimal revenue of the ESS operator for 

various conditions and for a wide range of parameters. In the first case, both DA and RT 

prices were assumed to be known with perfect foresight and no degradation cost is included 

(C=0). This case is necessary and helpful to understand the maximum potential revenue 
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from energy arbitrage in both markets. Figure 18 demonstrates the annual revenues from 

DA and RT markets in this case for 5 years. The total revenues are $108,700 and $36,162 

for DA and RT markets, respectively. The RT market participation increases the revenue 

obtained in the DA market by more than 50% on average. This participation is a 

considerable revenue stream for the ESS operator and thus can increase the profitability of 

the ESS projects and incentivize ESS investors. 

 

Figure 18 – DA and RT annual revenues in the base case 

3.4.3.1 Market power  

The impact of ESS market power on the revenue is investigated by running the simulation 

for various values of the price-load sensitivity γ. All the other parameters are the same as 

in the first case. DA and RT revenues are shown in Figure 19. From (18), it is obvious that 

increasing the absolute value of γ translates into the increased market power of ESS. 

However, DA and RT revenues do not change for values of γ up to 6.6 $/MWh/MW 

meaning that the simulated ESS has a negligible market power. Nevertheless, the proposed 
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quadratic formulation can be applied to any ESS with its specific ratings, and accounts for 

its impact on the market price. It is worth noting that for γ = 6.6 $/MWh/MW, the DA 

revenue decreases due to the price depreciation resulted by the ESS output. Accounting for 

the effect of price depreciation on the DA revenue, the ESS operator avoids unprofitable 

operations. This leaves more capacity for the RT operation and as shown in Figure 19, the 

RT revenue increases. The total revenue, however, remains the same. For the case of 

greater market power with higher values of γ, the DA revenue further decreases, and RT 

revenue increases as well as the total revenue. Increasing γ, finally decreases the DA 

revenue to zero and all the revenue is obtained from the RT market that is greater than the 

first case revenue. However, this is not an attractive option for the risk-averse ESS operator 

due to higher price variability of the RT market. Participation in the DA market is necessary 

for such ESS operators to secure a considerable revenue with lower risk levels. 

 

Figure 19 – DA and RT total revenues versus price-load sensitivity 
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3.4.3.2 Price uncertainty 

Uncertainties in price forecasts were considered and modeled as described while the 

degradation cost is still zero. This case determines the impact of forecast errors on market 

revenues. Various cases are tested with different levels of price forecast error. The price 

uncertainty of the DA market is modeled by the back-casting method in all the cases with 

nonzero forecast error. The RT market price uncertainty is modeled by averaging the 

revenue over 100 scenarios generated from sampling normal relative errors. For example, 

in the case of 50% error, σmax = 0.25, then standard deviation for each period is determined 

by (19). Next, 100 random scenarios are generated by sampling from a normal distribution 

of e in (16). For each scenario, the RT optimization problem in section 3.4.2.2 is run and 

the maximum revenue is averaged over all 100 scenarios to find an estimate of the 

maximum revenue. Figure 20 shows the revenues of the two markets for 5 forecast errors. 

The DA revenue decreases as the price forecast error increases from 0% to 25%. Again, 

this decrease provides more opportunity for RT market participation and higher revenues 

as shown in Figure 20. Since all the cases with non-zero forecast error use the same error 

model, no change in DA revenues is expected. Furthermore, the RT revenue decreases 

negligibly even when the forecast error is 100%. The total revenue in this case is more than 

94% of that in the case of no error. These results attest the robustness of the dynamic 

optimization model proposed for the RT market participation. 
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Figure 20 – DA and RT total revenues versus forecast errors 

3.4.3.3 ESS degradation 

The impact of various degradation costs is studied in two cases: a) without price forecast 

error, and b) with 50% forecast error. The respective revenues are illustrated in Figure 21(a) 

and (b). In both cases, the DA revenue decreases as the degradation cost increases. This is 

an expected trend since inclusion of the degradation cost in the objective function, reduces 

the maximum revenue by eliminating less profitable arbitrage opportunities. The RT 

revenue, however, has a different trend with increasing the degradation cost. Although less 

profitable arbitrage opportunities are still avoided, more capacity is available for the RT 

market as the DA market becomes less profitable with fewer charging and discharging 

cycles due to degradation cost. As shown in Figure 21, in both cases, the RT revenue first 

increases and then decreases for higher values of the degradation cost. Interestingly, the 

total revenue in the case of 50% forecast error is greater than that of the case without 

forecast error for any non-zero degradation cost. This is again because of less DA 

operations that provides more RT arbitrage opportunities. A highly important result of this 
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analysis is that the inclusion of the ESS degradation model for the optimal operation can 

avoid unnecessary operations that adversely impact the ESS useful life. Therefore, 

although the optimal revenue is decreased, the useful life of the ESS increases and 

considerable replacement costs can be saved using the proposed model.  

 
(a) 

 

 (b) 

Figure 21 – DA and RT total revenues versus degradation cost with a) perfect 

foresight and b) 50% forecast error 
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3.4.4 Economic Viability 

The economic viability of four ESS technologies is assessed using the proposed 

optimization model. Among various ESS technologies, only those with long enough 

duration (more than two hours) are chosen that are more suitable for energy arbitrage 

service. Similar ESS parameters and price data is used as in section 3.4.3. as well as realistic 

technology-specific data [14], [113] provided in Table 3.  

Table 3 – ESS Technology Data and Financial Results 

Technology 
Pumped 

Hydro 

Compressed 

Air 
Sodium Sulfur Lithium Ion 

Useful Life 

(years) 
50 40 10 15 

Life Cycles 15,000 12,000 2,500 4,500 

Capital Cost 

($) 
440,000 260,000 900,000 840,000 

C ($/MWh) 7.33 5.42 90 46.67 

5-year 

Revenue ($) 
153,600 154,500 46,400 72,000 

NPV (M$) 1.09 1.22 -4.04 -2.08 

The degradation cost C is calculated using (20). Optimization results include the total 

revenue obtained by the four ESS technologies in 5 years considering 50% forecast error, 

and the net present value (NPV) of each technology. Results show that pumped-hydro and 

compressed air are economically viable ESS technologies with the energy arbitrage 

revenue stream. Moreover, Sodium Sulfur and Lithium Ion technologies are not currently 

economically competitive with others in the case of energy arbitrage service. This is 

because of two factors: a) higher capital cost of batteries and b) lower revenue because of 

high degradation cost due to lower number of life cycles. Thus, extensive research is 
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needed on battery energy storage technology to lower the capital costs and increase the 

number of life cycles. Furthermore, market and business models need to be developed to 

capture multiple revenue streams.  

3.5 Summary 

This chapter presented novel methodologies for evaluating energy storage revenues from 

participating wholesale energy markets. The methodologies are presented in three folds:  

- Day-ahead energy arbitrage revenue: 

A straightforward method is proposed to accurately estimate the expected arbitrage revenue 

based on the statistics of market price data. A machine-learning-based clustering algorithm 

is proposed to classify the seasonal prices. The revenue in each cluster is fitted to the daily 

price statistics using a linear regression model. The proposed method was tested on the 

five-year PJM historical day-ahead energy market prices. It is observed that the service 

revenue is mainly determined by the price data shape. The results of the linear regression 

model show that the clusters revenue is linearly dependent on the dispersion statistics of 

the price data, mostly the range. The results can benefit utilities and investors to analyze 

the energy arbitrage revenue in a straightforward manner using simple statistics of the 

energy market prices. The proposed clustering method is also a useful tool for other 

applications, such as an offline suboptimal dispatch. 

- Real-time energy arbitrage revenue: 

The higher value of the real-time (RT) energy arbitrage compared to the day-head (DA) is 

achieved by the proposed optimization model. The actual participation models in both 
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markets are discussed and appropriate optimization models are deployed to quantify the 

value of each market. While a linear program is found suitable for the DA market, higher 

revenues are captured by the proposed dynamic optimization model known as the shrinking 

horizon control algorithm. Results disclose the outstanding performance of the proposed 

dispatch in application to the RT market participation for the EA service. The uncertainty 

of the market price forecasts is also modeled in optimization models. Sensitivity analysis 

with respect to forecast errors and storage roundtrip efficiencies in their currently available 

ranges reveal that the value of RT market for the EA service is always greater than that of 

the DA market.  

- Day-ahead and real-time energy arbitrage revenue: 

An optimization approach is proposed that models the participation of ESS in both day-

ahead and real-time energy markets to determine the maximum revenue of an energy 

storage operator from the energy arbitrage service. Quadratic and dynamic mixed integer 

optimization models are developed for day-ahead and real-time markets, respectively. 

Price sensitivities to ESS operation, price forecast errors, and ESS degradation model are 

considered in this study to estimate the arbitrage revenues more realistically. The model is 

tested on the PJM historical data as well as technology-specific parameters. The results 

show that the energy arbitrage revenue is highly dependent on these parameters and can 

vary significantly depending on the technology. Moreover, including the energy storage 

degradation model in the optimization problem can reduce less profitable arbitrage 

operations and increases its useful life. Finally, new ESS technologies need to provide 

multiple services to be economically viable. Therefore, advanced optimization models are 

needed for multiservice ESS operation and evaluation.  



 70 

CHAPTER 4. GENERIC MULTISERVICE REVENUE 

ANALYSIS OF ENERGY STORAGE 

4.1 Introduction 

Although energy storage is well-known for its energy arbitrage service, our findings on 

day-ahead and real-time energy arbitrage and a few other studies in [24]–[26] reveal that 

energy markets cannot guarantee sufficient revenues for the financial viability of many 

new storage technologies such as batteries. Therefore, ESS owners need to rely on multiple 

revenue streams to cover the currently high capital costs of ESS. With almost 30 identified 

applications and benefits [3], [8], the potential value of energy storage is expected to be 

significant. However, monetizing that significant value requires advanced modeling 

methodologies that can capture all the synergies and conflicts between these applications 

and be flexible and scalable for different combination of applications. Modeling 

multiservice operation of ESS will increase the bankable value of ESS which is paramount 

for their benefit-cost analysis and deployment. Accordingly, it helps stakeholders 

(regulators, ESS owners, system operators, end-use customers, etc.) understand the 

maximum value of ESS facilitating the deployment of these technologies as well as 

renewable energies.  

Most of the research in this area has focused on wholesale market service revenues. 

However, ESS applications are not limited to wholesale market services which have a 

defined participation model. Therefore, these “non-market” applications are not well-

understood and analyzed for ESS although they can provide significant additional revenue 
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streams for ESS owners. Analyzing all these benefits is very complicated and project 

specific. A systematic approach is needed to facilitate such analyses while ensuring the 

maximum profitability. Automating this process using new software tools can provide 

significant value. Designing a scalable information model is key to develop a software for 

ESS project analysis. The model should capture all the details of the analysis and uses 

optimization models to maximize the benefits. The service benefit modeling and analysis 

is the crux of this information model. Since ESS services can be valued differently by 

stakeholders we propose a generic optimization model for co-optimizing the revenues from 

multiple services. The generality and flexibility of the model enables its application by 

many stakeholders in various grid levels with different regulations and policies. 

4.2 Objective and Contributions 

The objective of this chapter is to propose a systematic methodology for multiservice 

analysis of energy storage operation based on a generic optimization framework that can 

co-optimize the ESS revenues from multiple services. The main question to be answered 

is how to optimally operate energy storage systems to obtain the maximum value from 

providing any combination of services. The focus is on scalability and modularity of the 

analysis which requires a sophisticated system design. The generic optimization 

formulation is the center of this design which is also the main contribution of this chapter. 

A software tool is also developed based on the designed system architecture. The tool is 

tested on real-world applications and is already being tested by utility industry partners for 

their energy storage studies and projects. 

The contributions of this work include: 
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1. Developing an information model for energy storage techno-economic studies, e.g. 

optimal operation, scheduling services, benefit-cost analysis, etc. 

2. Proposing a generic optimization model for co-optimizing the revenues from 

multiple services 

3. Developing an optimization-based software tool for ESS cost-benefit analysis 

4. Simulating the optimization model in realistic test cases and scenarios 

The rest of this chapter is organized as follows. Section 4.3. presents the information 

system design and data model. The generic optimization framework is described in section 

4.4. The developed software is introduced in section 4.5. Finally, section 4.6. provides the 

applications of the proposed methodology in two realistic test cases of energy storage 

revenue analysis. These two test cases are published in [104] and [114]. 

4.3 System Design and Data Model 

The system design for energy storage analysis tool is illustrated in Figure 22. Three main 

modules are designed: 

- Data Integration: This module handles the input data required for the optimization 

and post optimization analyses. It has an object-oriented data structure to efficiently 

handle large amounts of data.  

- Optimization: This module builds an optimization program based on the input data 

and solves it. This module is discussed more in detail in section 4.4. 

- Output Processing: This module calculates the outputs of the study based on the 

optimization results.  
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Figure 22 – System design for energy storage analysis tool 

For the flexibility and scalability of the data integration module, an object-oriented 

programming approach is used. An overview of the class diagram developed for the data 

integration module is illustrated in Figure 23. The diagram is in the standard Unified 

Modeling Language (UML) format and it describes the static structure of data, including 

classes, their attributes and relationship between the entities and objects in the module. 

Note that although the current work is developed for energy storage resources, it can be 

generalized to many other distributed energy resources, e.g. PV, flexible demand, etc., and 

even conventional resources, e.g. gas turbines, considering resource specific parameters 

and constraints.  
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Figure 23 – UML diagram of the data integration module 

The relationship between services and prosumers as stakeholders is defined based on Table 

4. A marked cell means that the stakeholder can operate the energy storage resource to 

benefit from that service by increasing its utility function or minimizing its operating cost. 

Note that since ISOs are non-profit market administrators, they cannot benefit from owning 

resources and obtaining revenues from market products and services. However, they can 

operate ESS owned by market participants to minimize the total cost of acquiring and 

providing market services. Using Table 4, the optimization model can be formulated that 

maximizes the operator’s utility function from providing an application/service, subject to 

a set of constraints. After the optimization model is solved and the optimal ESS dispatch 

is found all the other stakeholders’ utility functions for the selected services can be 

evaluated. 
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Table 4 – ESS Services Versus Stakeholders 

 Stakeholder 

Application/Service ISO IPP 
Utility/ 

DSO 
Aggregator 

Customer 

(BTM) 
3rd-party 

owner 
Energy Arbitrage (DA/RT)  × × × × × × 

Frequency Regulation  × × × ×  × 
Reserve Market  × × × ×  × 
Capacity Market  × × × ×   × 
Flexible Ramping  × × × ×   × 

Investment Deferral × × ×       
Volt/VAR Support ×   ×       

Black Start  × × ×       

Reliability (Back-tie) 

Services 
 ×   ×       

Outage Avoidance/Islanding × × ×       

Demand Response ×   × × ×   

Congestion Management ×   ×       

Reduced Generation Fossil 

Fuel Use and Air Emissions 
× × ×   ×   

Renewable Integration and 

Capacity Firming 
× × ×   ×   

Loss Reduction ×   ×       
Improve Asset Utilization × × ×       

Transmission Stability 

Damping 
× ×          

Sub-synchronous Resonance 

Damping 
×           

U/O-frequency Load 

Shedding Reduction 
× ×          

Transient Voltage Dip 

Improvement 
×           

Backup Power   × ×   ×   

EV Load Support     × ×  ×   

Solar Back-feeding 

Elimination 
  × ×   ×   

 Equipment Life Extension 

(e.g. Reducing Tap Regulator 

Action) 

    ×       
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4.4 Generic Optimization Framework 

The generic optimization framework models energy storage applications as services in a 

flexible and scalable manner. The proposed model is operator- and service-agnostic 

meaning that the structure of the model does not change for each service or depending on 

the operator. All the service- and operator- specific modeling details are captured as 

parameters to the generic optimization model. The modular design of the optimization 

model enables to simulate any combination of services without having a separate model 

for each combination. The generic optimization model includes: 

a. The energy storage optimization model without any services that includes: 

- Storage decision variables (set XESS):  

o Storage dispatch variables, e.g. output power and energy / ,ESS ESSP E+ −  

o Storage product offers { , , , , , }ESSp E E P P R R+ + +− − − for the total energy, 

power and ramp rate offers. 

These two set of variables are distinct since the offered products may not be 

dispatched at the same quantity as offered. 

- Storage objective function ( ESSJ ): without any services, the objective function is 

defined as zero. 

- Storage parameters: 

o Decision variables upper and lower bounds (
min/ max

ESSb ), e.g. energy and power 

ratings, 
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o Efficiency parameters , ,l chg dis    for leakage, charging and discharging 

efficiencies, 

o Cost parameters (C), e.g. cost of degradation, 

o Boundary values, e.g. Stored energy at the beginning and end of the 

optimization horizon. 

- Storage constraints (feasible set ESS ): 

o Constraints on decision variables: 

min max

, ,x ESS ESS x ESS ESS ESSb x b x X     (26) 

o Intertemporal constraints, e.g. , , 1 , , /ESS t ESS t chg ESSs t ESS t disE E P Pt t  + −

−  = + −  

o Charging/discharging constraints: where simultaneous charging and 

discharging operation is avoided. 

o Degradation constraints, e.g. limited number of life cycles  

b. Modular service optimization models that for each service (s) includes similar 

components including: 

- Service decision variables (set Xs): 

o Service status binary variable (us) to represent the enable/disable status of 

that service, 

o Service dispatch variables (
( ) ( )/ , max/min max/min,s sP E
+ −

), e.g. demand,  

o Service product offer variables , , ,{ , , }s s s s s s sp E E P P R R+ − + − + − : energy, power 

and ramp rate offered by the service in both charging and discharging 

directions. 

- Service parameters: 
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o Price ( s ): the marginal value of each variable in the objective function, 

o Upper and lower bounds of service variables ( max/min

( ),x s sb ), 

o Product sensitivity , , ESSp s x : the impact of service product variable p on the 

storage decision variable xESS. If xESS is a dispatch variable, , , ESSp s x is also 

called the product dispatch-to-contract ratio which is the ratio of the 

dispatched product to its offered quantity. 

- Service objective function (Js) that defines the operator’s utility value from 

providing that service. This is mathematically expressed as 

T

s s sJ X=  (27) 

- Service constraints (feasible set s ): 

o Service variable constraints:  

▪ Dispatch variable constraints: 

 min min max max max/min max/min

( ), , ( ), ,) (1 ,)(1 ;
ESS ESSx s s s x s s s x s s s x s s s s sb u b u x b u b u x P E−   −+  +  (28) 

▪ Product variable constraints: 

min max

( ), ( ), ; , , , , ,{ }x s s s s x s s s s s s s s s sb u x b u x E E P P R R+ − + − + −     (29) 

o Service constraints on energy storage dispatch variables:  

min min / max max, , ,s s ESS ESS s sP E P E P E+ −   (30) 

o Service variable intertemporal constraints:  

, , 1s t s tx x t+=    (31) 

where denotes any subset of the optimization horizon. 
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c. Service aggregate model including: 

o Aggregation constraints (feasible set Agg ):  

, ,

,
ESSESS p s x s ESS

s p

ESSXx p x=    (32) 

The process of building the generic optimization model for stacked service analysis is 

described in the following steps: 

1. Create an empty optimization model: 

a. set of variables X={}, 

b. objective function 0J = , 

c. feasible set {}= . 

2. Add the energy storage model without any services by updating 

a. X to XESS 

b. ESS= ,  

3. For s in the set of services: 

a. Update X  to sX X , 

b. Update J  to sJ J+ , 

c. Update to s . 

4. Add the service aggregation constraints: 

a. Update to AGG . 

5. Solve  

maximize

. .

X
J

s t X 
 

(33) 
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The optimal multiservice operation of energy storage is determined by adding the service 

objective functions to maximize the total revenues and appending the constraints from the 

energy storage model, all the services of interest, and the service aggregation model. The 

structure of the resulting multiservice optimization problem is independent of the selected 

services. Moreover, the interdependencies between services are captured by the product 

sensitivity parameters and service aggregation constraints. It is noted that the flexibility of 

the model can capture additional constraints that are not explicitly mentioned above. For 

example, if simultaneous participation in regulation and reserve markets is prohibited 

under a regulatory regime, an additional constraint can be added to model it as 

1reg resu u+   (34) 

4.4.1 Scalability to Additional Dimensions 

Another significance of the proposed model is that it is flexible and scalable to many 

other dimensions besides services including: 

a. Time (indexed by t) 

b. Space/location/nodes (indexed by n) 

c. Storage assets/technologies (indexed by a) 

d. Stochastic scenarios (indexed by ω) 

e. Blocks (indexed by b) 

Including each of these dimensions in the energy storage optimization model updating: 
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1. The variable space: The cardinality of the new variable space is X Y where Y is 

the cardinality of the new dimension. In other words, all the variables will be 

indexed by the cartesian product the old dimension and the new one. For example: 

( ), ,s s tx s S x s t S T       (35) 

2. The parameter space: This is updated similar to the variable space. 

3. The objective function: It is updated by a summation over all the indices in the new 

dimension. For example, 

,s s t

s S t T s S

J J J J
  

=  =   (36) 

4. The feasibility set: All the existing constraints should hold for each index in the 

new dimension. Also, additional constraints linking the relationships within each 

dimension need to be appended to the constraint set. These constraints are defined 

in Table 5. 

4.4.2 Solution Feasibility, Optimality and Tractability 

The proposed model is always feasible if the storage parameters (charge/discharge and 

energy limits and efficiencies) form a non-empty set. All the service constraints are 

designed with the feasibility guarantee by using either continuous or binary alternatives if 

their constraints are not met. For example, if a product variable of a service is not in the 

limits, either that product or the whole service is disabled from the constraints and the 

objective function and is substituted by energy storage limits. 
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Table 5 – Dimension-Specific Constraints 

Dimension Constraints Example 

Time (indexed 

by t) 

Intertemporal constraints 

modeling the dynamics 

and state evolutions in 

the problem 

, , 1 , , /ESS t ESS t chg ESSs t ESS t disE E P Pt t  + −

−  = + −  

where the energy at each time step is a function 

of energy at previous step and the output power 

at the current step. 

Space/ 

location/ 

nodes 

(indexed by n) 

Grid/network constraints 

modeling the power flow 

equations and limited 

transfer capacity of the 

network links 

( ), ,m n m n m nP B  = −  where Pm,n is the power 

flowing from node m to node n, Bm,n is the 

susceptance of the link between node m to node 

n, and θm is the voltage angle at node m with 

respect to the reference node. 

Storage 

assets/ 

technologies 

(indexed by a) 

Storage aggregation 

constraints modeling the 

impact of each ESS 

operation on the others 

( ), ,

0

1

-chg dis

t

A
ene ene ene

t t a t a

a

P P  
=

= +   where a is the index 

of ESS asset, ene  is the price-load sensitivity, 

ene

t and 0ene

t  are energy prices with and without 

any energy storage operation, respectively. 

Stochastic 

scenarios 

(indexed by 

ω) 

Non-anticipativity 

constraints modeling the 

dependencies between 

decision variables at 

different stages 

, ,

1 \{ }ene DA ene DAP P O  +=   where the day-ahead 

market bids should be equal in all the real-time 

stochastic scenarios.  

Blocks 

(indexed by b) 

Bounds and orders of 

blocks 

, ,

,

ene DA ene DA

t t bP P t T=   where the total energy 

bid is the sum of bids in the blocks/segments. 
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All the terms in the objective function as well as constraints are either linear or convex 

quadratic with a few binary variables. Thus, the resulted model is either a mixed integer 

linear program (MILP) or mixed integer quadratic program (MIQP). Both programs can be 

efficiently solved with the commercially available solvers conditioned on the size and 

complexity of the model which grows significantly with more dimensions in the model as 

well as the granularity and size of each dimension. Therefore, the value of a complex model 

should be compromised with the computational capabilities in building and solving that 

model. The tractability of ESS optimization problems with several dimensions is analyzed 

in chapter 5.  

4.5 Software 

This section introduces the developed software tool for multiservice revenue analysis of 

ESS. The tool has a graphical user interface that is designed for a straightforward and easy- 

to-use user experience. The core of the tool is the multiservice optimization model that 

optimizes the operation of ESS for providing multiple services. Electric utilities, system 

operators and planners, and private ESS investors can benefit from using this tool. Salient 

features of the tool are as follows: 

▪ It includes a wide variety of storage technologies with updated technical and cost 

parameters. 

▪ It includes a comprehensive list of ESS services and service options. 

▪ It co-optimizes all ESS service revenues with advanced optimization methods, and 

it is not based on heuristics or rule-based methods used in other ESS tools. 

▪ It enables the user to find useful information about ESS projects including: 

• The optimal operation of ESS 
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• Optimal market bids 

• Maximum service revenues 

• The “best” ESS technology per case study 

• The impact of ESS parameters on dispatch and revenues 

• Optimal sizing of ESS 

• ESS project cash flows 

• Benefit-cost analysis 

• System impacts of ESS 

Compared to other energy storage evaluation tools, this tool provides more flexibility to 

the user in modeling multiple services and customizing them based on specific 

assumptions. Other available tools either do not use optimization or they use optimization 

with priority tables to dispatch a number of the services based on a user-selected priority. 

However, this can result in suboptimal solutions where the revenue is underestimated. In 

the implemented software tool, the optimization solver decides on whether a service is 

profitable enough to be dispatched or not and, therefore, results in higher total service 

revenues. An overview of the tool is provided in Appendix A. More information on the 

tool design, documentation and instructions are reported in [115]. 

4.6 Application of Multiservice Optimization Model in Realistic Test Cases 

The generic multiservice optimization provides flexibility in modeling energy storage 

optimization problems. The methodology is applied to two realistic test cases described 

next.  
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4.6.1 Analysis of Multiple Revenue Streams for Privately-Owned Energy Storage 

Systems 

4.6.1.1 Background 

Most of the existing research on ESS services has been for utility-owned ESS and the 

benefits that ESS can offer to the system operator in terms of reduced costs. On the other 

hand, privately-owned ESS, an important emerging market, is not well-understood. This 

test case analyzes four of the most important privately-owned ESS services and applies the 

optimization models that maximize the owner’s revenue for a single service and for 

multiple combined services. Three market services, namely day-ahead energy, frequency 

regulation and reserve, as well as a non-market service, investment deferral, are considered 

as the revenue streams. Non-market services in the previous studies are usually considered 

as constraints, which do not necessarily increase the owner’s revenue. Hence, a more 

comprehensive analysis for these services is needed from the owner’s perspective. A novel 

revenue estimation model is proposed that captures the benefits of the ESS owner providing 

investment deferral to the utility. This revenue model also finds the optimal price for the 

service as the lowest price that the utility pays the ESS owner, who continues to receive 

benefits from providing the service. The optimal price guarantees the ESS owner’s revenue 

from providing the investment deferral service to the utility. It also minimizes the utility 

payments for the service while ensuring service provision. 

The developed optimization models are simulated with a typical Li-ion battery ESS data 

as well as the California ISO (CAISO) market prices to provide numerical results. 

Simulation results show how multiple services are stacked to maximize the owner’s 
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revenue. Evaluating stacked service revenues is of great interest to ESS owners and 

investors since in many cases providing a single service is not sufficient to derive a profit.  

4.6.1.2 Service Description and Problem Formulation 

In this test case, the ESS services and revenue streams earned by the ESS owner are 

discussed, and optimization models are proposed. Various combinations of services are 

modeled to investigate how they can be optimally stacked in order to realize maximum 

revenue. Note that the flexibility provided by the generic optimization facilitates the 

implementation of various combinations of services. Each service is described together 

with the optimization model that maximizes the owner’s revenue. In this test case, all 

models assume that the ESS is a price-taker (i.e., the market price is fixed and does not 

change based on the ESS bids and offers). Also, the power grid is not included in the 

models, and hence thermal, voltage, and dynamic constraints are not considered. 

a. Energy Arbitrage (EA) 

This service is extensively studied in chapter 3. Furthermore, the optimization model 

described by Equations (1) – (7) is cast into the generic formulation where the decision 

variables Xs indexed by the service name (s = EA). The price parameters data can be given 

in the two ways using either of: 

1. Energy products where all the price parameters are zero except for energy products: 

 0,0,0,( , ),0,0
T

EA DA DA  = −  (37) 

or 
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2. Power products where all the price parameters are zero except for power products: 

 0,0,0,0,( , ) ,0
T

EA DA DA t  = −   (38) 

 where πDA is the day-ahead energy market price and Δt is the optimization time 

step.  

The upper and lower bounds of the energy arbitrage service variables are given as 

( )max/min max/min max/min max/min max/min max/min

( ), 1,1 , , , , ,
T

x EA EA ESS ESS ESS ESS ESSb P E E P R =    (39) 

Note that the upper and lower bounds of the service binary variable are both 1 so that the 

service is enabled. The rest of the variables do not have any specific bounds other than the 

ESS variable bounds (energy, power and ramp ratings). 

The product sensitivity , , ESSp EA x  are all zero other than  

, , , , 1
ESS ESSE EA E P EA P = =  (40) 

These parameters being equal to one are used in the service aggregation constraints to 

model that the dispatch-to-contract ratio of energy and power product offers from the 

energy arbitrage service is one and these products need to be dispatched the same amount 

as bid and cleared in the energy market. 

As mentioned before, the significant benefit of the generic modeling is maintaining the 

same structure of the optimization problem for all the services. Therefore, the expressions 

of the service objective functions and constraints are not explicitly provided here. 
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b. Frequency Regulation (FR) 

This service is defined as a change in the active power injection from a resource in response 

to a frequency deviation in order to help maintain the frequency close to its nominal value 

[116]. The resource must be dispatchable. The ESS makes a profit from this service by 

offering its capacity to participate in the frequency regulation market. The revenue is equal 

to the accepted capacity bid times the price of regulation plus the actual charged or 

discharged energy times the energy price. The actual energy is determined by the system 

operator that calls the ESS to provide a certain portion of its offered frequency regulation 

capacity. Two separate products for regulation up and regulation down are modeled, 

similar to markets such as the CAISO. It is assumed that all the ESS offered regulation 

capacities is accepted at the market price. Again, using the generic modeling, only the 

parameters need to be given as inputs. The price parameters data is given as: 

 0,0,0,0,( , ),0
T

FR RU RU DA RD RD DA      = + −  (41) 

where the only non-zero parameters are those for the power products offered at regulation 

up and down markets. This price parameter models the frequency regulation revenue as in 

[50] where the it includes payments for the offered capacities at the market price plus the 

payments for the energy dispatched at the energy market price. The amount of frequency 

regulation capacity dispatched by the operator is assumed to be a constant portion of the 

offered capacity determined by 
ru  and 

rd  for regulation up and down, respectively. The 

upper and lower bounds of the frequency regulation service variables are similar to those 

in the energy arbitrage service in Equation (39). The product sensitivity , , ESSp FR x  are all 

zero other than  
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/ /, ,
1

ESSP FR P
 + − + − =  (42) 

, , ESSP F RE UR
 + = −  (43) 

, , ESSP FR E RD − =  (44) 

These parameters model how frequency regulation bids impact the aggregated bids as well 

as the dispatch.  

c. Energy Reserves (ER) 

This service represents a source of revenue derived from participating in the reserves 

market. The ESS offers a portion of its capacity to provide extra injection of power to the 

grid in case of unplanned outages or other events. The service is called by the operator, and 

the ESS and other resources that participate and are cleared in the market must provide the 

reserve within 10 minutes. The price parameters data is given as: 

 0,0,0,0,( , ),0
T

ER ER ER  =  (45) 

where the only non-zero parameters are those for the power products offered at reserve 

market. This price parameter models the reserve service revenue as payments only for the 

offered capacity at the market price πER. Since the dispatch probability of this service is 

much lower than that of the frequency regulation, as investigated in [117] and [33], it is 

assumed that the payments for the dispatch of this service is zero. The upper and lower 

bounds of the energy reserve service are given as 

( ) ( )max/min max/min max/min max/min max/min max/min

( ), 1,1 , , , , ,0 ,
T

x ER ER ESS ESS ESS ESS ESSb P E E P R =
 

 (46) 
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This way, it is assumed that this service only has an upward product to be discharged. If 

this is not the case, the similar bounds for the energy arbitrage service can be used. 

The product sensitivity , , ESSp ER x  are all zero other than  

/ /, ,
1

ESSP ER P
 + − + − =  (47) 

These parameters model how reserve bids impact the aggregated bids. Also, again since 

the dispatch probability is low, the bids impact on the dispatched power and energy level 

is ignored.  

d. Investment deferral (ID) 

Utilities can operate their own ESS or use privately-owned ESS to defer the investments 

in upgrading the T&D assets with additional capacity that is needed to meet load growth. 

The ESS offers the additional needed capacity during peak load times to mitigate the 

burden on heavily loaded lines and transformers. In the case of privately-owned ESS, while 

the utility benefits from the deferred investment cost, the ESS owners must be incentivized 

to provide this service or let the utility operate the ESS for this service. Therefore, a price-

based model is proposed where the owner’s revenue is determined as the amount of needed 

energy offered and dispatched during the peak time multiplied by the service price (πID). 

The utility requests the ESS to provide the power 
IDP  at certain times during the day and 

get remunerated with a fixed price
ID . The price parameters data can be given in the two 

ways: 
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1. The service revenue is obtained by the owner only if the full amount of requested 

power (PID) is dispatched: 

 ,0,0,0,0,0
T

ID ID IDP  =  (48) 

where the non-zero parameter is multiplied by the service binary variable. 

However, the ESS might be able to provide only a portion of that requested power 

for the investment deferral service: 

2. The service revenue is obtained based on the dispatched power: 

( )( )0, 0, ,0,0,0 0,0 ,
T

ID ID  =    (49) 

 where the minimum discharging power is priced at πID. 

These two definitions of service revenue lead to different simulation results and selection 

of the proper one should be done based on the service rules under each territory. The second 

model is used and simulated in the following sections as in [104]. 

The upper and lower bounds of the investment deferral service variables are given as 

( ) ( )( )( )max/min ,max ,max/min max/min max/min max/min max/min

( ), 1,1 , , 0, , , , , ,
T

x EA EA ESS ID ESS ESS ESS ESS ESSb P P P E E P R+ − =
 

 (50) 

where the minimum discharging power is limited between 0 to PID. Note that if the first 

service model is used the dispatch power must be greater than the requested power PID. 

The product sensitivity , , ESSp ID x  are all zero since the service does not provide any specific 

product offers/bids.   
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Modeling the investment deferral service as a lower bound variable that constraints the 

ESS minimum discharging variable provides the flexibility in the operation of ESS. For 

example, if other services are available and the ESS owner can obtain more benefits by 

providing more power to the other services than the investment deferral, then the model 

will compromise on the revenue from the investment deferral service. Note that this service 

is modeled either as a hard constraint or a pre-dispatch service in many ESS studies and 

tools such as EPRI StorageVET [118]. This approach underestimates the total revenue. 

e. Service Stacking 

Modeling any combination of services is done via the process described in section 4.4. 

However, explicit formulation for all the service combinations are provided in [104]. 

4.6.1.3 Simulation Results 

The ESS revenues are assessed for the four services under study and all their combinations. 

The time dimension is also considered by modeling the intertemporal constraints to capture 

the temporal value of ESS. ESS parameters and price data are given as inputs to the 

optimization models as follows. The parameters used for the battery ESS model are 

presented in Table 6. Price data was taken from the 2015 CAISO day-ahead markets for 

the energy and ancillary services [119]. For the investment deferral service, it is assumed 

that the utility requires the ESS to provide 500 kW (PID) during hours 18:00 – 20:00, and 

it pays the ESS at the price of πID = $0.5/kW. The utility obtains these values based on their 

load forecast, the investment amount, the deferral period, and the number of available ESS 

units that can be dispatched, as well as their impact on mitigating the overload on current 

assets. The simulation is performed for one year with a daily horizon (T = 24h) and hourly 
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granularity (Δt = 1h). Since all the binary variables are enforced to equality constraints, the 

model is linear and convex, and can be efficiently solved with current solvers. Table 7 

provides the annual revenue of the modeled ESS for different service combinations denoted 

by cases 1–15. 

Table 6 – Battery ESS Parameters 

Parameter Value Parameter Value Parameter Value 
,min

ESSP−  0 kW 
min

ESSE  400 kW l  100% 
,max

ESSP−  2000 kW 
max

ESSE  3600 kW chg  90% 
,min

ESSP+  0 kW ru  0.15 1/h dis  90% 
,max

ESSP+  2000 kW rd  0.15 1/h   

 

Table 7 – Annual Revenues of Different Services 

Case # 

Service Annual Revenue ($) Total 

Annual 

Revenue ($) 
Arbitrage 

Frequency 

Regulation 
Reserve 

Investment 

Deferral 

1 18,983 - - - 18,983 

2 - 121,265 - - 121,265 

3 - - 47,939 - 47,939 

4 - - - 91,250 91,250 

5 -15,360 147,626 - - 132,266 

6 13,533 - 49,062 - 62,595 

7 - 118,688 3,723 - 122,411 

8 -8,240 139,223 2,026 - 133,009 

9 16,390 - - 91,250 107,640 

10 - 173,631 - 91,250 264,881 

11 - - 64,129 91,250 155,380 

12 -11,726 141,427 - 91,250 220,951 

13 11,977 - 48,302 91,250 151,530 

14 - 243,035 0 91,250 334,285 

15 -3,631 131,758 2,439 91,250 221,817 
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Based on the results, the frequency regulation has the highest value among other single 

services while energy arbitrage has the lowest value. This is reasonable since the impact of 

the frequency regulation offered capacity on the ESS energy level is less than that of energy 

bids (proportional to 
ru and 

rd ). Thus, frequency regulation bids can be greater for longer 

periods compared to energy periods. Combining energy arbitrage with frequency 

regulation increases limits on frequency regulation bids since, for example, if ESS is 

charging with 2 MW, it can provide up to 4 MW of regulation up service. This increases 

the revenue of frequency regulation as well as the total revenue by compromising on energy 

arbitrage revenue. The same reasoning applies to energy arbitrage and reserve services 

combined. The investment deferral service is effectively stacked with frequency regulation 

and reserve since their stacked revenue is greater than the sum of their individual service 

revenues. This shows the superadditivity of revenues from these services. 

Higher values of services in cases 10, 11 and 14 than those with the energy arbitrage service 

(12, 13, and 15, respectively) is because the price of energy dispatch variables is zero in 

the former cases. Therefore, the frequency regulation and the reserve bids and the revenues 

are higher in these cases compared to those with energy arbitrage included in the set of 

services. However, cases 12, 13 and 15 are considered as more realistic cases than cases 

10, 11 and 14. In cases 12, 13 and 15, the energy arbitrage is included in the objective 

function, and energy dispatch variables are associated with costs that limit their dispatch 

compared to previous cases. Therefore, their total revenue is less than cases 10, 11 and 14, 

as expected. 

Table 7 shows that the highest total revenue among realistic cases (excluding cases 10, 11 

and 14) is for the case 15 that combines all services. The total revenue in this case is 79.3% 
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of the sum of individual revenues. Figure 24 illustrates how individual annual revenues are 

stacked when all services are co-optimized. While the investment deferral revenue does 

not change in combined services compared to its individual service, the revenue of the 

reserve service is decreased significantly in stacked services. This is due to the high price 

of investment deferral service and low price for reserve market. 

 

Figure 24 – Single- and stacked-service annual revenues 

Using this structured service revenue analysis, the optimal price for the non-market 

investment deferral service is computed. In these simulations, the investment deferral 

service is always fully granted, and its revenue does not change when combined with other 

services. Thus, the price is high enough to incentivize the owner to provide this service 

under all the scenarios. The utility may choose to offer a lower price for this service while 

ensuring that the ESS can provide it. In other words, the utility is looking for the marginal 

cost of providing investment deferral service by the ESS owner. This cost is calculated 

after the optimization problem is solved. Since the model is strictly convex and strong 
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duality holds, this cost is equal to the Lagrange multiplier (dual variable) associated with 

the constraint that models the upper bound of the variable lower bound of the ESS 

minimum discharging power: 

,min

ESS IDP P+   (51) 

This cost is computed for cases where investment deferral is combined with other service(s) 

(cases 9–15) and the results are presented in Table 8 under the column “Marginal Cost 

($/kW)”. 

Table 8 – Marginal Cost and Optimal Price for Investment Deferral Service 

Case # 
Marginal Cost 

($/kW) 

Optimal 

Price ($/kW) 

Utility 

Savings ($) 

  9 0.0783 0.1859 57,323 

10 0.0271 0.0813 76,413 

11 0.0540 0.1192 69,496 

12 0.0318 0.0713 78,238 

13 0.0432 0.0628 79,789 

14 0.0782 0.1598 62,087 

15 0.0340 0.0612 80,081 

The results indicate that the current investment deferral service price paid by the utility πID 

= $0.5/kW is more than 6 times the marginal cost of providing this service by the ESS 

owner. This is a considerable amount that the utility can avoid paying by lowering the 

service price. However, setting this price to the maximum marginal cost does not guarantee 

service provision by the ESS since it may no longer result in the maximum owner’s revenue 

where PID may not be fully provided by the ESS and constraint (51) may no longer be 
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active. Meanwhile, this marginal cost gives a lower bound for the service price. The 

optimal price is found iteratively as the lowest price that guarantees full-amount service 

provision. Optimal prices as well as the utility savings compared to the base case (πID = 

$0.5/kW) are calculated and provided in Table 8. This analysis shows the significance of 

setting an optimal price by the utility for procuring such non-market services. 

4.6.2 Behind-the-Meter Energy Storage: Economic Assessment and System Impacts in 

Georgia 

This test case presents the application of the proposed optimization approach to maximize 

the value of behind-the-meter energy storage that is owned and operated by customers. The 

objective of the optimization problem is to minimize the customer’s electricity bill under 

various utility tariff rates. Each rate structure results in different options for the formulation 

of the optimization problem if modeled in the conventional way. However, with the 

proposed generic model, the structure of the problem does not change for each rate and 

only the input parameters are changed. Publicly available utility tariff rates from Georgia 

Power are used. The investment cost assumptions are derived from the latest market reports 

and from available vendor data. The impact of utility tariffs on the energy storage 

economics and system impacts are quantified. The simulation results show that different 

categories of behind-the-meter customers can obtain benefits from the installation of 

energy storage in this region. Moreover, tariffs with demand charges are usually more 

profitable for customers with energy storage and more desirable for the system operators 

to achieve a smoother net load curve. 
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4.6.2.1 Background 

The use cases for BTM ESS and their economics vary significantly depending on the ESS 

technology, regulatory regimes, rate structures, and incentives in various regions. For 

instance, the Southeast region is generally confronted by market and regulatory conditions, 

which are substantially different from other states, where explicit state subsidies and/or 

procurement targets have been enacted, or where explicit market signals incentivize and 

compensate owners for grid services. Analysis of the benefits of behind-the-meter (BTM) 

ESS hence requires detailed modeling of the rate structures and specific regulatory aspects 

of each region. 

In this test case, the generic optimization modeling is applied to determine the economic 

benefits of BTM battery ESS for the customers. The model covers diverse and realistic 

utility tariff rates, which is an innovative feature in software tools for ESS studies. The 

economics and system level impacts of BTM ESS are assessed using the optimization 

approach. The specific contributions of this test case are:  

- The application of the proposed generic optimization approach to model various 

tariff rates including energy charges, time-of-use, demand rates, and real-time 

pricing,  

- Assessment of both BTM use benefits as well as system level impacts,  

- Insights on the economic viability of BTM ESS for customers in the Southeast 

region, yet with generalized models that can be applied in other regions, and 
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- Mechanism to analyze the interplay between rates and EES impacts. This test case 

provides insights into the impact of regulatory policies associated with BTM ESS 

deployment in a region.  

The next section describes the methodology including the optimization model as well as 

system impact and benefit-cost analyses. The development of the datasets needed for the 

simulation and simulation results are also provided. 

4.6.2.2 Proposed Methodology 

In this section, the methodologies and assumptions developed for the simulation of BTM 

ESS are presented. The simulation workflow is illustrated in Figure 25. The analytical 

modules include: 

- Optimization, 

- System Impact Analysis, and 

- Benefit-Cost Analysis. 

 

Figure 25 – The simulation workflow for BTM ESS analysis 



 100 

- Optimization Module: 

The core of the methodology developed is the temporal optimization module. Using this 

module, customers who own and operate ESS can evaluate the minimum monthly charge 

for their electricity bill. Equivalently, the optimization determines the optimal operation of 

ESS that minimizes the monthly electricity charge subject to ESS parameters, tariff rates, 

and customers’ load profiles.  

Utility tariff rates have different temporal and consumption-dependent structures, e.g. 

time-of-use, multiple tiers, etc. Modeling each tariff rate requires a specific optimization 

problem that is designed for that tariff rate. However, this is not a viable option for an ESS 

analysis tool to be useful and beneficial for customers served by different utilities and tariff 

rates. Therefore, there are significant needs and benefit in application of the generic 

optimization framework in BTM ESS analysis. Regardless of the tariff rates and other 

inputs, the optimization can be generically modeled as in (52)–(69). Although a compact 

formulation is presented here for the ease of understanding, the formulation can be cast 

into the proposed generic framework in section 4.4.  

1 11 1
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t b b l
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t l b b
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The objective function in (52) is the monthly electricity charge that consists of energy 

charge (the first two terms) and the DC (the second two terms). The energy charge can be 

calculated based on either a TOU tariff (with price πt associated with each time period t) 
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or an energy-tiered tariff (with energy price Cb associated with block b of a stepwise 

function). The DC can also be calculated similarly. Constraint (53) defines the net load as 

the load plus ESS output where charging is considered as a positive load and discharging 

is a negative load. Constraint (54) limits the lower bound of the net load. If net metering 

does not apply (s=0), the negative net load is avoided. Conversely (s=1), the net load can 

be a negative value bound by the negative of the ESS maximum discharging power. 

Constraints (55)–(60) model ESS technology constraints as in (1)–(7).  

Constraints (61)–(64) define a stepwise function for the monthly energy consumption. As 

an example, a tariff charges customers at C1 $/kWh for the first E1
max kWh of their monthly 

consumption and at C2 $/kWh for their next E2
max kWh. If TOU tariff is applicable, there 

is only one Cb that models overhead charges energy charge available in some tariffs, e.g. 

fuel cost recovery. Constraint (65) defines the demand for each demand level l, i.e. the 

maximum net load over all the time steps in period 
l
. We associate demand levels with 

the temporal variability of DCs, e.g. a two-level demand rate with level one being 5$/kW 

during off-peak and level two being 10$/kW during on peak hours. Moreover, if demand 

rates are variable based on the maximum demand, i.e. a stepwise function of demand, only 

one demand level is assumed and the set 
l
 is equal to . In this case, constraints (66)–

(69) define the stepwise function for the monthly demand. Note that in both energy and 

DCs if Cb’s are nondecreasing with b, the objective function is convex and integer variables 

ub
ene and ub

dem
 are relaxed as well as constraints (62), (63), (67), and (68). Otherwise, these 

constraints enforce the order of blocks in the optimization, i.e. the block b1 is used first to 

include the energy/demand and only if b1 has reached its maximum of E1
max/P1

max then 

u2
ene/ u2

dem can become 1 and b2 is used to include the rest of the energy/demand and so on.  
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- System Impact Analysis Module: 

The system impact of BTM ESS shows how the system’s total net load (NL) profile 

changes under various tariff rates and ESS penetration levels (PL: the proportion of total 

customers with BTM ESS). It is expected that customers seeking to minimize their bill 

operate their ESS as determined by the proposed optimization problem. Therefore, the 

system impact is calculated using the optimal ESS operation of the customers. If there are 

N customers under study, the system’s net load at time t is found using (70). This 

calculation is useful for planning studies as well as rate design. 

( )* *

, , ,

1

( )
N

load chg dis

t t n t n t n

n

NL PL P PL P P
=

= + −  (70) 

- Economic Analysis Module: 

The profitability of BTM ESS is calculated using economic metrics such as net present 

value (NPV) and payback period (PP). The optimal revenues found by the optimization 

module are passed into the Benefit-Cost Analysis module where they are first subtracted 

by the storage costs. The metrics are then calculated using (71) and (72). 

( )1

( )
1

Y
y y

y
y

Revenue Cost
NPV Y

r=

−
=

+
  (71) 

min ; ( ) 0PP y NPV y =  (72) 

where Y is the expected storage life and r is the discount rate. As in (72), payback period 

is the first year whose NPV is nonnegative (if exists). The profitability results are helpful 

information for customers’ investment decisions in managing their electricity bill. 
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4.6.2.3 Data Collection 

In order to simulate the impact of rate structures on optimal operation and payback period 

in realistic cases, the required input data was collected strategically to represent actual load 

data sets and battery parameters. Thus, the results better match real-life scenarios, which is 

critical for decision making. 

- Load Profiles: 

For residential customer load profiles, the Pecan Street Database [120] is used, which 

contains high resolution (1-minute) load data for many residential customers. Although 

none of these customers are in the Southeast region, the customers located in Austin, Texas 

are chosen due to climate similarity. The average load size (annual demand or maximum 

load in a year) of these customers is 9.5 kW, and their average monthly energy consumption 

is about 900 kWh. The sum of daily load profiles for summer (June through September) 

and winter months (October through May) are plotted with the system impact results in the 

next section. 

For commercial and industrial (C&I) load profiles, a publicly available data source 

supported by Department of Energy (DOE) is used [121]. This database provides 1-year 

long hourly simulated load profiles for various locations and a set of commercial buildings, 

such as restaurants, offices, hospitals, etc. The data simulated for Atlanta location is used 

to represent the Southeast region. Figure 26 shows the demands (maximum hourly load) 

and average hourly consumption of the diverse set of load profiles used which represent a 

realistic spread of actual commercial load variability to better visualize ESS impact. The 
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average daily load profiles for summer and winter months summed up over all these 

customers are also plotted in the simulation results section. 

 

Figure 26 – Maximum and average of C&I loads per each building type 

- ESS Parameters: 

For residential customers, ESS parameters are selected based on Tesla Powerwall [122]: 7 

kW maximum charging/discharging rates, 15 kWh total and 13.5 kWh usable capacity 

(90% depth of discharge), and 90.25% roundtrip efficiency (95% charging efficiency  

95% discharging efficiency). The cost of the Powerwall is $6700/module (equivalent to 

about $500 per usable kWh of storage). We use this number as fixed capital cost and 

assume no fixed or variable O&M costs. Based on the load profiles, one module is 

calculated to be enough for each customer. 

For C&I customers, ESS power ratings ( /

max

dis chgP ) are selected based on their load profiles. 

These ratings are assumed to be both equal to 20% of the customer’s annual maximum 

load. The capacity rating is selected as 2 hours for all customers which based on the most 
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common duration parameter for BTM application available at DOE, Energy Storage 

Database [111]. The same ESS technology used for residential customers are also used for 

C&I but in larger scale. Therefore, the depth of discharge and efficiencies are assumed 

similar to those of the residential ESS. The total cost (sum of capital and O&M costs) is 

assumed to be $400/kWh [14] and incurred in the CapEx year. 

- Utility Tariffs: 

Publicly available Georgia Power tariff schedules and rate structures [91] are used to create 

the tariff parameters. Strictly energy-tiered (net consumption) tariffs with no demand 

charges are not considered for the residential simulations since ESS cannot take advantage 

of this price structure to offset costs. Only residential TOU tariffs provide economic 

benefits. There are three of such rates: Nights & Weekends (N&W), Plug-In Electric 

Vehicle (PEV), and Smart Usage (SU). The SU rate includes DC and TOU energy charges. 

The C&I load profiles in this study are grouped into medium (demand≤500kW) and large 

(demand>500kW) subtypes based on Georgia Power definition. For each subtype, the most 

common two rates are used: energy-tiered with DC (Power and Light, PL), and TOU. 

Regardless of the customer type, the breakdown of a customer’s bill is as follows:  

Total Monthly Bill Charge = Base Rate + Other Schedules + Municipal 

Franchise Fee + Sales Taxes 
(73) 

where 

Base Rate = Basic Service Charge + Energy Charge + Demand Charge (74) 

Basic Service Charge = Fixed (75) 

Energy Charge = Energy*rate [c/kWh] (76) 
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Demand Charge = Demand*rate [$/kW] (77) 

Other Schedules = 25% Base Rate + Energy*Fuel rate [c/kWh] (78) 

Municipal Franchise Fee = 2.9989% (Inside City Limits) of sum of all above (79) 

Sales Taxes = 6% of sum of all above (80) 

As can be compared, the proposed optimization formulation (52)–(69) can model all of the 

above details. Using these tariff structures creates six test cases for residential: three cases 

of TOU where customers can sell back to the utility (net metering is applicable, s=1), and 

three cases where they cannot (s=0). The C&I tariff structures create six cases as well: two 

TOU rates and two energy-tiered with DC. For the two TOU rates, two cases where the 

customer can sell and cannot sell are analyzed. For each test case, the ESS annual revenues 

for each customer under a specific tariff type were calculated by solving the optimization 

problem. The results are provided in the next section. 

4.6.2.4 Simulation Results 

The developed simulation determines the profitability and system level impacts of BTM 

ESS in various test cases for both residential and C&I customers.  

- Residential Test Cases: 

Each of the three residential TOU tariff rates is simulated twice with either s=0 or s=1 for 

all residential customers. Table 9 shows economic results namely the customer’s savings 

and payback periods for the six test cases.  
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Table 9 – Economic Results for Residential Tariffs 

Test Case # Rate 

Annual Cust 

Savings ($) 

Payback Period 

(years) 

Med Max Med Min 

1 N&W (s=0) 248 277 27.0 24.2 

2 N&W (s=1) 277 277 24.2 24.2 

3 PEV (s=0) 600 643 11.2 10.4 

4 PEV (s=1) 643 643 10.4 10.4 

5 SU (s=0) 289 635 23.2 10.5 

6 SU (s=1) 305 688 21.9 9.7 

Due to the variability of customers’ load profiles, a distribution of savings and payback 

periods is obtained. For the first four cases, most of the customer savings are close to the 

maximum value. Therefore, the reported median (Med) represents the savings for a typical 

customer. The maximum savings (Max) shows the best case, which is not much greater 

than the median. Thus, the customers’ savings are very close to the maximum possible 

regardless of their load profiles. For test cases (2) and (4), since the only revenue is from 

energy time-shifting with no demand charge and the customers can sell energy, the 

optimization problem and its outputs are no longer dependent on the load profile. 

Moreover, since the rates are known with certainty in advance, all customers can obtain 

maximum revenue and minimum payback period in these two cases. 

The minimum payback period for the N&W rate is higher than the other rates since the 

energy rate is flat during winter months and ESS optimal dispatch is nonzero during the 

weekdays of four summer months where the energy rate is not flat. While test cases (3)-(6) 

each have a minimum payback period of less than 11 years, it is important to note that the 
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median payback periods for test cases (5) and (6) are more than double their minimum 

payback periods, while in test cases (3) and (4) there is a minimal increase between the 

median and minimum payback periods. This demonstrates how the PEV tariff provides 

reliable revenue for the majority of residential ESS owners, while the potential revenue 

from the SU tariff is highly dependent on the individual load profile of the customer. This 

is driven by the DC in the SU rate that makes the optimization dependent on the load 

profile. In summary, while the SU rate with s=1 provides the lowest payback period, the 

risk associated with the savings from this rate is higher than that of the PEV rate. The PEV 

rate, however, can provide less risky savings with 10 to 11 years of payback period.  

The system level impact is calculated from the optimal ESS dispatch of all the customers 

using (70). For brevity, the results for test cases (3) and (5) are presented in Figure 27(a) 

and (b), respectively. The first letter (S/W) shows the season and the number after that is 

the percentage of penetration level of ESS in the system (PL×100). Summer and winter 

months are plotted separately to capture the impact of the seasonal changes in tariffs.  

The high peak prices in both cases incentivize the customers to discharge their ESS during 

the afternoon hours of summer months and lower their bills. Therefore, peak prices in both 

these tariffs is a proper signal to shave the summer afternoon peak. However, in test case 

3, the peak load is shifted to the super-off-peak hours (11pm to 7am). This can become 

challenging especially with the increasing penetration of BTM ESS resulting in new peak 

hours and increasing the generation ramping requirement around the hours that tariffs 

change their rate. Test case 5, on the other hand, results in a more desirable system impact 

with the peak load shifted almost evenly throughout the nonpeak hours. The above 
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comparison holds for winter months as well. The more desirable system impact of case 5 

is due to the DC in SU tariff that incentivizes the smooth total load that minimizes demand. 

 

(a) 

 

(b) 

Figure 27 – System level impact of BTM ESS for test cases a) 3 and b) 5 
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- C&I Test Cases: 

The four C&I test cases (two subtypes and two rates each) are simulated and results are 

presented here. The parameter s is unnecessary here since the net load does not become 

zero in any case for any of the customers. Table 10 shows the minimum, median and 

maximum payback periods for these cases. Since the ESS is different for each C&I 

customer, their total bill and also their savings cannot be compared directly and thus not 

reported in Table 10.  

Table 10 – Economic Results for C&I Tariffs 

Test 

Case # 
Rate 

Payback Period (years) 

Min Med Max 

7 P&L-M 7.7 9.6 12.7 

8 TOU-M 5.2 6.8 7.4 

9 P&L-L 5.7 8.2 16.9 

10 TOU-L 44.6 44.6 44.6 

Results for test cases 7, 8, and 9 show promising payback periods. Especially, the TOU 

tariff for medium-sized loads (case 8) provides the best payback periods in less than 7.4 

years regardless of the load profile. This indicates that many of such customers can 

considerably and reliably benefit from the installation of a BTM ESS at their sites. Also, 

for the large customers, the TOU tariff results in relatively low payback periods but with 

more risk compared to the TOU-M. In case 9, the median payback period is higher than 

that of case 8, which shows that the profitability of installing ESS is more dependent on 

the customer’s peak demand and how much energy is needed to reduce the peak demand. 

The payback periods in the case 10, TOU tariff for the large customers, are all very large 

and nonprofitable since the rate is flat for 8 months and the ESS revenue in this case is 
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restricted to the four summer months. The payback periods are also constant since again 

the optimization problem is independent of the load profile because there is no DC in this 

tariff.  

The system level impact of these test cases is also calculated using (70). In almost all these 

cases, the system impact is negligible and therefore not reported. The most significant 

system impact is resulted by case 8 where only during the peak hours of summer months 

the system total net load is reduced up to 10% with PL = 50% as a result of ESS discharge 

operations as shown in Figure 28. However, this is change still much less than that in 

residential test cases. 

 

Figure 28 – System level impact of BTM ESS for test case 8 

4.7 Summary 

This chapter presented a systematic methodology for multiservice analysis of energy 

storage operation. It also proposed a generic optimization framework that can co-optimize 

the ESS revenues from multiple services. A software tool is developed based on the 
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designed system architecture. The applications of the generic optimization framework and 

the software tool in two realistic test cases presented in this chapter and summarized as 

below: 

The first test case analyzed energy arbitrage, frequency regulation, energy reserve, and 

investment deferral using CAISO historical data. For each service, the generic optimization 

model is applied with the proper parameters. Service stacking is modeled as co-

optimization problems with specific constraints that results in the maximum potential 

revenue. The modularity of the generic model facilitated the analysis of various service 

combinations using a systematic build of an optimization problem. With this model ESS 

owners and investors can estimate the maximum benefits that they can obtain by providing 

sets of services. The results indicated that frequency regulation has the highest value among 

the individual services in CAISO while energy arbitrage has the lowest value. Results also 

showed that different services can be stacked to provide the maximum revenue. Finally, a 

pricing mechanism for investment deferral as a non-market service was proposed which 

showed to be beneficial for the ESS owner as well as the utility in the context of procuring 

this service from privately-owned ESS. 

The second test case applied the proposed generic optimization framework in order to 

analyze the economics and system impacts of behind-the-meter (BTM) energy storage in 

the state of Georgia. The proposed mixed-integer optimization formulation supports 

various tariff rates including energy charges, time-of-use, demand rates, and real-time 

pricing, making the methodology applicable to multiple regions. Georgia Power tariff rates 

and metered customers’ load profiles were used to simulate realistic cases. The results 

revealed promising payback periods as low as five years for BTM energy storage projects 
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under specific tariff rates. It is shown that the time-of-use rates are usually less profitable 

for customers but more reliable since they are less dependent on uncertain data. On the 

other hand, tariffs with demand charges can provide more profit for the customers but with 

more uncertainty. The system impact assessment of BTM energy storage revealed that 

demand charge rates can result in smoother system net load profiles with high penetration 

of BTM energy storage. The results can provide insights for BTM customers to invest in 

energy storage to reduce their bill, and for utilities to understand the impact of tariff rates 

on the adoption of BTM storage especially at high penetration levels.  

As an extension to the models used in these two applications, the stochasticity of uncertain 

parameters and storage degradation model can be incorporated. It is also interesting to 

analyze scenarios where an aggregator can use distributed energy storage devices to 

participate in ancillary services markets and increase the value of energy storage. A 

detailed model is proposed and analyzed in the next chapter that includes the above 

complexities. 
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CHAPTER 5. THE TEMPORAL COMPLEXITIES OF ENERGY 

STORAGE OPTIMIZATION MODELS: VALUE AND 

DECOMPOSITION  

5.1 Introduction 

In Chapter 4, we proposed a generic multiservice optimization model for energy storage 

analyses. We showed that the model is scalable to any number of services as well as many 

other dimensions conditioned on the size and solution tractability. Modeling multiple 

and/or highly granular dimensions poses numerical challenges and increases the 

computational time of the optimization model solution. In particular, the time dimension 

and temporal aspects, i.e. optimization horizon and temporal resolution, are very important 

in energy storage optimization problems and require in-depth research.  

Optimization horizon is important since unlike conventional energy resources, energy 

storages are considered limited energy resources [7]. This creates a tight temporal 

dependency of energy storage operation meaning that its operation is dependent on its state 

of charge and state of charge is determined by its operation at previous time steps. 

Therefore, to globally optimize the ESS operation, one must solve an optimization problem 

covering all the periods in the time-horizon. This will increase the value of energy storage 

but can also increase the computational solution time. 

Temporal resolution is another important aspect. Since many new energy storage 

technologies, such as batteries, have fast response times, they can provide highly granular 

services with a few seconds resolution, such as in the frequency regulation service where 
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the fast-responding resources are exposed to 2-4 second AGC signal [123]. Optimizing for 

such a high-resolution and stochastic signal especially for long-time horizons is 

numerically challenging. However, it is very important to model this real-time operation 

in scheduling and planning decisions due to energy storage degradation [94] as well as 

other temporal factors such as ramping.  

The current practice is to compromise between the value of the model complexity and the 

computational capabilities in building and solving that model. A very simple approach used 

by many researchers and industry actors for long-time horizons in energy storage 

optimization problems is to break the long-time-horizon into smaller horizons and then 

optimize for smaller ones [92]. For example, instead of solving the optimal operation for 

one year, the operation is optimized in 365 days separately with the constraint that ESS 

state-of-charge at the beginning and end of each day should be equal. This approach is not 

globally optimal and compromises the accuracy of the calculated ESS benefits. Moreover, 

several services have temporal resolution of longer than a day. For example, the capacity 

market in many areas, such as NYISO and ISONE, is a monthly service and capacity bids 

are unique within each month [93]. Thus, daily optimization does not yield optimal 

solution. High resolution temporal complexity is usually simplified in the literature where 

real-time operation models with the high resolution (e.g. in seconds) are decoupled from 

the lower resolution (e.g. hourly) scheduling problems using a time scale separation 

principle. Some models use sequential approaches that first solve the scheduling problem 

and the optimal decisions are passed to the high-resolution operation problem for real-time 

control purposes [94]. Although the numerical tractability is improved by these 

simplifications, the value of jointly optimized scheduling and real-time operation is still 
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compromised. Therefore, these complicating temporal aspects is another factor that hinders 

current optimization models to capture the maximum value of ESS. 

5.2 Objective and Contribution 

In this Chapter, we analyze the temporal complexities of energy storage optimization 

problems and answer the following important questions: 

- What is the added value of a temporally complex ESS problem? 

- How to solve the complex ESS problem in a tractable way?   

For these ends, we first propose a stochastic multi-timescale optimization model for the 

price-maker participation of aggregated ESS in multiple markets and local services. This 

complex model has multiple dimensions including: 

- Time: high resolution with a long horizon 

- Services: wholesale market services as well as local services 

- Energy storage technologies: different storage parameters 

- Location: different local requirements 

- Scenarios: several stochastic realizations of uncertain parameters 

While the model can capture several interdependencies between dimensions, we focus on 

the time dimension where the model jointly optimizes the scheduling variables as well as 

the real-time operating strategies. Using this optimization model and realistic data, we then 

explore the added value of a) including high resolution real-time operation in a scheduling 

problem and b) global solution of a multiday problem with respect to its daily optimization. 

Results will help to quantify the value that has been blocked due to numerical challenges 
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in solving global and high-resolution optimization problems. Next, we propose two 

decomposition techniques for solving the numerically challenging optimization problem. 

These two techniques are based on linear sensitivities and the alternating direction method 

of multipliers (ADMM) that solve the global problem by breaking it into smaller pieces, 

each of which are then easier to solve [124] and then iterating between solving the smaller 

problems to approach the global solution. This way, long-term and high-resolution ESS 

optimization problems are solved globally without compromising their added value. Thus, 

we can rely on more profitable ESS projects that attract investors and facilitate their 

deployment.     

The rest of this chapter is organized as follows. The optimization model is presented in 

section 5.3. The value of the proposed model is simulated with realistic data in section 5.4. 

The temporal decomposition techniques are proposed in section 5.5 and simulated in 

section 5.6. Section 5.7. discusses how the proposed methods improve the computational 

time of large-scale ESS optimization problems. Finally, section 5.8. provides a summary 

this chapter.  

5.3 Stochastic Multi-service Optimization Model for the Jointly Optimal 

Scheduling and Operation of Aggregated ESS 

The formulation of the proposed two-stage stochastic optimization problem is provided in 

(81)–(103). This problem is solved by the operator/aggregator of multiple ESS sited at 

different locations, but the same pricing node, participating in month-ahead capacity 

market, day-ahead energy and ancillary services, i.e. frequency regulation and reserves, 

markets and providing local services (e.g. limiting the net load of a facility as a non-wire 
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alternative for investment deferral). The first-stage decision variable is the capacity market 

bid for the next month, while the second-stage variables include energy and ancillary 

service bids for each hour t in the next month as well as high resolution regulation dispatch, 

which is modeled as vector Qt,s,ω for each hour t. The temporal resolution of market bids 

and prices are hourly, and each index t denotes a one-hour period. However, Qt,s,ω is a 

vector of τ decision variables and 1/τ is the resolution of the regulation signal in seconds. 
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The objective function in (81) maximizes the expected value of the total net profit of an 

aggregated ESS owner. The first line in (81) models the market revenues from capacity, 

energy, regulation and reserve services. The regulation market revenue includes capacity 

payments as well as regulation mileage payments. The second line in (81) models the costs 

including the penalty cost of the deviation from a requested dispatch a local service as well 

as the degradation cost modeled as a linear function of ESS exchanged energy. Note that 

the degradation can be modeled more accurately as a function of the number of cycles with 

different depth of discharge [62]. Such a detailed modeling is out of the scope of this work 

and left as future work. 
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Constraints (82)–(102) hold for all the time periods t, all storage assets s, and all scenarios 

ω. Constraint (82)–(85) model the impact of ESS bids on market prices, where if the 

aggregate bid is zero, the price is equal to the simulated price parameter μ0. We assume the 

sensitivity coefficients (α) are positive and regulation and reserve participations do not 

increase prices. This is valid since increasing ancillary service offers will depreciate their 

prices. Constraint (86) defines the performance score [123] that models how well a 

regulation resource responds to the regulation signal r. Regulation signal is a high-

resolution (2–4seconds) stochastic parameter normalized in the range [-1, 1] and shows the 

ratio of the regulation bid that should be dispatched in real-time. Figure 29 shows a day-

long two-second regulation signal in the PJM market (RegD) [105]. If the regulation 

dispatch accurately follows the requested regulation (Pregr), the performance score is 1 and 

the mileage payment for a given regulation bid is maximum. Constraint (87) limits the 

performance score to be no less than a minimum score. The regulation resource must keep 

its score high enough to be eligible for participation in the regulation market. Although 

constraint (86) is nonlinear, its application in the objective function using constraint (87) 

results in linear terms. 

 

Figure 29 – Two-second regulation signal in the PJM market for a day (1/1/2017) 
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Constraints (88) and (89) limit the discharging and charging powers, respectively, while 

constraint (90) ensures that charging and discharging do not happen at the same time. Note 

that since there is a degradation cost for the sum of charging and discharging powers, 

constraint (90) is always met and therefore it can be relaxed as well as the binary variables. 

Constraints (91) – (93) model the constraints on the maximum capacity, regulation and 

reserve bids, respectively. The capacity market requirement modeled in (91) is defined by 

the parameter Tcap which is the number of consecutive hours that the capacity resource 

must generate or be discharged during capacity periods cap . Regulation bid in (92) is 

assumed to be symmetrical for positive (discharge) and negative (charge) directions. This 

is the case in markets such as PJM where there is only one regulation product. The reserve 

bid is assumed to be only for positive direction (discharge). If regulation and reserve 

products have separate up and down bids, as in CAISO, these constraints can be updated 

trivially. Constraints (94) and (95) are checked by the market operator and the ESS operator 

to ensure that energy and ancillary service bids are feasible by the ESS power limits. Icap is 

an indicator function which is 1 for all the periods in cap and zero otherwise. Constraints 

(96) and (97) model the local services and limit the output power of the ESS based on 

required dispatch. For example, the output power must be above a threshold to defer an 

investment of a critical asset such as a transformer. Note that the worst-case scenario for 

regulation dispatch is also considered. Also, to avoid infeasibility, the auxiliary 

nonnegative variables ,

,

,

d

s

ev ub

tP  and ,

,

,

d

s

ev ub

tP   are added and penalized with a quadratic cost 

function in the objective (81). 

Constraint (98) models the stored energy at time step t based on the stored energy at t-1 

and available at t (
l models storage leakage over one period) plus the net energy exchange 
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due to the dispatch in all the four markets. It is assumed that the reserve and capacity bids 

are dispatched with a probability /res cap and therefore their impact on the stored energy is 

modeled with their expected values. Constraint (99) ensures that the energy required for 

the capacity market is always available during cap  even if not dispatched. Constraints 

(100) and (101) enforce the boundary conditions on the available energy at the beginning 

and the end of the optimization horizon. The dual variables of these constraints are denoted 

with λ. These constraints serve as the linking constraints to the adjacent optimization 

horizons and are key in our proposed decomposition methods. Constraint (102) limits the 

stored energy at each time step to the ESS maximum and minimum allowable energy 

levels. Finally, constraint set (103) is the non-anticipativity constraints for first-stage 

decision variables i.e. capacity market bids.  

The proposed ESS optimization problem is a mixed integer quadratic programming. 

However, as discussed, the binary state variables 
, ,

dis

t su 
and 

, ,

chg

t su 
 in constraints (88)–(90) 

can be relaxed and the problem becomes a convex quadratic program. Thus, since all the 

constraints are linear, strong duality holds and the optimal dual variables can be used for 

sensitivity analysis of the optimal solution as constraints are perturbed [124].  

Solving for the globally optimal solution of the proposed optimization problem can be 

challenging due to complicating constraints across each dimension: a) Number of services: 

the optimal operation of multiple services should be co-optimized and cannot be optimized 

separately, b) Time horizon (the cardinality of set ): intertemporal dependencies 

enforced by constraints (100)–(102) and a unique capacity bid do not allow reaching a 

global solution by merely temporal splitting, c) Temporal resolution: if services have 
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different time scales, the highest resolution is selected as the base resolution for the whole 

problem and this adds to the complexity of the problem, d) Number of ESS (cardinality of 

set ): the operation of each ESS s impacts the others by changing the market prices. The 

problem is not trivially separable in this dimension, e) Number of scenarios (cardinality of 

set  ): non-anticipativity constraints tie the scenarios together and again the problem 

cannot be trivially decomposed in this dimension and be solved for each scenario 

separately. While each of these dimensions require their specific studies, we focus on the 

temporal ones i.e. the time horizon and the temporal resolution. 

5.4 The Value of the Proposed Optimization Model 

One of the benefits of the proposed optimization model is that it captures multiple time 

scales, which complicates the solution but can provide significant added value. In this 

section, we use realistic market data to quantify the value of the high temporal resolution 

as well as long time horizon of the proposed optimization model. We want to maximize the 

net profit of an ESS owner participating in wholesale market products: monthly capacity, 

hourly energy, regulation capacity and reserves, as well as the 2-second regulation mileage. 

Therefore, the horizon is one month, and the temporal resolution is 2 seconds. Since the 

focus is not on the tractability of the model yet, we assume only one energy storage system 

( 1S = ) and one scenario ( 1O = ) so that the problem is computationally easier to build 

and solve. The energy storage technical parameters are selected based on a Li-ion battery 

energy storage system as below: 

𝑃𝑠
𝑑𝑖𝑠,𝑚𝑎𝑥 = 𝑃𝑠

𝑐ℎ𝑔,𝑚𝑎𝑥
= 1𝑀𝑊, 𝐸𝑠

𝑚𝑖𝑛 = 0𝑀𝑊ℎ, 𝐸𝑠
𝑚𝑎𝑥 = 6𝑀𝑊ℎ,

𝜂𝑠
𝑙 = 1, 𝜂𝑠

𝑐ℎ𝑔
= 𝜂𝑠

𝑑𝑖𝑠 = 0.95  
(104) 
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The degradation cost parameter is the total capital cost of energy storage prorated by its 

lifetime energy throughput as in (20). The capital cost of Li-ion batteries are estimated with 

two linear coefficients 
P

sC and 
E

sC as below [38], [125]: 

,max maxP dis E

s s ss sCapitalCo CPC Est +=  (105) 

where 
P

sC  and 
E

sC  are assumed to be $1300/kW and $75/kWh, respectively [125]. 

The PJM historical prices and the 2-second regulation signal (RegD) for 2018 are used for 

simulation [105]. The optimization model is built and solved using Gurobi 8.1 [126] with 

Python interface on a computer with a core i5 2.6 GHz processor and 32 GB of RAM. 

Simulation results and discussions are provided in the following two subsections for high 

temporal resolution and long time horizon, respectively. 

5.4.1 The Value of the High Temporal Resolution 

Modeling the real-time participation of energy storage in the 2-second granular frequency 

regulation service is the main source of numerical complexity in the proposed optimization 

model in (81) – (103). However, it provides three main benefits compared to the hourly 

models: 

- Higher total service revenues, 

- Higher net profits i.e. a better trade-off between the revenues and degradation cost, 

- More realistic dispatch that can be used for more profitable bidding purposes. 

To quantify these benefits, we simulate the proposed model with the storage and market 

data as described. Four cases are studied, and their parameters are reported in Table 11. 
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Table 11 – Case Study Parameters 

Case # Resolution 
Regulation 

Mileage Payment 

Regulation 

Performance Score 

1 Hourly No N/A 

2 Hourly Yes Minimum (0.7) 

3 Hourly Yes Maximum (1) 

4 2-second Yes Optimized 

For each case, the proposed model is modified based on the above parameters and ran for 

each day for all days in 2018. For the hourly models, the performance score (86) is 

modelled as a parameter. Also, the impact of high-resolution regulation dispatch on the 

hourly energy level and degradation is captured using a pre-processing of the 2-second 

regulation signal and the method developed by Sandia National Labs in [50]. For each case, 

the net profit, objective function (81), of each day and the total service revenue, first line 

in (81), are calculated. Next, the value of the proposed model (case 4) is calculated as the 

percentage improvement in net profit and the revenue compared to each of the first three 

cases. Results for January 2018 are illustrated in Figure 30. Results show that the proposed 

high-resolution model can capture almost double (90% improvement) the daily net profit 

compared to the one calculated by an hourly model. Moreover, the proposed model 

improves the hourly models, on average, 19.4%, 14.7%, and 12.8% in the revenues and 

27.2%, 34.6%, and 18.0% in the net profits compared to cases 1, 2 and 3, respectively.  

Another benefit of the proposed high-resolution model is in the optimal hourly bid and 

dispatch decision variables. The optimal dispatch of the hourly and 2-second models for a 

sample day are shown in Figure 31(a) and (b), respectively. Note that the three hourly 

models (cases 1,2, and 3) resulted in identical dispatch and thus, only one of them is plotted. 
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(a) 

 

(b) 

Figure 30 – The added value of the proposed high-resolution model compared to the 

hourly models, in terms of improvement in a) revenue and b) net profit 
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(a) 

 

(b) 

Figure 31 – ESS optimal dispatch using a) the hourly models and b) 2-second model 

Results show how the high-resolution regulation model can impact the optimal 

participation in energy and regulation markets where in the hourly model, only hour 9 and 

11 have non-zero dispatch in the energy market while for the 2-second model hours 7, 9, 

11, 14 and 23 are so. For this day, reserve and capacity markets are not profitable enough 
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and therefore not dispatched. Also, while the hourly model just models the aggregate 

impact of regulation dispatch on the SOC, the 2-second model can accurately model the 

SOC which is very important in detailed degradation analysis of ESS. Such an analysis is 

out of scope of this work. 

Simulation results provided in this section verify the importance and the added value of the 

high temporal resolution in ESS optimization problems. 

5.4.2 The Value of the Long Time Horizon 

Modeling high-resolution dispatch of ESS in optimization horizons longer than a day is not 

conventional due to the significant added numerical complexity. However, there is value 

in such a model for two main reasons: 

- First, some services have longer time horizons, e.g. monthly capacity auctions, and 

therefore, optimization models with shorter time horizons, e.g. daily, are not suitable 

unless they are solved iteratively. 

- Shorter time horizons impose additional constraints that serve as links between 

adjacent time horizons, e.g. initial and final SOC constraints, and therefore, result 

in sub-optimal solutions i.e. lower net profits.    

The objective of this section is to quantify the added value of long time horizons using the 

proposed model optimization model in (81) – (103) and realistic market data described in 

section 5.4. Four cases are studied where the first three cases use a daily optimization 

horizon and the fourth one uses a monthly one. All these cases use a 2-second temporal 

resolution to capture its high value as shown earlier. Also, the optimal value of the capacity 
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market offer should be equal for all days since it is a monthly offer and thus, cannot be 

determined using the daily optimized cases without any iterations. Therefore, we assume 

this value to be a parameter equal to 0%, 50%, and 100% of the maximum discharge power 

in cases 1, 2 and 3, respectively. For each case, the objective function in (81) is calculated 

for all the months of 2018. Results are illustrated in Figure 32 as the percentage 

improvement of the proposed monthly model (case 4) compared to conventional daily 

models (cases 1, 2 and 3). 

 

Figure 32 – The added value of the proposed model with monthly horizon compared 

to the hourly models, in terms of improvement in net profit (objective function (81)) 

These results show that the proposed optimization model with a monthly time horizon can 

capture additional value of up to 20% compared to daily optimization models. As 

mentioned before, this is due to a) the optimal capacity offer which is a decision variable 

in our proposed model compared, and b) inter-day arbitrage opportunities that are limited 

by the models with daily time horizon. In these simulations, the proposed monthly model 

improves the net profit of daily models by an average of 6.1%, 4.7%, and 4.2% compared 
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to cases 1, 2 and 3, respectively. Note that none of the daily three cases provides better 

results in all the months and based on the model parameters, such as market prices, a more 

conservative approach (capacity offer = 0) may win or lose against an aggressive approach 

(capacity offer = maximum discharge power). However, the monthly model always 

provides a higher net profit as can be easily proven analytically. Simulation results 

provided in this section quantified the added value of longer time horizons in ESS 

optimization problems. 

Using the proposed optimization model and the realistic market data, we evaluated the 

benefits captured by temporally complicated ESS problems with high resolution and long 

time horizon. The computational complexity of all the simulation cases were not a major 

issue so far; The computational time for an ESS optimization model with 2-second 

temporal resolution and a monthly time horizon, one ESS, and one scenario was about 35 

minutes, almost 78% of that was the solution time and the rest was for building the model. 

Figure 33 shows the total computational time and its breakdown for each month. While 

these times show the tractability of the above simulations, the size and computational time 

of the model can grow significantly for simulations with multiple ESS and stochastic 

scenarios and result in intractable models. For example, a simulation with only 2 ESS and 

10 scenarios was not solved even after a week. The complexity is mainly due to the high 

resolution of the regulation service. If we want to capture the added benefits of the high-

resolution simulations in such intractable problems, we need to use decomposition. In the 

next section, two decomposition methods are proposed and applied for solving the 

intractable ESS problems. 
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Figure 33 – Computational times of the monthly optimization model 

5.5 Temporal Decomposition Methods 

The proposed ESS optimization model in (81) – (103) can become intractable for 
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adopted for efficient solution of the global optimum. Our focus here is on the temporal 
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that both the total objective function and the computational time improve. The solution 

process includes the following steps: 

- First, split the main big problem into smaller tractable subproblems that can be 

solved independently. Since we propose to split in the time dimension, we call this 

step temporal splitting. This step requires assumptions on modifying the temporal 

links between smaller problems. 

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12

T
im

e 
(s

)

Month

Build

Solve



 133 

- Second, solve the smaller problems independently. Note that this step can be 

implemented in a parallel processing environment. 

- Third, aggregate the solution of smaller problems and check if another iteration is 

needed (iteration control). If it is, then go to the fourth step. Otherwise, terminate. 

- Fourth, update the assumptions on the temporal links and go to the second step. 

Two independent temporal decomposition methods are proposed based on linear 

sensitivities and alternating direction method of multipliers (ADMM). Each method is 

described in the following subsections. Simulation results are provided in section 5.6 

showing the application of the proposed methods to solve an intractable version of the 

proposed optimization problem. 

5.5.1 Method 1: Linear Sensitivities (LS) 

This method is based on the perturbation and sensitivity analysis of constraints that model 

temporal links between subproblems. These constraints model the SOC at the beginning 

and end of each subproblem, constraints (100) and (101), as well as the identical schedule 

for the capacity service in all subproblems that can be modeled as 

, , , , ,;cap cap cap

s d s s dP P  =  (106) 

where , ,

cap

s dP   is the schedule for the capacity service in subproblem d and , ,

cap

s d  are the 

dual variables of these constraints. 

In the temporal splitting step of this method, the linking constraints are modified to be 

equal to a parameter instead of decision variables in adjacent subproblems. This way, 

subproblems become independent of each other and can be solved in parallel. 
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By solving the subproblems, the optimal dual variables of the linking constraints are also 

calculated. They show the sensitivity of the optimal objective function with respect to the 

right-hand-side (RHS) parameter p of the linking constraints i.e. how much the optimal 

objective function will change if p is perturbed. If the objective function in (81) is denoted 

by J, then at optimality (J*): 

*
*

p

J

p
= −




 (107) 

Based on this important result, the main big optimization problem can be solved globally 

using the proposed decomposition method. Figure 34 shows the flowchart of the proposed 

method where subscripts d and i are indices for subproblems and iterations, respectively. 

Note that the subscripts for time, storage and scenarios used in (81)–(103) are omitted here 

for brevity. This method starts by splitting the original problem (e.g. one month) into 

smaller subproblems with shorter time horizons (e.g. daily). Subproblems are then solved 

in parallel (or sequential) with the RHS of the linking constraints being equal to a parameter 

identical in all the subproblems. Because the final SOC and capacity service schedule at 

subproblem d should be equal to the beginning SOC and capacity service schedule at 

subproblem d+1, respectively. So far, this is similar to the simple conventional temporal 

decomposition method. However, these fixed parameters are not optimal since they prevent 

arbitrage opportunities between subproblems for the SOC constraints and they do not 

necessarily result in a unique monthly capacity schedule. Therefore, the proposed 

decomposition method, iteratively updates these parameters based on the analysis of the 

optimal dual variables in (107). The updated parameters are fed into the subproblems that 

are solved again until the stopping criterion is met.  
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Figure 34 – The flowchart of the proposed decomposition method #1 

The updating process for the RHS of the linking constraints, SOC and capacity dispatch 

parameters, is as follows. For updating SOC parameters, the optimal dual variables found 

by solving subproblems are compared between each pair of consecutive subproblems. If 

the optimal dual variable of the final SOC of subproblem d (
*

, ,T d i ) is in the ε-neighborhood 

of the negative of the starting SOC of the next subproblem d+1 (
*

0, 1,d i + ), it shows that 

changing their common SOC is not needed since it will increase the objective function for 

one subproblem and almost equally decrease it for the other one. Therefore, the SOC 

direction parameter σ for the next iteration is 0. If the sum of those two optimal dual 
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variables with the common SOC is less than a negative threshold it means that the sum of 

changes in the objective functions of the two subproblems are positive if their common 

SOC increases. This result is derived from (107): 

* *

0/ , , 0/t T s TJ J SOC = = −   (108) 

Conversely, if the sum of those two optimal dual variables is greater than a positive 

threshold it means that the sum of changes in the objective functions of the two 

subproblems are positive if their common SOC decreases. After the direction of the change 

in the SOC (σSOC) is determined, the step size ΔSOC is found. It remains unchanged if SOC 

is changing in the same direction in the last two iterations. Otherwise, ΔSOC shrinks by a 

factor of β<1 to improve convergence. The change in the common SOC between two 

consecutive subproblems (σSOCΔSOC) is then added to the SOC to update it in the next 

iteration.  

For updating the capacity dispatch parameter, the optimal dual variables found by solving 

subproblems are summed up altogether to model the impact of changing this parameter on 

the sum of objective functions of the subproblems. If the result is in the ε-neighborhood of 

zero, it shows that the capacity parameter is close to optimal and changing it is not needed 

since its total impact is negligible (less than ε). Therefore, the direction parameter σcap for 

the next iteration is 0. If the sum of all the optimal dual variables is less than a negative 

threshold it means that the sum of changes in the objective functions of sum of subproblems 

is positive if capacity parameter increases and vice versa. After the direction of the change 

in the capacity parameter (σcap) is determined, the step size Δcap is found. It remains 

unchanged if capacity parameter is changing in the same direction in the last two iterations. 
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Otherwise, Δcap shrinks by a factor of β<1 to improve convergence. The change in the 

capacity parameter for all the subproblems (σcapΔcap) is then added to the capacity 

parameter at the current iteration to update it in the next iteration. 

Updating the linking parameters also includes checking with other constraints so that the 

new parameters do not to exceed their bounds and also preserve the dependence on other 

subproblems. For example, the SOC must remain within its range determined by SOCmax 

and SOCmin. Also, the SOC at the end of subproblem d should be equal to the SOC at the 

beginning of subproblem d+1. 

The process iterates until either the number of iterations reach a maximum threshold, or all 

the step sizes Δ become less than the minimum step size threshold Δmin. The step sizes are 

used to calculate the residuals at each iteration as in (109). The residuals are then used to 

as a measure to analyze the convergence of the LS method. 

2

, , 1 , , 2
,

i p d i p d i

p d

R +=  −  (109) 

 The pseudocode of the proposed method is presented in Algorithm 2. This method is 

simulated with the realistic market data as in the previous sections. Simulation results are 

provided in section 5.6. 
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Algorithm 2  

1:  Initialize: i, d, MaxIter, 
, ,SOC d i , ΔSOC,d, , ,cap d i , Δcap,d, Δmin, ε, β 

2:  while (i ≤ MaxIter) and (max(Δd) ≥ Δmin) do 

3:        while d <D do  

4:              Solve subproblems (Jd,i) in parallel 

5:              Find 
0, ,d i , 

, ,T d i , 
, ,cap d i  

6:              d = d + 1               

7:        while d <D do                   

8:            if , , 0, 1,

* *

T d i d i  ++           # no change (Optimal) 

9:                
, , 1 0SOC d i + =  

10:          if 
, , 0, 1,T d i d i  ++  −          # increase SOC 

11:                 
, , 1 1SOC d i + =  

12:          if 
, , 0, 1,T d i d i  ++           # decrease SOC 

13:                 
, , 1 1SOC d i + = −  

14:          if 
, , 1 , , 0SOC d i SOC d i +         # same change SOC, decrease step size 

15:               
, ,SOC d SOC d =  

16:          SOCT,d,i+1 = SOCT,d,i + 
, , 1 ,SOC d i SOC d +    

17:          Limit SOCT,d,i+1 between SOCmin and SOCmax 

18:          SOC0,d+1,i+1 = SOCT,d,i+1   

19:          d = d + 1               

20:      if 
, ,cap d i

d

   

21:            
, 1 0cap i + =        

22:      if 
, ,cap d i

d

  −  

23:            
, 1 1cap i + =  

24:      if 
, ,cap d i

d

   

25:            
, 1 1cap i + = −  

26:      , 1 , 1 , 1cap i cap i cap i capP P + + += +   

27:      Limit , 1cap iP + between 0 and 
max

capP  

28:      i = i + 1       

29: end while 
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5.5.2 Method 2: Alternating Direction Method of Multipliers (ADMM) 

The second proposed decomposition method is based on the alternating direction method 

of multipliers (ADMM) which is a well-known method for solving convex optimization 

problems in a distributed way. The generic formulation of ADMM is provided in [127] and 

briefly presented here for completeness. Consider the optimization problem in (110) – 

(113). 

,
min ( ) ( )

x y
f x g y+  (110) 

Subject to  

x  (111) 

y  (112) 

;Ax By c + =  (113) 

where x and y are decision variables in their feasible sets  and , respectively. The 

equality constraints in (113) is the linking constraint between the two decision variable 

vectors of x and y. The dual vector of (113) is denoted by λ. For a given dual vector, a 

positive scalar ρ, the augmented Lagrangian is as follows: 

2

2
( , , ) ( ) ( ) ( )

2

Tx y f x g y Ax By c Ax By c


 = + + + − + + −  (114) 

ADMM is an iterative method that updates primal and dual variables in the following three 

steps at each iteration i. 

1 ( , , )min i ii
x

yx x +


=  (115) 

1 1m ( , )in ,i i
y

iy x y ++


=  (116) 

1 1 1( )i i i iAx By c  + + += + + −  (117) 
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It is proven that ADMM converges to the global optimal value for convex problems [127]. 

The quadratic term in the augmented Lagrangian provides a superior convergence 

compared to other decomposable methods, such as method of multipliers [95], [127]. Since 

the proposed energy storage optimization problem in (81) – (103) is convex, ADMM can 

be used to solve a decomposed version of the problem with guaranteed convergence to the 

global optimality.  

The process of solving our proposed optimization model using the ADMM method is as 

follows. First, the main big problem is split into smaller tractable subproblems, indexed by 

d, that can be solved independently. At each iteration i, the objective function in in (81) is 

estimated by Ji defined as the sum of objective functions of the subproblems.  

,:i d i

d

J J=  (118) 

The linking constraints between the subproblems serve as the equality constraint in the 

generic ADMM method in (113). For these constraints, we assume that their left-hand-side 

(LHS) is a free variable z which is equal to the RHS parameter p which is equal between 

the associated subproblems. ADMM relaxes these constraints and considers them in the 

augmented objective function. For each subproblem, the augmented Lagrangian is 

expressed as 

( ) ( )
2

, , , , , , , , , , ,:
2

d i d i p d i p d i d i p d i d i

p

J z p z p



 

= − − + − 
 

  (119) 

where , ,p d i is the dual variable for the linking constraint parameter p in subproblem d at 

iteration i. After the temporal splitting, subproblems are solved independently. This step is 
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similar to the primal updates in the generic ADMM solution steps in (115) and (116). Each 

subproblem maximizes the augmented Lagrangian in (119) subject to (82) – (103), (102), 

(103). Note the linking constraints are no longer in the constraint set. 

Next, the linking parameters p shared between subproblems are updated by averaging their 

associated variables z calculated independently in each subproblem. Specifically, for the 

SOC and capacity linking constraints, we have 

( )0, , 1 0, , , 1,

1

2
d i SOC d i SOCT d iSOC z z+ −= +  (120) 

, , 1 , ,

1
cap d i cap d i

d

P z
D

+ =   (121) 

The updated linking parameters are used to update the dual variables as below. 

( ), , 1 , , , 1 , ,p d i p d i d i p d ip z  + += + −  (122) 

After this step, stopping criteria are checked to decide whether another iteration is required 

or not. These criteria include the number of iterations, improvement in the total objective 

function, and primal and dual residuals. The last two criteria are denoted by PR and DR 

and are calculated as in (123) and (124), respectively. 

2

, , , 2
,

i d i p d i

p d

PR p z= −  (123) 

2

, 1 , 2
,

i d i d i

p d

DR p p+= −  (124) 

The primal residual shows the difference between the shared parameter p and its associated 

decision variable z for all the linking constraints and all the subproblems. A lower PR 

shows a better feasibility of the main problem. The dual residual shows the optimality of 
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the aggregate decomposed solution where a lower DR means a better total objective 

function. This method is simulated with the realistic market data as in the previous sections. 

Simulation results are provided in section 5.6. 

5.6 Simulation and Results 

We simulated the two proposed decomposition methods with the realistic market data to 

study their performance in solving intractable versions of the proposed ESS optimization 

problem. Specifically, we want to analyze how these methods will improve the solution 

time and optimality of large-scale ESS optimization problems. Depending on the 

computational capabilities of the testing machine, the size of an intractable problem may 

vary between computers. Based on the computational power available for this work 

(parameters reported in section 5.4.), the proposed optimization model with 2-second 

temporal resolution and one-month horizon for two ESS and 10 scenarios is considered 

intractable. Such a model has more than 10 million decision variables and more than 12 

million constraints. Note that the intractability is not only because of solution time but also 

creating that model from the large data sets of input parameters is another key factor in 

these problems. 

Simulation parameters used in this section for market prices and ESS parameters includes 

similar ones in section 5.4. Additionally, we assume that both ESS are the same type and 

therefore have the same technical and cost parameters. For scenario generation the 

proposed random sampling approach is used as described in section 3.4.1.3. For each 

scenario, all the stochastic parameters, e.g. market prices, are generated independently. 

Statistical and time series models can be developed to generate scenarios considering 
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dependencies within each scenario or among scenarios [59], [60], [110]. However, since 

our focus is on the improvements in solution time and optimality of the decomposed 

methods, more detailed scenario generation is left for future work. As an example of 

stochastic scenarios, Figure 35 illustrates the 10 stochastic scenarios generated for hourly 

energy prices of the PJM aggregate node in February 2018. As seen, price differences 

between scenarios increases with time modeling the higher level of uncertainty for future 

forecasts. 

 

Figure 35 – Stochastic energy price scenarios 

After generating stochastic scenarios for the whole optimization horizon (one month), all 

the input parameters are split into smaller subsets to generate the smaller subproblems. We 

assume that each subproblem is for one day within that month. Next, we use the proposed 

decomposition methods to iteratively solve and update the subproblems. As for the initial 

conditions, we assume that the linking SOCs are all equal to 50% of the total ESS capacity 

and the capacity market dispatch is zero. At each iteration, the sum of daily objective 

functions is used to estimate the globally optimal objective function. In the LS method, the 
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objective function is the net profit while in the ADMM method, the augmented Lagrangian 

is maximized instead of net profit. Therefore, after solving each daily optimization problem 

using ADMM, the net profit is calculated from the optimal Lagrangian using (119). Since 

the original problem before decomposition is intractable, the globally optimal objective 

function (monthly net profit) is unknown so we cannot compare the results from the two 

methods with that. However, using simulation results, we show how these two methods 

progress throughout the iterations and compare their solutions against each other. Figure 

36 shows the improvement in the total profit calculated by the two proposed decomposition 

methods at each iteration. This improvement is reported as the percentage of difference in 

the total net profit compared to a conventional non-iterative approach with initial 

conditions similar to those used for the LS method. The linear sensitivities method is 

denoted by LS.  

 

Figure 36 – The evolution of the total net profit by the two proposed decomposition 

methods  
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Simulation results show that both methods converge to identical solutions improving the 

total net profit of a conventional method by almost 20%. The difference between the total 

net profit of these two methods is less than 1% and 0.02% after 30 and 50 iterations, 

respectively. Note the difference in the convergence behavior of the two methods where 

the LS method converges in lower number of iterations compared to the ADMM. 

Specifically, the LS and ADMM methods stop after 30 and 50 iterations, respectively, 

when they met their stopping criteria. The LS total net profit at its last iteration is extended 

to cover the next 50 for a better comparison with the ADMM. Also, the convergence rate 

for the LS method is decreasing by the number of iterations. However, it is not monotonous 

for the ADMM. Another difference in the convergence pattern of the methods is that the 

net profit of the LS method is always less than the optimal value. This can be easily proven 

due to the convexity of the proposed optimization problem and the fact that all the LS 

solutions at each iteration are feasible which provides conservative results. However, the 

ADMM method starts with a better total net profit than the global optimum. This is because 

the linking constraints are relaxed in ADMM. However, ADMM solution may go below 

the global optimum at some iterations due to the intrinsic tradeoff between optimality and 

feasibility imposed by the augmented Lagrangian. 

Another measure of convergence is the residuals of the methods at each iteration. Using 

(109), (123) and (124), we calculated the root mean of these residuals (RMSE) and 

demonstrate the results in Figure 37. As in the net profit results, LS method provides a 

better convergence since the RMSE of its residuals are lower than those in the ADMM. 

Also, comparing the primal dual residuals of ADMM show that it values the optimality of 
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the solution more than its feasibility. This can be changed by modifying the ADMM 

parameter ρ in (119).   

 

(a) LS residual 

 

(b) ADMM dual residuals 
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(c) ADMM primal residuals 

Figure 37 – RMSE of a) LS residuals, b) ADMM dual residuals, and c) ADMM 

primal residuals 

Besides the quality of the solution i.e. improvement in the net profit and convergence, 

computational time of the proposed decomposition methods is also important. In each 

iteration of both methods, subproblems can be solved either sequentially or in parallel due 

to their independence provided by decomposition. In the case of parallel solution, the total 

computational time at the end of iteration i (TCTi) is determined by  
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1
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i s j
s

j

TCT CT
=

=  (125) 

where CTs,j is the computational time of subproblem s at iteration j. This shows that the 

computational time at each iteration is bound by the subproblem with the maximum time. 

Figure 38 shows TCTi at each iteration for the two decomposition methods. Note that the 

ADMM method is faster in each iteration than LS since ADMM has lower number of 

constraints due to relaxation of temporal linking constraints. However, the LS method 
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converges faster than ADMM. The TCT at the final iteration of these methods are 14.9 h 

and 21.2 h for LS and ADMM, respectively. Comparing the performance of the two 

methods at equal TCTs shows that the LS residuals are lower than those in ADMM. 

Therefore, the LS method is a better choice for the selected simulation case.  

 

Figure 38 – Computational time of decomposition methods 
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Otherwise, the N subproblems are solved sequentially with the solution time in the order 

of N(Z/N)k. We also assume that updating the linking constraints requires a time in the 

order of (Z/N)l for each subproblem where l<<k since this process is not computationally 

intensive. In the worst-case scenario, the main loop of the proposed methods stops after a 

maximum number of iterations M has been reached. Thus, conditions for proposed methods 

to outperform the original problem in terms of computational time are 

k l

kZ Z
M M Z

N N

   
+    

   
 (126) 

if subproblems are solved in parallel and  

k l

kZ Z
MN MN Z

N N

   
+    

   
 (127) 

if subproblems are solved sequentially. Since l<<k, these conditions can be simplified to 

kM N  (128) 

1kM N −  (129) 

Using (128) and (129), the improvement of the proposed methods can be quantified with 

respect to the computational capability (k), the number of iterations and the number of 

subproblems. For example, if both Z and Z/N are in the linear range of the solution time 

(k=1), the total number of iterations m (m≤M) must be less than the number of subproblems 

if parallel solution is applied. Note that the sequential solution of subproblems with the 

proposed method does not improve the total solution time if k=1. However, in most of the 

cases k>1 and the proposed method provides significant improvement in the solution time 

while providing a better objective function than the conventional decomposition method. 
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In the test case simulated in section 5.6., the original problem is intractable. However, using 

decomposition methods, it is solved in less than 15 and 22 hours which is a great 

improvement. 

5.8 Summary 

In this Chapter, we analyzed the temporal complexities of energy storage optimization 

problems. We proposed a stochastic multi-timescale optimization model for the price-

maker participation of aggregated ESS in multiple markets and local services. Available 

ESS optimization problems optimize either the scheduling decisions in longer horizons, or 

the high-resolution operational and dispatch decisions in shorter horizons. They do not 

jointly optimize the scheduling and high-resolution dispatch decisions to avoid the 

numerical challenges from the resulted large-scale optimization problem. However, using 

the proposed model and realistic market data, we simulated how the temporal complexities 

can add to the ESS value. Simulation results show that including the high-resolution 

variables in response to the frequency regulation dispatch signal in the scheduling 

optimization problem can add up to 90% additional net profit. Also, solving for longer time 

horizons can provide an additional net profit of up to 20%. Moreover, the numerical 

complexities of such complicated problems are tackled using two proposed temporal 

decomposition methods that split the large-scale problem into smaller subproblems 

independent from each other and then iteratively solve them to reach the optimal global 

solution. Simulating the decomposition methods show that an intractable problem can be 

solved efficiently in a parallel processing environment. With the methodologies and results 

provided in this chapter, the added value of numerical complexities is not compromised for 

the computational challenges. Thus, this chapter contributes to the evaluation 
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methodologies for maximizing the benefits of energy storage technologies and energy 

storage investors and developers can rely on more profitable ESS projects that are 

financially more attractive and can facilitate their deployment.     
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

Several benefits and applications have been identified for energy storage technologies that 

can contribute to the grid modernization and renewable energy integration objectives. In 

this dissertation, we developed new optimization methods than can accurately capture the 

maximum value of energy storage in providing multiple services for a variety of realistic 

use cases. The tools and methodologies used by industry for evaluation and revenue 

analysis are not specifically designed for ESS and cannot capture their maximum benefits 

provided by their flexibility and unique characteristics. Accordingly, they provide overly 

conservative estimates of storage revenues. Therefore, advanced tools and methodologies 

are required to maximize the expected revenues of ESS. Developing such methodologies 

is the focus of this work that was presented in three main chapters and summarized as 

below: 

1. The expected revenues of ESS in the wholesale energy markets were studied and 

novel solutions were proposed to 

a. maximize the revenues of ESS in the day-ahead (DA) energy market. A 

straightforward method based on clustering of market prices and regression 

analysis is proposed that can estimate the maximum ESS revenues. 

Simulation results with realistic market data show the estimation accuracy 

of more than 98% compared to optimization problems. The proposed 

method is easily implementable that is key for optimal placement of ESS 

among thousands of possible locations.  
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b. maximize the revenues of ESS in the real-time (RT) energy market. A 

dynamic optimization with a shrinking horizon is proposed that can update 

the ESS dispatch decisions dynamically in the RT market. This way, it 

minimizes the impact of price forecast uncertainty and maximizes the 

collectible share of RT energy market revenue. Simulation results with 

realistic market data show that the proposed methodology can capture a 

significant RT energy market revenue that is almost twice of the revenue 

from the DA energy market. 

c. maximize the total revenues of ESS in both DA and RT energy markets. 

Two optimization models are proposed for each market that include more 

details compared to previous methods, such as the load-price sensitivity and 

a better model for real-time price uncertainty. The high value of the RT 

market is based on estimations of uncertain data that might not be reliable 

for a risk-averse ESS operator. Therefore, the RT revenue is modeled as an 

additional revenue-stream to the DA one. Simulation results show that the 

RT market participation increases the revenue obtained in the DA market 

by more than 50% on average. Results also show that multiple services 

should be modeled as revenue streams to improve the profitability of new 

ESS technologies. Modeling multiple services is challenging due to service 

conflicts and synergies. 

2. A systematic methodology for multiservice analysis of energy storage operation 

was proposed that can co-optimize the ESS revenues from multiple services. The 

proposed method finds the optimal operation of energy storage systems to obtain 
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the maximum value from providing any combination of services. A sophisticated 

architecture for the information system and data model was designed with the focus 

on scalability and modularity of the analysis. A generic optimization formulation is 

proposed as the center of this design. A software tool was also developed based on 

the designed system architecture. The tool has been tested on many real-world 

applications and is already being used by utility industry partners for their energy 

storage studies and projects. The generic optimization model is applied to two 

realistic test cases: 

a. The first test case analyzed energy arbitrage, frequency regulation, energy 

reserve, and investment deferral using CAISO historical data. The 

modularity of the generic model facilitated the analysis of various service 

combinations using a systematic build of an optimization problem. 

Simulation results indicated that frequency regulation and energy arbitrage 

respectively have the highest and lowest value among the individual 

services in CAISO. Results also showed how different services can be 

stacked to provide the maximum revenue. Finally, a pricing mechanism for 

investment deferral as a non-market service was proposed which showed to 

be beneficial for the ESS owner as well as the utility in the context of 

procuring this service from privately-owned ESS. 

b. The second test case analyzed the economics and system impacts of behind-

the-meter (BTM) energy storage in the state of Georgia. The proposed 

mixed-integer optimization formulation supports various tariff rates and 

price structures making the methodology applicable to multiple regions. 
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Simulation results revealed promising payback periods as low as five years 

for BTM energy storage projects under specific tariff rates. It showed that 

the time-of-use rates are usually less profitable for customers but more 

reliable since they are less dependent on uncertain data. On the other hand, 

tariffs with demand charges can provide more profit for the customers but 

with more uncertainty. The system impact assessment of BTM energy 

storage revealed that demand charge rates can result in smoother system net 

load profiles with high penetration of BTM energy storage. The results can 

provide insights for BTM customers to invest in energy storage to reduce 

their bill, and for utilities to understand the impact of tariff rates on the 

adoption of BTM storage especially at high penetration levels.  

3. The temporal complexities of energy storage optimization problems were analyzed. 

We proposed a stochastic multi-timescale optimization model for the price-maker 

participation of aggregated ESS in multiple markets and local services which jointly 

optimizes the scheduling and high-resolution dispatch decisions. The model value 

and solvability were studied: 

a. The value of the added complexity is quantified by simulating the proposed 

temporally complex optimization problem with the realistic market data. 

Results show that including the high-resolution variables in response to the 

frequency regulation dispatch signal in the scheduling optimization problem 

can add up to 90% additional net profit. Also, solving for longer time 

horizons can provide an additional net profit of up to 20%.  
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b. The numerical complexities of temporally complex ESS optimization 

problems are also studied. Two temporal decomposition methods were 

proposed that split the large-scale problem into smaller subproblems 

independent from each other and then iteratively solve them to reach the 

optimal global solution. Simulating the decomposition methods show that 

an intractable problem can be solved efficiently in a parallel processing 

environment. Therefore, the added value of numerical complexities is not 

compromised for the computational challenges. 

In summary, we conclude that energy storage systems show promising profitability 

potentials if they are evaluated properly using advanced tools and methodologies. 

6.2 Summary of Contributions 

The methodologies, optimization models and simulation results provided in this work 

contributed to the evaluation approaches on maximizing the benefits of energy storage 

technologies. The specific contributions are listed as follows: 

1. Identified the shortcomings and challenges of the methodologies in the literature 

regarding evaluation of the value of energy storage systems.   

2. Developed a straightforward data-driven method for analyzing the energy storage 

revenue from the day-ahead energy arbitrage service. 

3. Discovered the significant value of real-time energy arbitrage service and 

developed a dynamic optimization methodology to exploit the maximum variability 

of this market. 
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4. Developed a risk-averse price-maker methodology to maximize the revenue of 

energy storage systems that participate in both day-ahead and real-time energy 

markets. 

5. Designed a system architecture and a data model for analysis of energy storage 

optimal dispatch and maximum service revenues. 

6. Implemented a software capable of multiservice benefit cost analysis of energy 

storage systems. The software is released to and tested by several utilities in the 

U.S. to make important investment decisions on their energy storage projects. 

7. Developed a modular and scalable generic optimization approach for multiservice 

revenue assessment of energy storage projects. 

8. Successfully applied the generic optimization model to realistic test cases: 

a. Market service revenues using CAISO prices, 

b. Behind-the-meter customer benefits using Georgia Power tariff rates. 

9. Developed a multidimensional energy storage optimization problem that includes 

multiple ESSs, services, time scales, and stochastic scenarios.   

10. Studied the value and complexity of the energy storage optimization problems with 

high temporal resolution and long-time horizons and developed methods to address 

it. 

11. Developed two temporal decomposition methods that efficiently solve intractable 

ESS optimization problem. 
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6.3 Future Work 

Many possible and valuable related research arenas can be addressed as future work that 

are based on the proposed methodologies. A few of these arenas are briefly discussed as 

follows: 

1. Using the proposed generic optimization model to optimally stack multiple 

services, research can be done to correlate the maximum revenues with the input 

parameters and their features. Similar approaches to what we developed only for 

the day-ahead energy market can be developed to cover multiple services and 

provide straightforward methodologies that rely less on large amount of forecast 

input data.  

2. The information model proposed for ESS service evaluation can be upgraded to 

cover all the power grid resources such as conventional generators and renewable 

energy sources. A structured service evaluation platform and software tool can 

facilitate the deployment of new technologies, increase energy efficiency and avoid 

overinvestments for a modernized grid which further provides significant economic 

and environmental benefits.  

3. More detailed modelling of energy storage technologies can be integrated into the 

proposed optimization methodologies to capture unique technology-specific 

characteristics of ESS. Such details include the circuitry of the ESS and 

electrochemistry of batteries. The challenge is to model the details with enough 

complexity and yet conserve the tractability of the model. Detailed analysis of the 

added complexities is required to disclose their value in ESS profitability estimation 
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similar to the one we performed for the added value of high resolution and longer 

time horizons. 

4. Network/grid and volt/var modeling are other valuable arenas for future research. 

The impact of various grid constraint on the profitability of energy storage 

multiservice operation is not very well understood. Moreover, the impact of ESS 

multiservice operation on the grid volt/var requires advanced methodologies. Using 

the proposed multiservice approach, grid constraints can be added and analyzed. 

The proposed optimization model can be linked to a powerflow solver to capture 

and optimize the AC impact of the ESS operation.  Due to the complexity of the 

resulted problem, decomposition methods may be needed. Providing all these 

capabilities in an automated software is deemed as the challenge but extremely 

valuable for increased deployment of ESS and renewable energies. 
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APPENDIX A. ENERGY STORAGE EVALUATION TOOL 

OVERVIEW 

This Appendix presents an overview of the developed software for multiservice revenue 

analysis of ESS. More information on the tool design, documentation and instructions are 

reported in [128]. 

The graphic user-interface of tool is designed in multiple tabs where each tab is for certain 

steps to run an energy storage revenue optimization problem. The firs tab is for entering 

energy storage parameters as shown in Figure 39. Users can either manually enter the 

parameters or select from the default list of energy storage technologies, shown in Figure 

40, and change the default parameters. The default parameters are selected from a 

comprehensive literature review on ESS technologies [128]. 

 

Figure 39 – ESS tool: parameters tab 
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Figure 40 – ESS tool: technology selection 

The second tab is shown in Figure 41 where users can import their time-series data and 

select the desired services based on the imported data file.  

 

Figure 41 – ESS tool: input file and services tab (before data import) 
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The imported data file should be in the template format designed for the tool and shown in 

Figure 42. The input data file includes columns for time-series data including: 

• Date and time 

• Energy prices (day-ahead and real-time) 

• Frequency regulation up/down prices 

• Spinning and non-spinning reserve prices 

• Renewable output power 

• Active load data 

• Demand charge rates 

• Backup prices 

• Capacity payments 

 

Figure 42 – ESS tool: input file template 

After importing the input file, users must select their desired services/revenue streams from 

the “Input Files and Services” tab. From the list of implemented services, the tool displays 

only those that are available based on the imported data file since each service requires 

specific input data. For instance, if the imported data file includes the data shown in Figure 

42, tab 2 is updated as shown in Figure 43. 
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Figure 43 – ESS tool: input file and services tab (after data import) 

Users can now select from the available services as shown in Figure 43. For each service 

to be modeled, certain parameters are considered “advanced service options” and users can 

change them to customize services based on their assumptions. The “advanced service 

options” dialog box is shown in Figure 44. 

 

Figure 44 – ESS tool: advanced services options 
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The last step before running the simulation and obtaining results is to enter the financial 

rates associated with the energy storage project. These rates are entered in the third tab of 

the tool as shown in Figure 45.  

 

Figure 45 – ESS tool: financials and simulations tab 

The financial rates are defined as: 

– Capital Down Payment: Percentage of the total capital cost that is paid in advance. 

This cost is shown in the CAPEX year of the project. For example, if the total 

capital cost is $1,000,000 and the capital down payment is 30%, then $300,000 is 

paid in CAPEX year and the $700,000 is annuitized through the project life with 

the finance rate.  

– Finance Rate: The rate in percentage at which the financed portion of total capital 

cost is discounted. 

– Discount Rate: The rate in percentage at which all of the cash flows are discounted 

to the present value. This rate is determined by the storage/owner and does not 

include the inflation rate. 
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– Inflation Rate: The rate in percentage indicating a decrease in the purchasing 

power of energy storage owner/operator. 

– Effective Discount Rate: This rate is used to calculate the present value of all cash 

flows (discount all the annual cash flows to the CAPEX year) for Net Present Value 

analysis. It is calculated based on the Discount and Inflation Rates as: 

𝐸𝐷𝑅 =  
Discount Rate(%) +  Inflation Rate(%)

100 +  Inflation Rate(%)
 

o Note that if the energy storage owner/operator already includes the inflation 

rate, the tool user can enter the discount rate as it is and enter zero for the 

inflation rate. 

– Reinvestment Rate (for MIRR): The reinvestment rate is the amount of interest 

that can be earned when money is taken out of one fixed-income investment and 

put into another.  

Having all the storage technology parameters with service data as well as financial rates, 

the optimization-based simulation of the tool can be executed on the third tab by pressing 

the “Run Simulation” button. If any of the previous steps are incomplete, the tool will 

inform the user. If all steps are taken successfully, simulation will start. The console 

displays the status of the simulation in terms of how many days have been solved. 

Depending on the resolution of the provided data (1 hour, 15 minutes, etc.) and the number 

of selected services, simulation time may vary from less than a second to a few seconds 

per day. Simulation will be finished when the last day in the data file is solved. After it is 

finished, the tool shows a quick dialog box with the most important standard economic 

metrics for cost benefit analysis, such as the Net Present Value (NPV), Payback Period, 

Internal Return Rate (IRR), and Modified IRR (MIRR). These metrics are defined as: 
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- Net Present Value (NPV): This is the sum of all years’ discounted after-tax cash 

flows. The NPV method is a valuable indicator because it recognizes the time value 

of money. Projects whose returns show positive NPVs are attractive. For a discount 

rate (or in the case of NESET, EDR) r, it is calculated as: 

𝑁𝑃𝑉 = ∑
(𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑖 − 𝐶𝑜𝑠𝑡𝑖)

(1 + 𝑟)𝑖

𝑛

𝑖=0

 

 where n is the project life in years and i is the year index. 

- Internal Rate of Return (IRR): It is defined as the discount rate at which the after-

tax NPV is zero. The calculated IRR is examined to determine if it exceeds a 

minimally acceptable return, often called the hurdle rate. The advantage of IRR is 

that, unlike NPV, its percentage results allow projects of vastly different sizes to be 

easily compared. 

- Payback Period: A payback calculation compares revenues with costs and 

determines the length of time required to recoup the initial investment. A Simple 

Payback Period is often calculated without regard to the time value of money. This 

figure of merit is frequently used to analyze retrofit opportunities offering 

incremental benefits and end-user applications. 

- Modified internal rate of return (MIRR): It assumes that positive cash flows are 

reinvested at the firm's cost of capital, and the initial outlays are financed at the 

firm's financing cost. By contrast, the traditional internal rate of return (IRR) 

assumes the cash flows from a project are reinvested at the IRR. The MIRR more 

accurately reflects the cost and profitability of a project. For a project with a life of 

n years, it is calculated by: 

𝑀𝐼𝑅𝑅 = ( √
𝐹𝑢𝑡𝑢𝑟𝑒 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑎𝑠ℎ 𝑓𝑙𝑜𝑤𝑠 𝑎𝑡 𝑟𝑒𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑒

|𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑎𝑠ℎ 𝑓𝑙𝑜𝑤𝑠 𝑎𝑡 𝐸𝐷𝑅| 

𝑛

) − 1  
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The tool will also ask the user to specify a folder and a file name to export and save the 

results. After this file is exported successfully, a button “Open the Results File” will be 

shown on the right of the “Run Simulation” button. The user can then view the exported 

results file by clicking on this button.  

An example of the results file is shown in Figure 46. The first sheet, Figure 46(a), shows 

the “Annual Cash Flow Statement” of the project where the rows are service revenues and 

project costs and columns are operation years. For each revenue/cost, the NPV is also 

calculated. Annual cash flows and cumulative cash flows are also calculated in the last two 

rows of this sheet. This sheet has the capability that the user can change the cell values and 

all the NPV and cash flow results will be updated automatically. For example, if the project 

has additional costs, such as upgrade cost, or benefits, such as incentives or tax credits, the 

user can input these data on this sheet under the name of “Incentives/Credits.” Annual 

values should be entered and the excel file calculates the NPV for this item and updates all 

the calculations for the project. The second sheet shown in Figure 46(b) is for daily 

revenues from selected services as well as the total daily revenue. The third sheet shown 

in Figure 46(c) displays the optimized operation results for each service. 

 

(a) 
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(b) 

 

(c) 

Figure 46 – ESS tool: results file a) annual cash flow statement, b) daily revenues, 

and c) dispatch 
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