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Abstract 
 

Global climate change requires immediate actions to mitigate emissions from 

energy related sectors. Specifically, the electricity system plays a pivotal role in 

achieving the global emission reduction goals that many countries have publicly 

committed to. In the United States (U.S.), energy policies have focused on increasing 

electricity production from renewables, decreasing electricity consumption by improving 

energy efficiency, and shifting demand by using energy storage technology. This 

dissertation explores the specific challenges and information gaps that confront 

practitioners in three separate case studies, consequently contributing to electricity 

system and energy policy literature. It is the hope of the author that information provided 

helps to inform policy makers, electricity system operators, and private investors toward 

critical transition and transformation of the U.S. energy system. 

The studies, taking the form of independent chapters, are summarized as follows. 

The first study presents an improved methodology for estimating the marginal emission 

factors (MEFs) of electricity generation in the Midcontinent Independent System 

Operator (MISO) system. Findings highlight the importance of including emitting and 

nonemitting resources in MEFs calculation in regions with high and growing renewables 

penetration and compare this approach to competing conventional approaches within the 

context of energy storage technologies. The second study demonstrates a multi-regional 

energy and emissions assessment of the ground source heat pump (GSHP) technology in 

comparison to the conventional heating and cooling technologies in residential houses. 

Findings indicate that applying EFs with higher spatial and temporal resolutions and 

using MEFs instead of average emission factors (AEFs) both give more accurate 

emission estimates. The third study assesses economics and emissions of grid-scale 

battery storage that arbitrages as a price taker in the MISO wholesale electricity market. 

Findings demonstrate specific locations where battery storage might initially be most 

profitable under historical pricing dynamics and reveal the heterogeneity in storage’s 

economics and emissions throughout the MISO grid.  
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Chapter 1 

Introduction 
 

The damaging climate change resulted from human activities such as excessive 

resource exploitation and intensive industrialization have, in turn, crucially impacted our 

society and challenged the unprecedentedly growing global economy in a broad variety 

of ways. Increasing demand of energy due to population growth in recent decades have 

caused resource scarcity, ecosystem deterioration, and environmental pollution (Pachauri, 

Mayer, & IPCC, 2015). As the world's largest economy and richest nation, the United 

States (U.S.) has one of the highest per-capita energy consumption in the world (World 

Bank, 2014). Within the country, the electric power system has been recognized as one of 

the most carbon-intensive economic sectors, as it emits roughly 40% of all domestic 

greenhouse gases (U.S. EPA, 2016). Hence, transforming and decarbonizing the U.S. 

electricity system is one of the grand challenges for pursuing sustainability. Policies have 

been motivated to promote system efficiency and use of renewable resources. Advanced 

technologies and innovative strategies such as energy storage and electrification have 

also become priority in many areas (Navigant, 2016). The U.S. Midwest is at the heart of 

this transition. Within the Midcontinent Independent System Operator (MISO) footprint, 

state renewable portfolio standards (RPS) and the EPA’s Clean Power Plan (CPP) have 

driven the deployment of over 16,000 MW of installed wind capacity, with additional 

megawatts planned to fill vacancies due to coal plants retirement, and new state laws 

promoting solar energy (MISO, 2016a). Therefore, the MISO region provides rich 

opportunities for reducing economic and environmental impacts of the electricity system, 

facilitating demand-side and behind-the-metering strategies, and improving public health 

and broader societal benefits as it serves 42 million customers (MISO, 2016b). 

In practice, serious challenges remain in the processing of pursuing sustainable 

energy systems, including existing technological “lock in”, lack of timely information 

and appropriate market structure, and inefficient communication infrastructure (Foxon, 

2013; Williams et al., 2012). These challenges exist at both generation and demand sides, 

as well as in transmission and distribution systems. For instance, consumption decisions 

can be disconnected from environmental impacts due to consumers’ invisibility into the 
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power generation. In fact, the embedded emission impacts of dispatched electricity can be 

highly variable based on specific location, season, and even time of day. Meanwhile, 

demand-side consumption behaviors are not informed well enough to effectively respond 

to the variations and reduce the impacts accordingly. Changes in regional climate and 

weather can also affect all major aspects of the electric power system: higher temperature 

may lower generation efficiency in thermal power plants, changing climate may cause 

issues in production from renewable sources such as wind turbines and solar panels; and 

high demand levels lead to increased energy cost and associated emissions. 

This dissertation demonstrates three separate case studies to address sustainability 

challenges in the MISO electricity system. New approaches are made to break down and 

tackle the challenges in three aspects, including measuring emissions from electricity 

generation and demand, assessing economics of advanced technologies, and discussing 

policy implications of different strategies. These aspects account for the entire scope of 

the electricity system and are significant for understanding the current MISO system and 

analyzing various interventions. Proper measurement of emissions from electricity 

generation have substantial influences over policy and technology interventions aiming to 

reduce emissions. Investigation of electricity consumption strategies can address the 

impacts associated with direct operation of different technologies at demand side. 

Detailed economic estimation is critically important for rationalizing advancement in 

power grid modernization. The methodological design in this dissertation incorporates 

materiality, comparability and multi-metric dimensionality to address the sustainability 

challenges for MISO system; the findings can be integrated with policy- and decision-

making criteria to effectively inform and guide practices towards decarbonized and 

modernized electricity systems. The research in this dissertation is organized in three 

separate studies and contributes to the electricity system and energy policy literature via 

the advancement of mixed methods and utilization of unique, spatiotemporal data. 

Chapter 2 presents an improved methodology for estimating the marginal emission 

factors (MEFs) of electricity generation in the MISO system. Findings highlight the 

importance of including both emitting and nonemitting resources in MEFs calculations, 

as neglecting nonemitting resources can overestimate MEFs for carbon dioxide (CO2), 

sulfur dioxide (SO2) and nitrogen oxides (NOx) by about 30% in regions with high and 
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growing renewables penetration. This expanded approach of calculating MEFs is further 

compared to the conventional approach within the context of energy storage technologies. 

Results of the application reveals heightened emission increases associated with load 

shifting of storage technologies. This study enables appropriate assessment of policy and 

technology interventions in terms of their environmental impacts and aims to stimulate 

effective policy and investment decisions toward electricity system transformation. 

Chapter 3 demonstrates a multi-regional energy and emissions assessment of the 

ground source heat pump (GSHP) technology in comparison to the conventional natural 

gas furnace and air conditioner systems in residential houses. Twelve system-in-house 

scenarios are analyzed across three climatic regions and using various emission factors 

(EFs) of the MISO grid. GSHPs are found consuming less energy than the conventional 

systems but not necessarily reducing CO2 emissions in all scenarios due to the grid fuel 

mix’s spatiotemporal variability across locations. Findings reveal that applying EFs with 

higher spatial and temporal resolutions and using MEFs instead of AEFs both give more 

accurate and appropriate emission estimates. This study emphasizes the importance of 

applying accurate EFs to emissions performance assessment and recommends 

policymaking to properly incentivize the technologies that meet today’s grid realities and 

renewable-integrated grid of tomorrow. 

Chapter 4 utilizes spatiotemporal, real-time locational marginal prices (LMP) of 

electricity and MEFs of generation to estimate net operating revenues and emissions of 

grid-scale battery storage that arbitrages as a price taker in the MISO wholesale 

electricity market. Findings demonstrate specific locations where battery storage might 

initially be most profitable under historical pricing dynamics and reveal the heterogeneity 

in storage’s economics and emissions throughout the MISO grid: storage installed in the 

North and Central subregions are more profitable but cause increase in emissions, while 

those in the South subregion are less profitable but lead to reduction in emissions. This 

study illustrates where one might expect energy storage to emerge in the MISO grid and 

discusses the importance of policy framework for future adoption of storage technologies 

serving under mechanisms like integrating renewables and maintaining grid reliability. 

Chapter 5 offers a synthesized discussion of the studies presented in the 

dissertation.  
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Chapter 2 

Marginal Emission Factors Considering 
Renewables: A Case Study of the U.S. 
Midcontinent Independent System Operator 
(MISO) System 
 
With permission by my co-authors, this chapter is adapted from: Li, M., Smith, T. M., 
Yang, Y., & Wilson, E. J. (2017). Marginal Emission Factors Considering Renewables: 
A Case Study of the US Midcontinent Independent System Operator (MISO) 
System. Environmental science & technology, 51(19), 11215-11223. 
DOI: 10.1021/acs.est.7b00034 
 
Estimates of marginal emission factors (MEFs) for the electricity sector have focused on 

emitting sources only, assuming nonemitting renewables rarely contribute to marginal 

generation. However, with increased penetration and improved dispatch of renewables, 

this assumption may be outdated. Here, we improve the methodology to incorporate 

renewables in MEF estimates and demonstrate a case study for the Midcontinent 

Independent System Operator (MISO) system where wind has been commonly dispatched 

on the margin. We also illustrate spatiotemporal variations of MEFs and explore 

implications for energy storage technologies. Results show that because the share of 

renewables in MISO is still relatively low (6.34%), conventional MEFs focused on 

emitting sources can provide a good estimate in MISO overall, as well as in the Central 

and South subregions. However, in the MISO North subregion where wind provides 

22.5% of grid generation, neglecting nonemitting sources can overestimate MEFs for 

CO2, SO2, and NOx by about 30%. The application of expanded MEFs in this case also 

reveals heightened emission increases associated with load shifting of storage 

technologies. Our study highlights the importance of expanded MEFs in regions with 

high and growing renewables penetration, particularly as renewable energy policy seeks 

to incorporate demand-side technologies. 
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2.1 Introduction 
 

Electricity generation is one of the most emission-intensive economic sectors in the 

United States (U.S.) and across the globe (Pachauri et al., 2015). Regional air pollution 

and its consequential damage to human health are largely attributable to air pollutant 

emissions from fossil fuel combustion in electricity generation (Smith et al., 2010; S. 

Wang & Hao, 2012). Climate, air pollution, and energy policies aim to create more 

sustainable energy systems and reduce emissions from electricity generation. Commonly 

suggested policy interventions include increasing electricity production from renewable 

energy sources like wind and solar, decreasing consumption by improving energy 

efficiency, and shifting demand by using bulk energy storage and demand response (E. S. 

Hittinger & Azevedo, 2015a; Lutsey & Sperling, 2008). Effective implementation of 

these policies depends on understanding how they change and affect the electricity 

generation system and contribute to reducing emissions.  

The potential of an electricity generation system to reduce emissions has been 

measured by both marginal emission factors (MEFs) and average emission factors 

(AEFs) (Doucette & McCulloch, 2011; Hawkes, 2010; Siler-Evans, Azevedo, & Morgan, 

2012). However, the use of AEFs, which reflect grid-average situations, to estimate the 

effect of an intervention may be problematic, because not all generating technologies 

would respond to changes in demand proportionally (Hawkes, 2010). In studying the 

electricity generation in the United States, for example, Siler-Evans et al. found that 

AEFs could significantly misestimate the amount of emissions avoided by an intervention 

(Siler-Evans et al., 2012). By contrast, MEFs estimate the emission intensity of marginal 

power generation that responds to a change in demand, and are a more appropriate metric 

to assess emission implications of policy and technology interventions, such as electric 

vehicle tax credits and energy storage, among others (Doucette & McCulloch, 2011; 

Hawkes, 2010; Siler-Evans et al., 2012). 

Short-term MEFs reflect the dynamics of electric generation and consumption 

given relatively fixed and long-lived system capacity; these are affected by factors 

including the legacy technology mix, fuel type, operation cost, dispatchability, and timing 

(Hawkes, 2014). Long-term—which in the electric power system can be decades—MEFs  

reflect capacity addition or reduction and structural changes in the electricity system, and 
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are affected by factors such as resource constraints, capital cost and return rate, and 

policy incentives (Hawkes, 2014). 

Short-term MEFs have been intensively studied, mainly via two approaches: 1) 

statistical models based on empirical data and 2) economic dispatch models (Ryan, 

Johnson, & Keoleian, 2016). Both methods have strengths and limitations (Ryan et al., 

2016). The statistical approach reduces model complexity and calculation time by 

avoiding operational constraints and dispatch orders, but it relies heavily on empirical 

data (Hawkes, 2010; Ryan et al., 2016; Siler-Evans et al., 2012). When important data are 

missing, the accuracy of this approach is compromised (Siler-Evans et al., 2012). The 

economic dispatch approach estimates MEFs based on numerous data and sophisticated 

models (McCarthy & Yang, 2010; Peterson, Whitacre, & Apt, 2011; Ryan et al., 2016). 

However, its increased complexity and strict assumptions confine broader use (Axsen, 

Kurani, McCarthy, & Yang, 2011; Blumsack, Samaras, & Hines, 2008; Kintner-Meyer, 

Schneider, Pratt, & Pacific Northwest National Laboratory, 2007). 

Regressions on historical data have been used as a simple and effective statistical 

method of estimating MEFs. Siler-Evans et al. (2012) developed a linear regression 

model to calculate MEFs for eight North American Electric Reliability Corporation 

(NERC) regions using hourly, generator-level emissions and generation data from the 

U.S. Environmental Protection Agency (EPA) Continuous Emissions Monitoring System 

(CEMS) (Siler-Evans et al., 2012). Holland and Mansur (2008) determined real-time 

pricing’s effect on emissions in the NERC regions (Holland & Mansur, 2008). In Europe, 

Hawkes (2010) regressed and estimated marginal CO2 rates for the United Kingdom 

(UK) national grid from 2002 through 2009 (Hawkes, 2010). The MEFs mentioned above 

have been further refined considering spatial and temporal variations, and have been 

broadly used to evaluate emissions associated with plug-in hybrid electric vehicles 

(PHEVs) (Archsmith, Kendall, & Rapson, 2015; Graff Zivin, Kotchen, & Mansur, 2014; 

Holland, Mansur, Muller, & Yates, 2015, 2016; Jansen, Brown, & Samuelsen, 2010; 

Stephan & Sullivan, 2008; Tamayao, Michalek, Hendrickson, & Azevedo, 2015; Yuksel, 

Tamayao, Hendrickson, Azevedo, & Michalek, 2016). The U.S. EPA also provides non-

baseload MEFs in the Emissions & Generation Resource Integrated Database (eGRID) 

(Diem & Quiroz, 2012a); the method and results have been widely used in governmental 
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policies and tools such as EPA’s Clean Power Plan (CPP) and Power Profiler application 

(U.S. EPA, 2012). 

Economic dispatch models have been used to estimate MEFs in different regional 

grids in the US: California Independent System Operator (CAISO) (Marnay et al., 2002), 

Electric Reliability Council of Texas (ERCOT) (Newcomer, Blumsack, Apt, Lave, & 

Morgan, 2008; Raichur, Callaway, & Skerlos, 2016), Midcontinent Independent System 

Operator (MISO) (Bettle, Pout, & Hitchin, 2006), New York Independent System 

Operator (NYISO) (Raichur et al., 2016), and Pennsylvania-New Jersey-Maryland 

Interconnection (PJM) (Newcomer et al., 2008); and Europe: the power system of 

England and Wales (Bettle et al., 2006) and the Belgian electricity generation system 

(Voorspools & D D’haeseleer, 2000). MEFs implications have been intensively examined 

in various generation- and demand-side applications, including PHEVs (Axsen et al., 

2011; Blumsack et al., 2008; Choi, Kreikebaum, Thomas, & Divan, 2013; Kim & 

Rahimi, 2014; Kintner-Meyer et al., 2007; H. Lund & Kempton, 2008; McCarthy & 

Yang, 2010; Peterson et al., 2011; van Vliet, Brouwer, Kuramochi, van den Broek, & 

Faaij, 2011; Yuksel & Michalek, 2015), integration of renewable energy (Keith, Biewald, 

Sommer, Henn, & Breceda, 2003; McConnell, Hadley, & Xu, 2011), distributed 

generation (Hadley & Van Dyke, 2003), energy efficiency (Du & Mao, 2015; K. Wang & 

Wei, 2014), energy storage (Anderson & Leach, 2004; Carson & Novan, 2013; E. S. 

Hittinger & Azevedo, 2015a; Kanoria, Montanari, Tse, & Zhang, 2011; Stadler, Siddiqui, 

Marnay, Aki, & Lai, 2011), and a ban on new coal-fired power plants (Newcomer & Apt, 

2009). 

One critical commonality of the existing studies is the exclusion of non-emitting 

generation from the calculation of MEFs, specifically renewable and nuclear sources. 

This is partly because of the lack of data (Siler-Evans et al., 2012), but largely because of 

the assumption that non-emitting sources, particularly renewable resources, do not serve 

as marginal generation given their near-zero operational cost and non-dispatchability 

(Graff Zivin et al., 2014; Hawkes, 2010; Siler-Evans et al., 2012). However, in the U.S., 

significant deployment of renewables (over 75,000 MW in 2016) and parallel 

developments, including transmission system expansion, dispatching mechanism 

improvement, and electricity market development, in regional electricity systems, such as 
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MISO and PJM, have shown that renewable resources like wind can be and have been 

deployed frequently on the margin (Figure 2.1) (MISO, 2014d; PJM, 2014). In 2014, for 

example, MISO’s monthly average percentage of time that wind was on the margin 

exceeded 60% in seven out of the twelve months (MISO, 2014d). The remarkable 

presence of wind generation on the margin is due to technological and policy innovations 

affecting dispatch of MISO’s 16,000 MW of wind, in particular, the Dispatchable 

Intermittent Resources (DIRs) program launched in 2011 (MISO, 2011; Stafford & 

Wilson, 2016). The program relies on advanced wind forecasting accuracy in MISO and 

enables automatic wind dispatchment and curtailment in real-time, with the aim of 

improving market efficiency and system reliability and reducing curtailments (MISO, 

2011). In 2014, MISO’s 5-min interval forecast was developed and improved; MISO’s 

Day-Ahead and 4-Hour-Ahead hourly wind forecasting accuracy exceeded 95% (MISO, 

2015e); and monthly DIR participation in MISO accounted for 79%-83% of the total 

wind generation, a significant increase from 9.8% in June, 2011 (MISO, 2011). Thanks to 

the DIRs program, wind participated in MISO’s real-time market like fossil fuels with a 

fairly low monthly curtailment rate ranging from 4.2% to 8.3% in 2014 (MISO, 2015d). 

This significantly improves wind’s dispatchability that indicates wind generation’s 

responsiveness to the request of power system operator (i.e. MISO) or power plant 

owner. Also, to better capture power system dynamics, the Independent System Operator 

New England (ISO-NE) has revised their estimates of MEFs (ISO New England, 2016). 

Their early MEFs covered only natural gas- and oil-fired generators, but from 2011 they 

have used a new method to estimate MEFs based on the locational marginal units, 

including non-emitting generators, identified by locational marginal prices. 
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Figure 2. 1. Monthly percentage of time that wind is on the margin in 2014, 2015, and 2016 in MISO. 
Data are from MISO’s 5-min real-time fuel on the margin data (MISO, 2014a, 2015a, 2016a). Note that 
more than one fuel type may be on the margin, hence the percentage of each fuel type may sum to more 
than 100%. 

Recognizing the recent developments in renewable penetration and policy 

innovations, here we apply the broadly-used linear regression approach (Graff Zivin et 

al., 2014; Hawkes, 2010; Siler-Evans et al., 2012) to estimate MEFs for MISO, taking 

into account both emitting and non-emitting sources. We term our estimates “expanded 

MEFs” to differentiate from previous MEFs, which we term “conventional MEFs”. 

Because of MISO’s largest geographic footprint in the U.S (MISO, 2015b) (900,000 

square miles or 2.3 million square kilometers) and the substantial heterogeneity in fuel 

mix across its regions (MISO, 2014c), we estimate MEFs for its North, Central, and 

South subregions, as well as MISO as a whole. We compare the differences between the 

expanded MEFs and the conventional MEFs to assess the impact of non-emitting sources 

such as renewables on MEFs. We also demonstrate spatiotemporal variations of the 

expanded MEFs and explore the implications for bulk energy storage technologies and 

demand side management (DSM) programs that are based on load shifting techniques 

such as demand response (DR), smart metering, and other emerging technologies. In 

addition, we inspect the fuel mix in marginal generation with respect to system load. We 

conclude with discussion of the broad policy and technology implications of MEFs 

considering non-emitting sources. 
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2.2 Methods 
 

We estimate MEFs using the linear regression approach(Hawkes, 2010; Siler-

Evans et al., 2012) with 2014 hourly emissions and generation data. Based on this 

approach, changes in emissions (∆"#) are a function of changes in generation (∆$#) 

within an hour (Equation 1): 

  

∆"# = &∆$# + (                                                          (1) 
 

where ∆"# = "# − "#*+                                                 (2) 
 

and ∆$# = $# − $#*+                                                    (3) 
 

The slope of the linear regression (&) gives us an estimate of MEFs. In the previous 

MEFs studies, ∆$# covers only emitting sources (Equation 4): 

 
∆$# = $,-.//.01,# − $,-.//.01,#*+                                          (4) 

 
When the penetration of renewables is low or they are undispatchable and thus 

accounting for emitting sources only may be adequate for the estimation of MEFs. 

However, when renewables penetration becomes high with substantially improved 

dispatchability, accounting for emitting sources only may significantly overestimate the 

MEFs. In our expanded MEFs (Equation 5), we include both emitting and non-emitting 

sources,  

 
∆$# = ($,-.//.01,# + $040*,-.//.01,#) − ($,-.//.01,#*+ + $040*,-.//.01,#*+)       (5) 

 
We use the approach to separately calculate MEFs of electricity generation in 

MISO’s North, Central, and South subregions. With regard to geographical coverage, 

North includes Iowa, Minnesota, Montana, North Dakota, South Dakota, and Manitoba, 

Canada; Central includes Indiana, Illinois, Kentucky, Michigan, Missouri, and 

Wisconsin; and South includes Arkansas, Louisiana, Mississippi, and Texas (MISO, 

2015b). Details of the MISO subregions are shown in the supporting information (section 

1). 
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The approach can also be applied to subsets of the sample to derive MEFs with 

more granular temporal resolutions. For example, month-hour MEFs can be calculated by 

employing the regression on all observations within the same hourly interval in twelve 

months for 288 separate times. And daily MEFs can be calculated by employing the 

regression on all observations within the same hourly interval for 24 separate times. 

 
2.2.1 Data Sources 
 

The primary data sources for our expanded MEFs estimates are the EPA’s Air 

Market Program Data (AMPD), which provides emissions and generation data for 

emitting sources, and hourly generation by fuel type data from MISO, which provides 

generation data for non-emitting sources. The AMPD is a web-based application that 

contains data collected as part of EPA’s emissions trading programs (U.S. EPA, 2018). 

The AMPD data provide hourly generator-level CO2, SO2 and NOX emissions as well as 

gross power production. We sort the data into the MISO subregions by cross-indexing 

power plant identification numbers with survey Form EIA-860, an independent database 

maintained by U.S. Energy Information Administration, and the MISO subregion map 

(EIA, 2018; MISO, 2015b). We then aggregate the hourly generator-level emissions and 

generation data to create the AMPD hourly subregional emissions and generation data. 

The hourly generation data provided by MISO covers all fuel types, but we only 

use the information on non-emitting sources, i.e. hydro, nuclear and wind. To accurately 

estimate the contribution of non-emitting sources in MEFs, we use an identification index 

to help determine what fuel types are on the margin in a specific hourly interval for each 

MISO subregion. We collect the 5-minute real-time fuel on the margin data from MISO 

(MISO, 2014a). In the data, MISO defines the marginal fuel(s) as the type(s) of 

generating units that are dispatched to serve the next 1 MW of energy (MISO, 2014b) for 

each fuel type, not the actual generation volume. We aggregate the data from 5-minute to 

hourly level and obtain the total count of non-emitting generating units that operate on 

the margin within each hourly interval. The total count is then transformed into the 

identification index that indicates the presence or absence of particular non-emitting fuel 

types in marginal generation. Eventually, we use the index to filter the hourly non-

emitting generation data, keeping the observations that are identified “on the margin”, 
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and saving them as the MISO hourly non-emitting generation data for each MISO 

subregion. Note that there can be one or more on-the-margin fuel types within each 

hourly interval. 

 
2.2.2 Marginal Fuel Type 
 

We rely on the linear regression model and the MISO hourly generation by fuel 

type data to estimate each fuel type’s share in marginal generation across various 

temporal scales and grid production levels. To constrain our analysis more precisely to 

the identified on-the-margin generation, we use the identification index created from 

MISO’s 5-minute real-time fuel on the margin data to filter the hourly generation by fuel 

type data, then keep the observations that are identified “on the margin” as a subset. In 

this subset, we calculate change in generation for all fuel types within each hourly 

interval, then apply the similar linear regression model used for estimating MEFs to 

calculate the share of all possible fuel types in marginal generation. We also explore the 

share of fuel type in marginal generation with regard to system generation increase. We 

bin the hourly system generation by every fifth percentile and apply separate regressions 

on data within each bin. This allows us to intuitively observe the probability of each fuel 

type being on the margin at different levels of system generation, which is a proxy of 

system demand. 

 
2.3 Results 
 
2.3.1 Expanded and Conventional MEFs 
 

Overall results of the expanded MEFs and the conventional MEFs for MISO and its 

subregions, as well as marginal fuel type under the two methods are presented Table 2.1. 

MEFs estimates for CO2, SO2, and NOX are reported with ± two standard deviations of 

the estimates and R2 values (details of the linear regression are shown in Appendix A and 

Figure A.1). The difference between the two MEFs reflects the impact of non-emitting 

sources, primarily wind in this case. It also reflects the error of overestimation by using 

conventional MEFs when non-emitting sources contribute considerably to marginal 

electricity generation. Tables 2.1 reveals that the overall error is small for MISO, but it 
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can be as high as around 30% for the North due to the high wind penetration (22.5% of 

2014 grid generation (MISO, 2014c)). The more wind is on the generation margin 

(North > Central > South), the greater the error of overestimation by using the 

conventional MEFs (e.g., 28.13% > 3.7% > 0.0% for CO2). Because the share of 

renewables like wind and hydro in MISO is still fairly low (less than 10% (MISO, 

2014c), also shown in Table A.1) and nuclear reactors rarely operate on the margin, 

estimates of the expanded and conventional MEFs do not show a difference in MISO 

overall, as well as in the Central and South subregions. 

The expanded MEFs for CO2 are found to be 0.76 tons/MWh for MISO in 2014, 

with a variation between 0.62 and 0.82 tons/MWh in different subregions. CO2 emissions 

are lower in the North (0.67 tons/MWh) and South (0.62 tons/MWh) than in the Central 

region (0.82 tons/MWh). This is because wind contributes 30% to marginal electricity 

generation in North and natural gas contributes nearly 80% in South. Our model’s R2 

value is large in MISO (0.95), Central (0.96) and South (0.93), indicating that CO2 

emissions respond strongly to changes in system generation. It also echoes the fact that 

coal and gas constitute the majority of marginal generation within these regions and 

subregions. The R2 value in the North regression is lower in North (0.64), indicating that 

higher wind penetration in marginal generation (30.4%) weakens the corrolation between 

changes in system generation and changes in CO2 emissions, because wind has zero 

emissions in operation. 

SO2 is a major emission from coal combustion, therefore its expanded MEFs are 

higher in MISO (2.59 lbs/MWh), North (1.99 lbs/MWh) and Central (3.34 lbs/MWh) 

where marginal generation is more coal-dependent, but lower in South (1.38 lbs/MWh) 

where coal only accounts for 21.3% of the marginal generation. The R2 values are 

relatively high in MISO (0.74) and Central (0.73), which is consistent with the strong 

relationship between changes in coal-heavy generation and changes in SO2 emissions in 

MISO and Central. The R2 values are relatively low in the North (0.41) and South (0.42) 

subregions, this is because wind’s and gas’s significant contribution to marginal 

generation weakens the causal relationship between changes in generation and changes in 

SO2 emissions in North and South, respectively. 
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The expanded MEFs for NOX is higher in MISO (1.30 lbs/MWh), North (1.43 

lbs/MWh) and South (1.51 lbs/MWh) than those in Central (1.09 lbs/MWh). Similar to 

other emissions, the R2 value in the North (0.46), due to wind’s frequent presence in 

marginal generation, is the lowest compared to that in MISO (0.79), Central (0.71) and 

South (0.59). 

 
Table 2. 1. The Expanded and Conventional Marginal Emission Factors (MEFs) for Regional (MISO) and 
Subregional (North, Central and South) Electricity Generation in 2014. 
There are significant differences in the average regional and subregional fuel mix: in MISO, the percentage 
of generation from coal, natural gas, nuclear, and wind is 57.7%, 15.5%, 16.2%, and 6.3%, respectively; in 
North, the percentage of generation from coal, natural gas, nuclear, and wind is 57.7%, 2.6%, 12.8%, and 
22.5%, respectively; in Central, the percentage of generation from coal, natural gas, nuclear, and wind is 
75.0%, 7.5%, 12.9%, and 2.4%, respectively; in South, the percentage of generation from coal, natural gas, 
and nuclear is 23.8%, 41.8%, and 26.1%, respectively. 

 Region CO2 (tons/MWh) SO2 (lbs/MWh) NOX (lbs/MWh) Marginal Fuel (%) 
MEF ± 26 R2 MEF ± 26 R2 MEF ± 26 R2 coal gas wind 

Expanded 
MEFs 

MISO 0.76 ± 
0.004 0.95 2.59 ± 

0.032 0.74 1.30 ± 
0.014 0.79 59.2 36.8 0.3 

North 0.67 ± 
0.010 0.64 1.99 ± 

0.052 0.41 1.43 ± 
0.034 0.46 66.8 3.8 28.9 

Central 0.82 ± 
0.004 0.96 3.34 ± 

0.044 0.73 1.09 ± 
0.014 0.71 73.2 22.4 0.1 

South 0.62 ± 
0.004 0.93 1.38 ± 

0.034 0.42 1.51 ± 
0.026 0.59 20.8 78.9 NA 

Conventional 
MEFs 

MISO 0.78 ± 
0.002 0.98 

2.67 ± 
0.032 0.77 

1.33 ± 
0.014 0.82 61.4 37.2 NA 

North 0.86 ± 
0.004 0.95 

2.54 ± 
0.044 0.61 

1.87 ± 
0.026 0.72 94.2 5.4 NA 

Central 0.85 ± 
0.002 0.99 

3.47 ± 
0.044 0.75 

1.12 ± 
0.014 0.73 76.6 22.8 NA 

South 0.62 ± 
0.004 0.93 

1.38 ± 
0.034 0.42 

1.51 ± 
0.026 0.59 20.8 79.0 NA 

Expanded 
MEFs ~ 

Conventional 
MEFs 
diff.% 

MISO 2.8 3.1 2.6    
North 28.1 28.4 31.8    

Central 3.7 3.9 3.5    

South 0.0 0.0 0.0 
   

 
Expanded MEFs ~ Conventional MEFs diff. % = (Conventional MEFs – Expanded MEFs)/Expanded 
MEFs × 100 
 
2.3.2 Spatiotemporal Variations and Trends of Expanded MEFs 
 

We observe significant trends of the expanded MEFs across hours depending on 

the month. Figure 2.2 shows the seasonal and diurnal time variations of the expanded 

MEFs for CO2. In MISO, the expanded MEFs are higher, overall, at night than during the 

day. We attribute this to carbon-intensive coal generation that is often the primary 

contributor to meet the marginal demand in low-demand hours (see Figure 2.3), such as 



 15 

11pm-2am next day. Moreover, coal-fired generators are less efficient during low-

demand hours than average, because they have to operate at lower capacity factors (Ryan 

et al., 2016). The expanded MEFs in the North subregion are found to be lower in colder 

months, which is thought to be the result of greater availability of wind resources and 

consequently more wind generation on the margin. August has the highest expanded 

MEFs than any other month in the North when wind resources are scarcest and the 

marginal demand for air conditioning is primarily fueled by coal. The expanded MEFs in 

Central do not have extreme contrasts across months and hours, but a few trends are still 

noticeable. For example, the expanded MEFs for CO2 during 10am-8pm in August and in 

the hour ending at 2pm in months from June to October are found to have lower MEFs 

for CO2 than neighboring hours. This difference is likely caused by marginal generation’s 

dependence on natural gas to meet peak demand for air conditioning during these time 

periods in this subregion (see Figure 2.3). The expanded MEFs in South are relatively 

higher in the early morning than in the rest of the day particularly in the summer months 

because marginal generation during low-demand hours is satisfied by coal- and gas-fired 

units (see Figure 2.3) and the coal-fired units’ ramp-up emission rates are usually high. 

The moderate expanded MEFs for CO2 in most hours and months reflect a largely 

constant level of gas-fired marginal generation in South, due to strong presence of natural 

gas in the system fuel mix. 

We also notice obvious differences of the expanded MEFs across MISO and its 

subregions (see Appendix A and Figure A.2). Overall, they vary the most in North and 

relatively less in Central and South. The outstanding low MEFs in North echo the fact 

that North has the greatest wind penetration in marginal generation compared to the other 

two subregions (see Table 2.1), while the relatively high MEFs in early-morning and late-

night hours indicate the yet heavy reliance on coal in North. Central and South depend 

intensively on coal and natural gas for marginal generation, respectively, so the MEFs are 

higher in Central and relatively moderate in South. 
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Figure 2. 2. Monthly and Hourly Expanded MEFs for CO2 for Regional (MISO) and Subregional (North, 
Central and South) Electricity Generation in 2014 

2.3.3 Marginal Fuel Type and MEFs 
 

Inspired by Figure 3 in Siler-Evans et al. (2012) (Siler-Evans et al., 2012), we 

created Figure 2.3 to show the share of marginal generation by fuel type (top) and the 

expanded MEFs for CO2, SO2 and NOX (bottom) in correspondence to the level of 

system generation, which is a proxy for system demand. North and Central are both quite 

coal-heavy in generation. When system demand is low, coal is the dominant marginal 

fuel in both subregions, resulting in relatively high MEFs for CO2 (left axis) and SO2 

(right axis). However, as demand increases, share of coal slightly decreases in North, but 

dramatically drops in Central. The share gap is gradually picked up by wind in North and 

quickly picked up by gas and hydro in Central. Such substitution of coal by wind and gas 

leads to the reduced MEFs for CO2 (left axis) and SO2 (right axis) in North and Central, 

respectively, but it has little effect on the MEFs for NOX level in both subregions. South 

is the most gas-heavy subregion. At the lowest demand level, coal accounts for roughly 

55% of marginal generation, but declines to less than 2% at peak demand, while gas takes 

up the other 45% at low demand and almost all marginal generation at peak demand. The 

replacement of coal by gas in marginal demand causes the decline of MEFs for CO2 (left 

axis) and SO2 (right axis). The expanded MEFs for NOX rapidly increase with system 

demand and gas generation. 

Month Month Month Month

1

0.5

0
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Figure 2. 3. Share of Marginal Fuel Type (top) and Expanded MEFs for CO2, SO2 and NOX (bottom) as a 
Function of System Generation. 
Following from Siler-Evans et al. (2012) (Siler-Evans et al., 2012): X axes are binned by fifth percentile of 
system generation (GWh) in each region and subregion in 2014. Only coal (grey), gas (light blue), hydro 
(dark blue), other (yellow), and wind (green) are shown here because nuclear is rarely on the margin of 
generation. The expanded MEFs (bottom) have two Y axes: the left axis applies to CO2 (tons/MWh) and 
right axis applies to NOX and SO2 (lbs/MWh). 

2.3.4 Application of MEFs 
 

We demonstrate several applications of the expanded MEFs for CO2 in this section. 

We examine bulk energy storage technologies that charge during low-demand hours 

(bottom 15%) and discharge during high-demand hours (top 15%) as well as demand side 

management (DSM) programs that are based on load shifting techniques and are designed 

to move demand load from high-demand hours to low-demand hours. These technologies 

are capable of shaving peak demand, maintaining grid reliability, and improving system 

efficiency (Moura & de Almeida, 2010; P. Wang, Huang, Ding, Loh, & Goel, 2011). The 

bulk energy storage technologies are particularly useful in hedging against the variability 

of intermittent generation from renewable resources like wind and solar (Anderson & 

Leach, 2004; Kanoria et al., 2011). 

Existing studies reveal that the operation of energy storage can cause emission 

increases (Carson & Novan, 2013; Denholm & Kulcinski, 2004; E. S. Hittinger & 

Azevedo, 2015a; E. Hittinger, Whitacre, & Apt, 2010; Lueken & Apt, 2014). Hittinger 

and Azevedo (2015), for example, investigated and compared such increased effects 

across U.S. NERC regions. However, they used the conventional MEFs and neglected 
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possible contribution of renewables like wind to marginal generation, which may 

overestimate the emission increases resulting from the operation of energy storage (E. S. 

Hittinger & Azevedo, 2015a). 

In Table 2.2, we compare the expanded and conventional MEFs for CO2 during 

high-demand and low-demand hours for MISO and its subregions. The comparison 

illuminates that the conventional MEFs in general underestimate the potential emission 

increase (column “H ~ L diff. at 100% efficiency”) as compared with the expanded 

MEFs, even if the bulk energy storage technologies operate at a round-trip efficiency of 

100%. This is especially true for the North subregion (0.168 versus 0.037). Although the 

expanded MEFs are lower compared to the conventional MEFs during both high-demand 

and low-demand hours in North, the increase of expanded MEFs from high-demand 

hours to low-demand hours is enlarged. This is because wind contributes to marginal 

generation more frequently during high-demand hours than during low-demand hours 

(Figure 2.3). This consequently helps reduce the expanded MEFs CO2 more during high-

demand hours than during low-demand hours. 

We also look at bulk energy storage technologies operating at a round-trip 

efficiency of 75%, which was indicated as the base-case in Hittinger and Azevedo (2015) 

(E. S. Hittinger & Azevedo, 2015a). The results show that the potential emission increase 

caused by operation of the storage technologies at 75% efficiency (column “H ~ L diff. at 

75% efficiency” in Table 2.2) is significantly enlarged compared to that caused by the 

100% efficient technologies. 

The comparison also reveals significant regional differences in the avoided CO2 

emissions resulting from the same load-shifting intervention. The level of renewable 

penetration and the dependence on coal are the key factors that cause the differences 

across the regions. 
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Table 2. 2. Potential Emissions Increase Resulting from Bulk Energy Storage Technologies Charging during 
Low-demand Hours and Discharging during High-demand Hours. 
The difference between MEFs in low-demand and high-demand hours is calculated using (Low-demand 
hours – High-demand hours). Values in parentheses are the percentage difference between MEFs in low-
demand and high-demand hours, which is calculated using (Low-demand hours – High-demand 
hours)/High-demand hours × 100. 

 Region High-demand 
hours 

Low-demand 
hours 

H ~ L diff. at 
100% efficiency 

H ~ L diff. at 
75% efficiency 

Expanded 
MEFs CO2 

(tons/MWh) 

MISO 0.622 0.811 0.189 (30.3%) 0.459 (73.8%) 
North 0.601 0.769 0.168 (28.0%) 0.435 (70.7%) 

Central 0.649 0.881 0.232 (35.7%) 0.525 (81.0%) 
South 0.559 0.700 0.141 (25.2%) 0.375 (67.0%) 

Conventional 
MEFs CO2 

(tons/MWh) 

MISO 0.673 0.826 0.153 (22.7%) 0.428 (63.6%) 
North 0.857 0.894 0.037 (4.4%) 0.336 (39.2%) 

Central 0.735 0.884 0.148 (20.2%) 0.443 (60.2%) 
South 0.559 0.700 0.141 (25.2%) 0.374 (66.9%) 

 

2.4 Discussion 
 

It has been broadly acknowledged that marginal emission factors (MEFs) are more 

appropriate, than average emission factors, in evaluating the avoided emissions of 

interventions in the electricity system (Doucette & McCulloch, 2011; Farhat & Ugursal, 

2010; Hawkes, 2010; Marnay et al., 2002; Siler-Evans et al., 2012). The conventional 

MEFs focused on emitting sources such as coal and natural gas. This approach may 

suffice to assess the avoided emissions from interventions that aim to displace fossil-

fueled generators (Graff Zivin et al., 2014; E. S. Hittinger & Azevedo, 2015a; Siler-

Evans et al., 2012) when there is low penetration and dispatchability of non-emitting 

sources such as wind. With renewables playing an increasingly important role and 

gaining improved dispatchability, however, the conventional MEFs may significantly 

overestimate the magnitude of avoided emissions and underestimate the role of 

renewables in shaping MEFs. Our expanded MEFs considering both emitting and non-

emitting sources on the margin provides more accurate estimates of the avoided 

emissions from interventions including bulk energy storage, PHEVs, and demand 

response (DR). 

Our results have important implications for regional electricity system policy 

making. Although the MISO overall has a low level of renewable penetration and 

renewables make a small contribution to marginal generation, there is significant 

heterogeneity at the subregional level. Wind penetration in the North is high and so is its 
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contribution to marginal generation. Due to transmission congestions and renewables 

curtailment, further deployment of wind power in the North may not be as effective at 

reducing emissions as in other subregions of MISO that also have abundant wind 

resources. Energy policies using MEFs would benefit from specified consideration of 

subregional differences in fuel mix. 

We find significant hour-to-hour differences of the expanded MEFs for CO2 in 

North, but modest hour-to-hour differences in Central and South. In North, the MEFs for 

CO2 tend to be lower in winter and nighttime when system demand is low and the wind 

resource is abundant and more often on the margin; whereas in Central and South, the 

MEFs for CO2 tend to be higher during night hours, when system demand is low and coal 

and gas are more often on the margin. The spatiotemporal heterogeneity of MEFs provide 

valuable guidance for policy makers and practitioners to evaluate the environmental 

impacts of emerging technologies with respect to their operational characteristics. For 

example, PHEVs that are scheduled to charge overnight will end up having quite low 

emission impacts if their owners reside in North, but relatively high emission impacts if 

their owners live in Central and South. 

We note that deploying bulk energy storage technologies and demand-side 

management programs in MISO to shift 1 MWh of electricity generation from high- to 

low-demand hours can result in a CO2 emission increase of 0.189 tons or 30%, if the 

technologies have a round-trip efficiency of 100%, and 0.459 tons or 73.8%, if the 

technologies have a more realistic round-trip efficiency of 75%. The emission 

shortcoming of storage technologies has been recognized in previous studies and may 

jeopardize many valuable services provide by the storage technologies, including 

reliability, responsiveness, and integration of intermittent renewable resources (Carson & 

Novan, 2013; E. S. Hittinger & Azevedo, 2015a; Lueken & Apt, 2014). However, the 

studies underestimate the potential emission increases due to neglecting the marginal 

generation from renewables (Carson & Novan, 2013; E. S. Hittinger & Azevedo, 2015a; 

Lueken & Apt, 2014). We find that, in the North subregion where wind accounts for 

almost one third of the marginal generation, the negligence leads to underestimating the 

marginal emission increase from storage technologies by 4.5 times, if the technologies 

have a round-trip efficiency of 100%, and 1.3 times, if the technologies have a more 



 21 

realistic round-trip efficiency of 75%. Therefore, policy makers and technology investors 

ought to be cognizant of the issues when assessing the value of additional bulk energy 

storage. 

Our expanded MEFs have accounted for MISO system-wide generation profile 

changes in recent years and comprehensively estimate the avoided emissions of 

interventions in the current MISO electricity system. We recommend other markets of 

Independent System Operators (ISO) and Regional Transmissions Operators (RTO) to 

consider the impact of renewables when calculating MEFs. Our method and estimates 

may be further improved if MISO discloses the locational marginal generators (LMG) 

that are dispatched to meet the next increment of system load and balance the system. 

Future improvement in MEFs methods will enable proper assessment of policy and 

technology interventions in terms of their societal impacts and will stimulate effective 

investment and policy decisions. 

A limitation of our study is the omission of electricity trade in estimation of MEFs. 

Detailed data on how electricity flows between MISO subregions or between MISO and 

other regions are not readily available. Electricity import rate in different eGRID 

subregions ranges from 0 to 30%, although 30% would be an extreme case and 15% is 

already an upper bound for many regions (Diem & Quiroz, 2012b); monthly electricity 

net interchange rate between MISO and other balancing authority regions ranges from 2 

to 12% (EIA, 2016). Assuming an unlikely net interchange rate of 30% between MISO 

subregions, the expanded MEFs would be lower than the conventional MEFs by about 

10% in the wind-rich North subregion (Table A.2 and Figure A.3). And assuming a more 

reasonable 15%, the expanded MEFs would be lower by 14-18%. The results indicate 

that considering electricity interchange would not affect our main message that it is 

important to incorporate renewables in MEFs estimation in high renewable penetration 

regions so as to provide more accurate estimates of avoided emissions by policy 

interventions. This is especially true given the trend of continuous renewables expansion 

around the world. 
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Chapter 3 

Multi-Regional Energy and Emissions 
Assessment on Electrification of Residential for 
Space Conditioning 
 
Ground source heat pumps (GSHP) have been examined globally as an efficient 

electrification technology that provides energy savings and emission reductions when 

deployed in residential houses. However, existing studies have largely focused on GSHPs 

in a particular climatic region and used average emission factors (AEFs) of the power 

grid to assess GSHPs’ emissions performance. Here, we demonstrate a multi-regional 

study to compare several modeled GSHP systems against conventional natural gas and 

air conditioner systems with regard to their annual energy consumption and Carbon 

Dioxide (CO2) emissions. We analyze twelve system-in-house scenarios across three 

climatic regions and utilize various EFs of the Midcontinent Independent Systems 

Operator (MISO) grid. Results show that the GSHP systems analyzed consume less 

energy than the conventional systems in all scenarios, but their site energy savings do not 

necessarily translate to CO2 emission reductions due to the spatiotemporal variability of 

the grid fuel mix in certain locations. Findings reveal that applying the EFs with higher 

spatial and temporal resolutions and using marginal EFs (MEFs) instead of AEFs both 

give more accurate emission estimates. Our study highlights the importance of applying 

the accurate EF metric to emissions performance assessment and recommends 

policymaking to incentivize distributed electrification technologies that meet today’s grid 

realities and a renewable-integrated grid of tomorrow. 

  



 23 

3.1 Introduction 
 

Energy use is one of the main drivers of anthropogenic greenhouse gases emissions 

and the consequential global warming effects (Pachauri et al., 2015). Structural reforms 

in various energy end-use sectors are required to achieve the climate change mitigation 

goal, such as improvement of energy efficiency, electrification of energy end uses and 

decarbonization of electric power generation (Williams et al., 2014). In the United States 

(U.S.), the residential sector consumed about 20% (or about 18 quadrillion British 

thermal units) of total energy use in 2017 (U.S. Energy Information Administration, 

2018). Heating, ventilation, and air conditioning (HVAC) account for almost 50% of the 

onsite energy use in U.S. homes (U.S. Energy Information Administration (EIA), 2013). 

Therefore, applications of the most efficient residential HVAC systems are urgently 

needed to help reduce energy consumption and related environmental impacts. Many 

studies have investigated innovative HVAC technologies from the perspective of 

reducing energy use and emissions (Fiorentini, Cooper, & Ma, 2015; Graditi et al., 2015; 

Gustafsson et al., 2014; Ippolito, Zizzo, Piccolo, & Siano, 2014; J. W. Lund & Boyd, 

2016). Ground source heat pump (GSHP) system has been found being a good alternative 

for space heating and cooling, because it utilizes renewable geothermal energy and has 

higher efficiency than the conventional HVAC systems (Curtis, Lund, Sanner, Rybach, & 

Hellström, 2005; Lucia, Simonetti, Chiesa, & Grisolia, 2017; Sarbu & Sebarchievici, 

2014). 

Previous research has found GSHP systems can significantly reduce energy use and 

CO2 emissions when compared against conventional HVAC systems in many situations 

and at different spatial scales (Cassidy, 2003; Curtis et al., 2005; Huelman et al., 2016; 

M. Li, 2013; LIENAU, 1997; J. W. Lund, 1988; Meyer, Pride, O’Toole, Craven, & 

Spencer, 2011). Energy performance of GSHP systems was evaluated in specific regions 

including Alaska in the U.S., Minnesota in the U.S., southern Germany, northern Tunisia, 

and Ireland, and cities, such as Shenyang in China and a Himalayan city in India; results 

showed the systems could achieve energy savings due to their relatively stable coefficient 

of performance (COP) (Cassidy, 2003; Dai et al., 2015; M. Li, 2013; Liu, Xu, Zhai, Qian, 

& Chen, 2017; Luo et al., 2015; Meyer et al., 2011; Naili, Hazami, Attar, & Farhat, 2016; 

Sivasakthivel, Murugesan, Kumar, Hu, & Kobiga, 2016). Shen and Lukes investigated 
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the performance of GSHP technologies across U.S. climate zones and found global 

warming could decrease GSHP’s energy efficiency due to soil temperature rise 

Particularly in cooling dominated locations (Shen & Lukes, 2015). Environmental 

performance of GSHP systems have largely been assessed within a life-cycle framework, 

using historical annual average emission factors (EFs, in kg CO2 e/kWh) of the electric 

power grid were used to estimate life-cycle emissions from operational electricity 

consumption by GSHP systems (Bayer, Saner, Bolay, Rybach, & Blum, 2012; Blum, 

Campillo, Münch, & Kölbel, 2010; Huang & Mauerhofer, 2016; Koroneos & Nanaki, 

2017; Saner et al., 2010) In all studies, electricity in the use phase was found to play the 

dominant role in the climate impacts over the lifespan of GSHP systems; thus, carbon 

intensity of the electricity production substantially affects GSHP systems’ life-long 

emission (Mattinen, Nissinen, Hyysalo, & Juntunen, 2015). 

Existing research that calculates the emissions from deploying and operating the 

GSHP technologies are mainly carried out in the life cycle assessment (LCA) context, 

where the annual average emission factor (AEF) is the most commonly used metric in the 

calculation. However, power grids’ instant EFs are much more volatile than their annual 

AEF due to the fact that, in practice, generation profiles in power grids are constantly 

changing over time to balance the changes in demand. Furthermore, because GSHP 

systems have not been widely adopted in U.S. homes (Hughes, 2009), their electricity use 

due to daily operation can be considered as marginal demand for the entire power system. 

Hence, marginal emission factors (MEFs), which estimate the emission intensity of 

power generation that responds to incremental demand, are a more appropriate metric to 

assess emissions related to GSHP systems’ operational electricity use (M. Li, Smith, 

Yang, & Wilson, 2017). In other words, using annual average EFs can practically 

misestimate the total emissions from GSHP systems’ long-term electricity consumption. 

Such misestimation would lead to fallacious conclusions regarding GSHPs’ actual 

environmental benefits. This will not only impact homeowners who live in a particular 

region and wonder how much exactly they can reduce CO2 by installing GSHP systems at 

home, but also influence policymakers who care about where, across various regions, 

they should deploy more GSHP systems to propel effective demand-side energy 

transition. 
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In this study, we first simulate and compare the heating and cooling energy 

consumption by GSHP and GFAC (natural gas furnace and air conditioner) systems 

hypothetically installed in residential houses with different house and technology 

configurations in Minneapolis, St. Louis, and New Orleans, then we calculate and 

compare the annual CO2 emissions from the GSHP and GFAC systems. Results show 

that the annual energy consumption and CO2 emissions vary substantially across cities 

and technologies, because 1) the cities are located in cold, mixed-humid, and hot-humid 

climate regions in the U.S., respectively; and 2) the technologies use electricity supplied 

by the North, Central, and South subregional power grids, which have different 

generation fuel mix profiles, in the Midcontinent Independent System Operator (MISO) 

system, respectively (Figure 3.1). 

In the CO2 emissions calculation, we use four types of emission factors (EFs) that 

have various spatial and temporal resolutions and account for total or marginal 

generation: 1) the MISO annual AEF, 2) the MISO subregional, i.e. North, Central, and 

South, annual AEFs, 3) the MISO spatiotemporal (subregional, month-hour) AEFs, and 

4) the MISO spatiotemporal (subregional, month-hour) MEFs. Findings indicate that 

applying the EFs with higher spatial and temporal resolutions gives more accurate 

emission estimates, as their higher spatial and temporal granularities account for the 

variation in electricity consumption across space and time. We also find that using MEFs 

instead of AEFs in the calculation is more appropriate, because the electricity 

consumption from the modeled scenarios (GFAC and GSHP) is the marginal demand to 

the grid and MEFs reflect the emission intensity of the generation that responds to such 

marginal demand, whereas AEFs characterize the grid’s average emission intensity which 

cannot reflect the fuel mix in marginal generation. 

This study comprehensively assesses the performances of two different residential 

heating and cooling technologies, i.e. GFAC and GSHP, in the context of various house 

insulation configurations. The assessment and comparison between technologies and 

among scenarios provide broad policy implications for electrification in the residential 

sector. 
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Figure 3. 1. Minneapolis, St. Louis, and New Orleans in the U.S. climatic regions (A) and the MISO 
subregional power grids (B). 
Adopted from the U.S. Energy Information Administration (U.S. Energy Information Administration 
(EIA), 2009) and MISO (MISO, 2015c). 

3.2 Methods 
 

Hourly heating and cooling energy consumption of residential GFAC and GSHP 

systems in Minneapolis, St. Louis, and New Orleans are simulated using the Building 

Energy Optimization Tool (BEopt v2.8.0) developed by the National Renewable Energy 

Laboratory (NREL) (NREL, 2018). Beopt is a residential-specific modeling program that 

provides a graphical user interface for EnergyPlus, the flagship hourly-level energy use 

simulation engine which is well developed and documented by the U.S. Department of 

Energy (DOE) and widely used and respected by researchers and practitioners (DOE, 

2018). The tool enables users to evaluate energy consumed by various HVAC 

technologies and consider the complex interactions of all building and climate variables. 

This study uses the site energy consumption simulated by the BEopt model. 

Carbon dioxide emissions from the simulated hourly energy consumption are then 

calculated using four types of electric power grid’s emissions factors that have different 

spatial and temporal granularities. 

 

3.2.1 Residential heating and cooling system scenarios and energy consumption 
 

For each city, we create twelve system-in-house scenarios to simulate and compare 

energy consumption and CO2 emissions of the GFAC and GSHP technologies. In each 
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scenario, the cooling set point is 76 ºF and the heating set point is 71 ºF (Wilson, 

Engebrecht-Metzger, Horowitz, & Hendron, 2014). The Typical Meteorological Year, 

version 3 (TMY3) data at each city’s airport is used as weather data in the energy use 

simulation model. 

The residential houses in which the GFAC and GSHP technologies are 

hypothetically installed have different characteristics that frame low, medium and high 

house efficiency levels. To keep consistency and comparability, the twelve system-in-

house scenarios are designed identical across the three cities. Details of the scenarios are 

displayed in Table 3.1 and Appendix B1. 
Table 3. 1. Residential heating and cooling system-in-house scenario details. 

Scenario component Component description 

System, GFAC • Natural gas furnace: 90% AFUEa 
• Air conditioner: 13 SEERb 

System, GSHP 
• Low efficiency: COP 3.6c; EER 16.6d 
• Medium efficiency: COP 3.8c; EER 19.4d 
• High efficiency: COP 4.2c; EER 20.2d 

House, 1984 square 
feet 

• Low efficiencye 
• Medium efficiencye 
• High efficiencye 

aAFUE is the annual fuel utilization efficiency of a natural gas furnace. Higher AFUE means higher 
efficiency. 
bSEER is the seasonal energy efficiency ratio of an air conditioner. Higher SEER means higher efficiency. 
cCOP is the coefficient of performance that rates the heating efficiency of a ground source heat pump 
system. Higher COP means higher heating efficiency. 
dEER is the energy efficiency ratio that rates the cooling efficiency of a ground source heat pump system. 
Higher EER means higher cooling efficiency. 
dDetailed parameter selections about house efficiency are provided in Appendix B1. 
 
3.2.2 CO2 emissions 
 

Based on the scenario design in this study, there are two sources of CO2 emissions 

from residential heating and cooling systems: 1) on-site natural gas combustion in the 

GFAC system’s gas furnace and 2) electricity consumption by the GFAC system’s air 

conditioner and the GSHP system’s heat pump. For natural gas combustion, we use 

EIA’s CO2 emissions coefficients for natural gas (U.S. Energy Information 

Administration (EIA), 2016) to calculate related emissions. For electricity consumption, 

we use four types of emission factors: 1) the MISO annual AEF, 2) the MISO 

subregional, i.e. North, Central, and South, annual AEFs, 3) the MISO spatiotemporal 
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(subregional, month-hour) AEFs, and 4) the MISO spatiotemporal (subregional, month-

hour) MEFs to assess CO2 emissions related to electricity demand by the GFAC and 

GSHP systems at different spatial and temporal resolutions. All emission factors are 

calculated using data from MISO and the EPA’s Air Market Program Data (AMPD) 

database. 

We first apply the 2016 annual AEF of the MISO grid to calculate the annual CO2 

emissions from electricity consumption of all scenarios, as annual AEF is the most 

commonly used metric in life cycle assessment to measure year-round and life-long 

emissions from electricity consumption. 

Next, we consider the spatial factor about electricity generation, as Minneapolis, St. 

Louis, and New Orleans are located in and connected to MISO’s North, Central, and 

South subregional grids, respectively (see Figure 3.1). We apply the 2016 subregional 

AEFs to the annual CO2 calculations with the purpose of improving spatial accuracy of 

the AEF metric. 

Then, we integrate the temporal factor with the spatial factor regarding electricity 

generation, as the generation in MISO’s subregional grids and the electricity consumption 

by GSHP both vary from hour to hour. We apply the 2016 spatiotemporal AEFs to the 

annual CO2 calculations in order to improve the spatial and temporal accuracy of the AEF 

metric. 

Lastly, we utilize the MEF metric which measures the emission intensity of 

marginal generation and has been recommended as the more appropriate metric than AEF 

to estimate emissions from marginal demand (Doucette & McCulloch, 2011; Farhat & 

Ugursal, 2010; Hawkes, 2010; Marnay et al., 2002; Siler-Evans et al., 2012). The MEF 

used here is an improved metric adopted from Li et al., which includes renewable 

generation in the calculation and considers spatial and temporal variations (M. Li et al., 

2017). We apply the 2016 spatiotemporal MEFs to the annual CO2 calculations. 

3.3 Results 
 
3.3.1 Energy consumption 
 

Annual energy consumption of all twelve scenarios in Minneapolis, St. Louis, and 

New Orleans are presented in Figure 3.2. Natural gas consumption by GFAC systems 
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were initially measured in MMBtu (thermal heat unit) but later converted to MWh 

(electric heat unit) in order to secure comparability against GSHP systems. 

We find GFAC system’s annual energy consumption ranging from 13.8 to 30.5 

MWh in Minneapolis, from 8.1 to 18.5 MWh in St. Louis, and from 3.5 to 6.6 MWh in 

New Orleans. The higher the house efficiency is, the less energy the GFAC systems 

consumes year-round. All GSHP systems are found achieving energy savings compared 

to the GFAC system in the same house and city: annual energy consumption of GSHP 

ranges from 3.8 to 9.8 MWh (compared to 13.8 to 30.5 MWh of GFAC) in Minneapolis, 

from 2.5 to 6.2 MWh (compared to 8.1 to 18.5 MWh of GFAC) in St. Louis, and from 

2.5 to 4.3 MWh (compared to 3.5 to 6.6 MWh of GFAC) in New Orleans. Under the 

same house efficiency, the higher the GSHP system efficiency is, the greater the energy 

savings are. 

House efficiency improvement is found enhancing the annual heating and cooling 

energy savings by GSHPs compared to the GFAC system in Minneapolis, weakening 

those in New Orleans, and having a mixed effect on those in St. Louis. This is because 

such improvement is more effective in reducing heating energy use than reducing cooling 

energy use in all three cities, while the heating-cooling ratio is quite different across the 

cities: heating being dominant in Minneapolis, cooling being dominant in New Orleans, 

and heating-cooling being relatively balanced in St. Louis (Figure 3.2). In Minneapolis, 

GSHP systems at low, medium, and high efficiency levels save annual energy use by 

67.7%, 69.3%, and 71.7% in the low-efficient house, by 67.8%, 69.4%, and 71.8% in the 

medium-efficient house (slight increase from the low-efficient house), and 68.2%, 69.9%, 

and 72.3% in the high-efficient house (slight increase from the medium-efficient house); 

in St. Louis, GSHP systems at low, medium, and high efficiency levels save annual 

energy use by 66.4%, 68.6%, and 70.9% in the low-efficient house, by 66.6%, 68.9%, 

and 71.2% in the medium-efficient house (slight increase from the low-efficient house), 

and 63.8%, 66.5%, and 68.9% in the high-efficient house (slight decrease from the 

medium-efficient house); in New Orleans, GSHP systems at low, medium, and high 

efficiency levels save annual energy use by 35.8%, 42.4%, and 44.9% in the low-efficient 

house, by 27.5%, 35.6%, and 38.1% in the medium-efficient house (slight decrease from 
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the low-efficient house), and 14.3%, 24.1%, and 26.9% in the high-efficient house (slight 

decrease from the medium-efficient house). 

Homeowners can also save annual heating and cooling energy consumption by 

simply improving their house’s efficiency without adopting the new technology (GSHP). 

For homeowners in Minneapolis, improving their house efficiency from low to medium 

saves annual heating and cooling energy consumption by 33.0% if they have an GFAC 

system and by 33.4% on average if they have an GSHP system; while improving their 

house efficiency from low to high saves annual heating and cooling energy consumption 

by 54.6% if they have an GFAC system and by 55.5% on average if they have an GSHP 

system. For homeowners in St. Louis, improving their house efficiency from low to 

medium saves annual heating and cooling energy consumption by 34.2% if they have an 

GFAC system and by 34.8% on average if they have an GSHP system; while improving 

their house efficiency from low to high saves annual heating and cooling energy 

consumption by 55.9% if they have an GFAC system and by 52.8% on average if they 

have an GSHP system. For homeowners in New Orleans, improving their house 

efficiency from low to medium saves annual heating and cooling energy consumption by 

32.6% if they have an GFAC system and by 24.3% on average if they have an GSHP 

system; while improving their house efficiency from low to high saves annual heating 

and cooling energy consumption by 47.6% if they have an GFAC system and by 30.6% 

on average if they have an GSHP system. 



 31 

 

 

Figure 3. 2 Annual energy consumption of the system-in-house scenarios in Minneapolis, St. Louis, and 
New Orleans. 

 
3.3.2 CO2 emissions 
 

As described in the method section, annual CO2 emissions from the electricity 

consumption by the GFAC and GSHP systems in Minneapolis, St. Louis, and New 

Orleans are calculated using four types of emission factors with different spatial and 

temporal granularities to inspect and compare their effects on total emissions. Results 

show that the annual CO2 emissions of a GFAC or a GSHP system are different when 

calculated using different EF metrics. As the EFs’ spatial and temporal resolutions 

improve and the EFs characterize the marginal, renewable-included generation, the 

annual CO2 emissions from electricity consumption by the GFAC and GSHP systems are 

more accurately and appropriately estimated. 

As shown in Table 3.2, a medium-efficient GSHP system in a 1984-square-foot, 

medium-efficient house in Minneapolis causes less CO2 emissions as the EFs’ spatial and 

temporal resolution improves: by using the subregional AEFs, the spatiotemporal AEFs, 

and the spatiotemporal MEFs, annual CO2 emissions of the GSHP system are reduced by 

15.2%, 18.0%, and 18.2% from the emissions calculated using the MISO AEF, 
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respectively. For the same GSHP scenario in St. Louis, more spatial and temporal 

granularity in the EFs and the switch from AEFs to MEFs actually cause the GSHP’s 

annual CO2 emissions to increase by 19.0%, 17.7%, and 13.1% from the emissions 

calculated using the MISO AEF. For this GSHP scenario in New Orleans, more granular 

EFs and the switch from AEFs to MEFs lower the GSHP’s annual CO2 emissions by 

22.7%, 21.1%, and 0.8% from the emissions calculated using the MISO AEF, but the 

switch from the spatiotemporal AEFs to MEFs actually causes an increase of 0.205 

metric tons in annual CO2 emissions. 

The comparison among different AEF metrics, i.e. the MISO AEF, the subregional 

AEFs, and the spatiotemporal AEFs, reveals that the place and time of GSHP’s operation 

are critical for its cumulative CO2 emissions. Accounting for spatial and temporal factors 

in the AEF metrics lowers the GSHP’s annual CO2 emissions in Minneapolis, from 3.868 

to 3.280 to 3.171 metric tons, and New Orleans, from 1.779 to 1.375 to 1.403 metric tons; 

but it raises the GSHP’s annual CO2 emissions in St. Louis, from 2.337 to 2.781 to 2.752 

metric tons. 

 
Table 3. 2 Annual heating and cooling energy use and CO2 emissions of a medium-efficient GSHP system 
in a 1984-square-foot, medium-efficient house. 
Numbers in brackets represent the overall CO2 emission intensity (metric tons/MWh), which equals to 
annual CO2 divided by annual electricity consumption. 

City Electricity 
(MWh) 

CO2 (MT) 
MISO 
AEF 

CO2 (MT) 
subregional 

AEFs 

CO2 (MT) 
spatiotemporal 

AEFs 

CO2 (MT) 
spatiotemporal 

MEFs 

Minneapolis 6.256 3.868 
(0.618) 

3.280 
(0.524) 

3.171 
(0.507) 

3.164 
(0.506) 

St. Louis 3.780 2.337 
(0.618) 

2.781 
(0.736) 

2.752 
(0.728) 

2.643 
(0.699) 

New Orleans 2.878 1.779 
(0.618) 

1.375 
(0.478) 

1.403 
(0.487) 

1.765 
(0.613) 

 

We further inspect the effect of switching from the spatiotemporal AEFs to the 

renewables-included MEFs on when calculating the annual CO2 emissions from this 

medium-efficient GSHP system in the 1984-square-foot, medium-efficient house (Figure 

3.3). Figure 3.3 illustrates the GSHP’s heating and cooling CO2 emissions in a month-

hour context. It shows that the spatiotemporal AEFs lead to few emission variations 
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across hours in the same month (Figure 3.3A), which partially reflects the fairly constant 

grid average fuel mix profile in MISO’s subregions. However, the CO2 emissions 

calculated using the MEFs are found varying much more substantially from hour to hour 

in the same month, especially during the heating season in Minneapolis (Figure 3.3B). 

The observation implies the EFs of renewables-included marginal generation are 

substantially different from the EFs of grid total generation, even in the same spatial and 

temporal context. Moreover, the variation of the annual CO2 emissions calculated using 

MEFs (Figure 3.3B) reveals critical opportunities for mitigating emissions from the 

GSHP by better strategizing the operation of GSHP, such as shifting load from high-

emission hours to low-emission hours while maintaining the heating or cooling 

requirement. 

 
(A) Monthly and hourly CO2 emissions calculated by AEFs 
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(B) Monthly and hourly CO2 emissions calculated by MEFs 

 
Figure 3. 3. Monthly and hourly CO2 emissions from a medium-efficient GSHP system in a 1984-square-
foot, medium-efficient house calculated using spatiotemporal AEFs (A) and MEFs (B). 

Annual CO2 emissions from the energy (natural gas and electricity) consumption 

by all residential heating and cooling scenarios in Minneapolis, St. Louis, and New 

Orleans are presented in Figure 3.4. Results show the high-efficient GSHP system always 

reduces annual CO2 emissions compared to the GFAC system in the same house 

regardless of the city location, but the amount of reduction varies from city to city. The 

low- and medium-efficient GSHP systems are found having a mixed outcome: some have 

increased whereas others have decreased emissions compared the GFAC system. The 

increase and decrease are essentially dependent on which EF metric is used in the 

calculation as well as the city where the inspection focuses on. 

In Minneapolis, using the MISO AEF to calculate annual CO2 emissions (Figure 

3.4A) leads to the low-efficient GSHP systems having 1% to 5% more emissions than the 

GFAC system in the same house, dependent on the house efficiency, while the medium- 

and high-efficient GSHP system having 1% to 12% less emissions than the GFAC system 

in the same house, dependent on the house efficiency. Switching from the MISO AEF to 

the subregional AEFs (Figure 3.4B) decreases annual emissions for all GSHP scenarios 

and makes them have less emissions than the GFAC: 10%, 14%, and 21% lower in the 

low-efficient house, 10%, 15%, and 22% lower in the medium-efficient house, and 13%, 
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18%, and 24% lower in the high-efficient house. Applying the spatiotemporal AEFs 

(Figure 3.4C) and MEFs (Figure 3.4D) also makes all GSHP scenarios capable of 

reducing emissions compared to the GFAC system in the same house: the AEFs lead to 

reductions of 14%, 18%, and 25% in the low- and medium-efficient houses and 

reductions of 17%, 21%, and 27% in the high-efficient house; meanwhile the MEFs lead 

to slightly smaller reductions of 13%, 17%, and 24% in the low- and medium-efficient 

houses and reductions of 15%, 20%, and 26% in the high-efficient house. 

In St. Louis, using the MISO AEF to calculate annual CO2 emissions (Figure 3.4A) 

leads to all GSHP scenarios having less emissions than the GFAC system: 4%, 10%, and 

17% lower in the low-efficient house, 7%, 13%, and 20% lower in the medium-efficient 

house, and 6%, 13%, and 19% lower in the high-efficient house. However, switching 

from the MISO AEF to the subregional AEFs (Figure 3.4B) makes the low-efficient 

GSHP systems have more annual emissions than the GFAC system: 9%, 5%, and 5% in 

the low-, medium-, and high-efficient houses; the medium-efficient GSHP systems are 

found increasing the annual emissions by 2% in the low-efficient house while reducing 

those by 2% and 3% in the medium- and high-efficient houses; the high-efficient GSHP 

systems lower annual emissions by 5%, 9%, and 10% in the low-, medium-, and high-

efficient houses. Applying the spatiotemporal AEFs (Figure 3.4C) and MEFs (Figure 

3.4D) gives similar emission increase or decrease rates of comparing the GSHPs against 

those of the GFACs: for the low-efficient GSHP system, the AEFs lead to increases of 

7%, 3% and 3% in the low-, medium- and high-efficient houses, respectively, while the 

MEFs lead to increases of 8%, 5% and 4% in the low-, medium- and high-efficient 

houses, respectively; for the for the medium-efficient GSHP system, the AEFs lead to 

reductions of 0.02%, 4% and 5% in the low-, medium- and high-efficient houses, 

respectively, while the MEFs lead to an increase of 2% in the low-efficient house and 

reductions of 2% and 3% in the medium- and high-efficient houses, respectively; for the 

high-efficient GSHP system, the AEFs lead to increases of 7%, 11% and 12% in the low-, 

medium- and high-efficient houses, respectively, while the MEFs lead to increases of 6%, 

10% and 10% in the low-, medium- and high-efficient houses, respectively. 

In New Orleans, using the MISO AEF (Figure 3.4A) leads to the low-efficient 

GSHP systems having 1%, 1%, and 5% more annual emissions compared to the GFAC 
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system in the low-, medium- and high-efficient houses, respectively; the medium-

efficient GSHP systems are found reducing emissions by 10%, 10%, and 7% while the 

high-efficient GSHP systems are found reducing emissions 14%, 13%, and 11% in the 

low-, medium- and high-efficient houses, respectively. Switching from the MISO AEF to 

the subregional AEFs (Figure 3.4B) and spatiotemporal AEFs (Figure 3.4C) leads to 

quite similar outcomes: all GSHP scenarios reduce annual emissions by 3% to 19% 

compared to the GFAC system, except for the low-efficient GSHP system in the high-

efficient house which has 2% more emissions than the GFAC system installed in the 

same house. Under the spatiotemporal MEFs, all GSHP scenarios reduce annual 

emissions by 1% to 15% compared to the GFAC system, except for the low-efficient 

GSHP systems in the medium- and high-efficient houses which have 0.44% and 4% more 

emissions than the GFAC system installed in the same house. 

Similar to how house efficiency improvement saves energy consumption without 

technological replacement, the medium- and high-efficient houses, when compared to the 

low-efficient house, are found reducing about 33% and 55% of annual CO2 emissions in 

Minneapolis, reducing about 34% and 52% of annual CO2 emissions in St. Louis, and 

reducing about 25% and 31% of annual CO2 emissions in New Orleans. This provides 

another potential solution for mitigating emissions from residential energy use besides 

adopting alternative technologies. 
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Figure 3. 4. Annual CO2 emissions of the heating and cooling scenarios in Minneapolis, St. Louis, and New Orleans. 

 
 
 
 
 
 
 



 38 

 

3.4. Discussion 
3.4.1 Average emission factors (AEFs) versus marginal emission factors (MEFs) 
 

Marginal emission factors (MEFs) have been acknowledged as a more appropriate 

metric than average emission factors (AEFs) in evaluating emissions from electricity 

consumption by electric-powered technologies. AEFs may suffice to assess the emissions 

from technologies that have constant electricity consumption over time such as baseload 

demand. However, they would neglect the temporal variations in grid’s generation fuel 

mix therefore significantly misestimate the amount of emissions from temporally varying 

electricity consumption, such as residential heating and cooling. Comparison between 

Figure 3.3A and Figure 3.3B shows that CO2 emissions caused by GSHP system 

consuming electricity can vary significantly from hour to hour in all three cities if they 

are calculated using MEFs, whereas using AEFs to calculate the CO2 emissions does not 

show great hour-to-hour variances. The variation of CO2 emissions displayed in Figure 

3.3B can serve as an informative tool to assist smarter operation of GSHP or any electric-

powered appliances to reduce overall CO2 emissions by potentially shifting the operation 

away from carbon-heavy hours. With regard to annual CO2 emissions, we find using 

AEFs, especially the MISO AEF, may misestimate the emissions of all system-in-house 

scenarios. Such misestimation by using AEFs instead of MEFs could potentially conceal 

the environmental benefits, i.e. CO2 emissions reduction, GSHP systems could have 

provided by replacing GFAC systems in Minneapolis and St. Louis, yet it exaggerates the 

benefits in New Orleans. 

 

3.4.2 Policy implications 
 

Our findings have important implications for residential energy transition and 

electricity system policy making at federal and state governments. The transition from 

natural gas to electricity for residential heating and cooling is found capable of 

significantly saving energy consumption in various system and house scenarios across 

different climate zones. But the lifetime economic cost of residential GSHP system may 

not be as competitive against the more conventional GFAC system, specifically due to 
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GSHP system’s relatively high capital cost (Self, Reddy, & Rosen, 2013). Therefore, 

availability of financial incentives can play a crucial role in overcoming market barriers 

for the residential GSHP technology. According to the Database of State Incentives for 

Renewables & Efficiency (DSIRE), homeowners who are interested in investing in 

GSHP technologies can be incentivized by three loan programs (one federal, one state, 

one local) and one rebate program by local utility if they reside in Minneapolis (DSIRE, 

2018a, 2018c, 2018d, 2018f), or two loan programs (one federal and one local) if they 

reside in St. Louis or New Orleans (DSIRE, 2018a, 2018e, 2018b). However, none of the 

programs incentivizes residential GSHP technologies based on their efficiency levels. 

This potentially encourages consumers to purchase the least-efficient GSHP systems, 

because they usually are the cheapest, and consequently lose the energy savings that 

could have been gained by GSHP systems at higher efficiency levels: 227 to 747 kWh in 

Minneapolis, 196 to 435 kWh in St. Louis, and 96 to 445 kWh in New Orleans. 

Therefore, energy transition policy aiming at reducing energy consumption should be 

made more explicit with regard to technologies’ efficiency levels and maximize energy-

saving benefits of the technologies. 

We also find the gas-to-electricity transition for residential heating and cooling can 

reduce annual CO2 emissions in various house scenarios and across different climate 

zones, except for the transition from GFAC system to low-efficient GSHP systems in St. 

Louis. The CO2 emissions reduction is not as substantial as the energy savings for each 

transition scenario. We attribute this to the power grid that supplies electricity for energy 

use after the transitions. Grid with more renewable energy for marginal generation tends 

to have lower MEFs and leads to less CO2 emissions from residential electricity 

consumption than the grid with more fossil energy in the fuel mix. This requires more 

coordinated policy making about residential gas-to-electricity transition and power grid 

decarbonization, because environmental, economic, and societal benefits of the energy 

transition are profoundly impacted by the grid’s profile (Dennis, Colburn, & Lazar, 2016; 

Williams et al., 2014). 

 
3.4.3 House renovation without technological upgrade 
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As for homeowners, our findings show that replacing GFAC with GSHP system 

may not be the only option to cut energy bills and emit less CO2. Retrofitting houses by 

improving insulation is one relatively inexpensive option compared to adopting new 

technologies like GSHP. We find that homeowners having GFAC system can reduce 

heating and cooling energy consumption by 33% to 55% and associated CO2 emissions 

by 25% to 55% if their houses become more efficient. Improving house efficiency alone 

may not be able to reduce as much energy use and CO2 emissions as switching to GSHP 

systems in most scenarios, but it certainly can be fairly cost-effective and having short 

payback time compared to purchasing and installing new GSHP systems. However, if 

homeowners choose to invest in house retrofit first, the likelihood of them spending 

another greater amount of money on replacing GFAC with GSHP will be lessened. In 

addition, as their houses become more efficient, the energy savings and CO2 emissions 

reduction they could have receive from only switching to GSHP systems will be shrunk. 

This will potentially depreciate the benefits of replacing GFAC with GSHP and suppress 

the gas-to-electricity transition. 

 

3.4.4 Limitation and future work 

 

Our study focuses on building-level energy transition in the residential heating and 

cooling sector, therefore it has some limitation considering the fact that large-scale gas-

to-electricity transitions in various sectors will cause foreseeable increase in electricity 

demand and require substantial expansion of power grid infrastructure and power 

generation capacity. Future work examining extensive energy transitions should account 

for such effects on the power grids. Meanwhile, the deployment of energy-transitioning 

technologies like GSHP and the planning of grid expansion should be carefully 

coordinated by effective policymaking. 
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Chapter 4 

Locating Locational Marginal Prices in the 
Midcontinent Independent System Operator 
(MISO): Economic and Environmental Impacts 
of Emerging Grid-scale Electricity Storage 
across the Landscape 
 
Energy storage technologies are recognized as important instruments to assist 

decarbonization and modernization of electricity system. As regulations mandate and 

policies incentivize additional energy storage installation, stakeholders are concerned 

about where and how new storage might be deployed and its impact on electricity 

markets. To address these concerns, we utilize a novel dataset of spatialized locational 

marginal prices (LMP) of electricity to estimate cash flows and emissions of grid-scale 

battery storage that are sited at 358 locations and arbitrage as price takers in the 

Midcontinent Independent System Operator (MISO) wholesale market. We find annual 

net operating revenue associated with a 0.5 MW/2.1 MWh battery storage ranging from 

$11,177 to $39,677. In addition, annual net CO2, SO2, and NOx emissions range from -30 

to 194 metric tons, from -87 to 372 kg, and from -428 to 96 kg, respectively. Our findings 

demonstrate specific locations where battery storage might initially be most profitable, 

which offers projection of future storage and has significant policy implications and the 

marginal environmental implications associate with these near-term adoptions. 
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4.1 Introduction 
 

Electric power system is expected to play a pivotal role in realizing the global 

decarbonization goal that many countries committed to the 2015 Paris Agreement 

(Cleetus, Bailie, & Clemmer, 2016). In the United States (U.S.), Department of Energy 

(DOE) launched the Grid Modernization Initiative (GMI) in 2014 to accelerate the 

adoption of innovative technologies and the development of next-generation smart power 

grid across the country (U.S. DOE, 2017). Energy storage technology, such as 

electrochemical battery, pumped hydroelectric, and compressed air energy storage, has 

been recognized as an effective means to improve grid reliability, shave peak load, and 

hedge intermittency of renewables (Eyer & Corey, 2010; White House, 2016). 

With a recent order issued by the Federal Energy Regulation Committee (FERC), 

pathways for more storage deployment in the grid have just been broadened. In February 

2018, FERC issued Order 841 to “remove barriers to the participation of electric storage 

resources in the capacity, energy and ancillary services markets operated by Regional 

Transmission Organizations (RTOs) and Independent System Operators (ISOs)” (FERC, 

2018). This certainly opens up market access for storage technologies and provides new 

opportunities for various revenue streams. It is foreseeable that more subsidies will likely 

to come from policies for storage projects, and more private funding will be invested into 

the market in addition to growing utility-owned storage capacity. Although RTOs/ISOs 

are given considerable flexibility in implementing FERC’s regulation, it is difficult to 

predict how much, where, and in what form storage will be deployed without a thorough 

understanding of market and established market rules. 

Despite the fact that adding energy storage in the current power grid may cause 

increased system-wide emissions (E. S. Hittinger & Azevedo, 2015b), U.S. legislation 

has pushed for more deployment of storage. In the Western U.S., the Governor of 

California signed AB2514 in 2010 directing the California Public Utility Commission 

(CPUC) to determine appropriate energy storage goals (California, 2010), which led to a 

mandate later in 2013 requiring three large California investor-owned utilities to procure 

1325 MW of storage capacity by 2020 (California Public Utilities Commission, 2013). In 

2016, Oregon followed California’s step to require major utilities have at least 5 MWh of 

energy storage capacity in 2020 (Oregon, 2016). On the U.S. east coast, Massachusetts 
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was the first state to set an energy storage goal of 200 megawatt-hour (MWh) by 2020 

(State of Massachusetts, 2017). The State of New York established a storage procurement 

goal for 2030 (State of New York, 2017). Most recently, New Jersey is set to reach 600 

megawatts (MW) of storage capacity by 2021 and 2 gigawatts (GW) by 2030 (State of 

New Jersey, 2018). Many utilities have implemented new storage deployment under such 

mandates. In 2017, for example, California utilities Southern California Edison and San 

Diego Gas & Electric unveiled grid-scale battery storage facilities of 80 MWh (partnered 

with Tesla) and 120 MWh (partnered with AES Energy Storage), respectively, aiming to 

pick up the unmet demand after the Aliso Canyon natural gas leak (San Diego Gas & 

Electric, 2017; Southern California Edison, 2018). 

Prior studies have extensively examined energy storage technologies from the 

perspectives of arbitrage opportunities, optimal sizing, and benefits from integrating with 

renewables. (Barton & Infield, 2004; Beaudin, Zareipour, Schellenberglabe, & Rosehart, 

2010; Garcia-Gonzalez, Muela, Santos, & Gonzalez, 2008; Korpaas, Holen, & Hildrum, 

2003; N. Li & Hedman, 2015; Marzband, Ghazimirsaeid, Uppal, & Fernando, 2017; 

Paine, Homans, Pollak, Bielicki, & Wilson, 2014; Staffell & Rustomji, 2016; Swider, 

2007; Zhao, Wu, Hu, Xu, & Rasmussen, 2015). Real-time electricity prices are used in 

many studies to inspect storage’s optimal operation strategy, environmental impacts, and 

economic feasibility in the U.S. (Bradbury, Pratson, & Patiño-Echeverri, 2014; E. 

Hittinger & Azevedo, 2017; E. S. Hittinger & Azevedo, 2015b; Krishnamurthy, Uckun, 

Zhou, Thimmapuram, & Botterud, 2018), Spain (Lujano-Rojas, Dufo-López, Bernal-

Agustín, & Catalão, 2017), and Denmark (Hu, Chen, & Bak-Jensen, 2010). Real-time 

prices used in the studies are usually at hourly intervals, which is fairly fine temporal 

resolution, but spatially, the prices are only at regional- or state-level. Prices at such 

spatial granularity could be used to determine optimal operation for storage if it has been 

built up in the region or state. In reality, however, the emergence of these technologies is 

unlikely to be distributed equally across geographies due largely to economic conditions 

particular to individual locations. Within the same region or state, real-time electricity 

prices can vary drastically, even among nearby locations. As such, net operating revenues 

of storage are also expected to vary significantly, with the most profitable locations 

attracting early storage adaptors first. More importantly, the lack of finer spatial 
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granularity restrains prediction for siting of future storage, which is one of the matters 

that most concerns stakeholders, such as RTOs/ISOs, utility companies, and storage 

investors, especially after FERC issued Order 841 (Zidar, Georgilakis, Hatziargyriou, 

Capuder, & Škrlec, 2016).  

In this study, we utilize a unique spatiotemporal, real-time electricity price dataset 

to identify the most profitable locations for grid-scale battery energy storage systems if 

they could, as price takers, participate in the current Midcontinent Independent System 

Operator (MISO) wholesale market. The dataset is unique in that it not only provides the 

finest known and publicly available temporal resolution (five-minute) of real-time 

locational marginal prices (LMPs) in MISO, but more importantly, it reveals the exact 

latitude and longitude of all MISO LMP locations shown on the real-time LMP map 

(MISO, 2018b). Such detailed geographic information of MISO LMP has not been 

published by previous studies, or made easily available in MISO’s historical LMP market 

data archive (MISO, 2018a). The improved spatial resolution can facilitate more precise, 

location-specific analyses than those dependent on region- or state-level LMP (E. 

Hittinger & Azevedo, 2017; E. S. Hittinger & Azevedo, 2015b; Khani & Zadeh, 2015). 

In the sections that follow, we assume that grid-scale battery storage has perfect 

information about real-time LMP in the MISO market. We analyze their optimal hourly 

operation strategy, aiming to maximize annual net operating revenue, for 393 different 

locations throughout the MISO region. By projecting the locations of battery storage and 

their maximized annual net operating revenue on a map, we address the “where to expect 

new storage facilities to appear first” question for stakeholders including MISO, utility 

companies, and storage investors. We then calculate annual net CO2, SO2, and NOx 

emissions induced by economic-optimally operating the battery storage according to their 

locations in MISO’s North, Central, and South subregions. We also calculate some 

metrics related to net operating profitability, such as capital cost and return on 

investment, of the battery storage, as these factors fundamentally affect how storage 

project will be financed. We conclude with a discussion about the broad policy and 

market implications of investigating grid-scale battery storage at fine spatial and temporal 

granularity in current electricity wholesale market. 
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4.2 Methods and Data 
 

We develop an optimization model to determine the revenue-maximizing hourly 

operation of battery storage system when participating, as a price taker, in the MISO real-

time wholesale market at each of the 393 MISO LMP locations (366 generators, 20 load 

zone nodes, and 7 hubs). To reflect the realistic operational patterns of energy storage, we 

set the battery system to only charge from and discharge to the grid, even if it is 

collocated with other generation facilities; therefore, its annual net operating revenue is 

maximized from energy arbitrage. Location-specific prices and emission factors are used 

in our analysis to reveal the optimal siting of foreseeable battery storage systems and 

consequential climate impacts. 

The battery storage system is designed based upon the Tesla Powerpack battery, as 

it represents the state-of-the-art technology for grid-scale battery storage (Tesla, 2018). 

Each system contains 10 units of the Tesla Powerpack battery and has energy capacity of 

2.1 MWh, alternating current (AC) power of 0.5 MW, round-trip efficiency of 88%, and 

depth of discharge (DoD) rate of 100%. The system operates on an hourly basis to 

maximize annual net operating revenue on an hourly basis over a year. We use a linear 

programming model to find the maximized annual net operating revenue and 

corresponding hourly operation patterns of the battery (Equation 6, where !" is the price, 

#"
$%&'()  and #"

(*"&'() are the energy flows in and out of the battery at time t) subject to 

constraints (Equations 6-12). 
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∀	?, 		1"
23""456 ≤ #23""456  (10) 

  
∀	?, 		#"

$%&'()		 ∈ [0, 	0.5] (11) 
  

∀	?, 		#"
(*"&'() ∈ [0, 	0.5] (12) 

 
In the model, the round-trip efficiency 9 is split geometrically between the 

processes of charge and discharge (Equation 7). Net energy stored in the battery system 

1"
23""456  is initialized at zero (Equation 8) and is constrained to be between zero and the 

system’s designed energy capacity #23""456  (Equations 9 and 10) at time t. Equations 11 

and 12 set the lower and upper bounds of charge and discharge rate at time t. Because the 

battery system is modeled to operate on an hourly basis, the energy flow, either #"
$%&'()  

or #"
(*"&'(), in a timestep (in MWh) always equals to the power flow (in MW). Although 

the battery system is not constrained to permit only charge or discharge in a single 

timestep, efficiency losses naturally drives the system to either charge or discharge at any 

time. 

The real-time, hourly wholesale electricity prices used in this study are the 

locational marginal prices (LMPs) throughout MISO region for the year 2016. The LMP 

data was obtained at five-minute level from the MISO real-time LMP contour map, an 

open-access portal of MISO system operation (MISO, 2018b). The five-minute LMP data 

has a mean of 25.60 $/MWh, a standard deviation of 23.53 $/MWh, and a very wide 

spread from -1979.36 $/MWh to 2016.72 $/MWh. Statistical distribution details of the 

data are illustrated in Figure 4.1. Because real-time LMP is location sensitive, we also 

inspect statistics of the five-minute LMP at each of the 393 locations (Figure 4.2). From 

location to location, the LMP’s means range from 15.53 to 31.84 $/MWh while their 

standard deviation ranges from 8.69 to 83.71 $/MWh. 
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Figure 4. 1. Statistical distribution of 2016 five-minute LMP in MISO: overview of all five-minute LMP 
(A), separate view of all negative five-minute LMP (B), separate view of five-minute LMP ranging from 0 
to 100 $/MWh (C), and separate view of five-minute LMP larger than 100 $/MWh (D). 

 

 
Figure 4. 2. Statistical distribution of 2016 five-minute LMP at 393 locations throughout MISO 
geographical footprint. 
Under Type in the legend, GEN represents generator, HUB represents hub, and LZN represents load zone 
node. 
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Due to computational constraints of the optimization software, we use hourly LMP, 

averaged from the five-minute LMP, in the optimization model for battery storage. We 

were able to collect 99.2% of the 2016 hourly LMPs (8715 out of 8784 hours). To fill in 

the missing 69 hours, we apply a logic-based imputation approach to assign estimated 

values to each of the missing hours: 1) if the missing hour h is discrete, the LMP in hour 

h is the average of that in hour h-1 and h+1; 2) if the previous or next hour of missing 

hour h is missing, the LMP in hour h is the average of that in hour h-24 (same hour in 

previous day) and h+24 (same hour in next day); and 3) if the previous or next hour and 

the same hour in previous or next day of missing hour h are missing, the LMP in hour h is 

the average of that in hour h-24, h-48 (same hour in previous two days), h+24  and h+48 

(same hour in next two days). 

After applying the optimization model at each of the 393 LMP locations throughout 

MISO, we identify the revenue-maximizing hourly operation of a battery storage system 

at each location. We then calculate net emissions resulting from the system’s year-round 

operation: when battery charges, it stores the emissions from the grid’s marginal 

generator(s); when it discharges, it displaces emissions from the grid’s marginal 

generator(s). Battery systems at the 393 LMP locations are classified into MISO’s North, 

Central, and South subregions, according to the state in which each battery system is 

located and are assumed being connected to corresponding subregional grids. Hourly 

charge and discharge patterns of the battery systems are then matched with the marginal 

emission factors (MEFs) of corresponding subregional grids by time of day and month. 

Marginal emission factors (MEFs) have been widely acknowledged as a more 

appropriate metric, than average emission factors (AEFs), to assess emissions caused by 

increase or decrease of grid generation in response to a change in demand (E. Hittinger & 

Azevedo, 2017; M. Li et al., 2017; Siler-Evans et al., 2012; Thind, Wilson, Azevedo, & 

Marshall, 2017). We use the method of calculating MEFs from Li et al., because they 

consider renewable sources in the MEF estimates and reflect the current marginal fuel 

mix in the MISO grid (M. Li et al., 2017). Specifically, we use 2016 electricity system 

data that comes from MISO and Air Market Program Data (AMPD) archive of the U.S. 

Environmental Protection Agency (EPA) (MISO, 2016a, 2016b; U.S. EPA, 2018), then 

apply 288 separate linear regression (Equation 13) approaches of change in emissions 
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∆IJ,K against change in grid generation ∆LJ,K for MISO North, Central, and South 

subregions, where the slope MJ,K is the MEF estimate (in metric tons of pollutant per 

megawatt-hour) for month N and hour ℎ: 

 
∆IJ,K = 	MJ,K∆LJ,K (13) 

 
Lastly, we calculate the annual total emissions by multiplying the hourly battery 

energy inflow (charge) and outflow (discharge) by corresponding subregional MEFs for 

the hour of day and month (Equation 14). 

INPQQPRS3%%*3' =+TIUK,J × #"
(*"&'()

-

"./

−+TIUK,J × #"
$%&'()

-

"./

 
(14) 

 

4.3 Results 
 
4.3.1 Annual net operating revenue 
 

Hourly operation of battery storage is optimized, under specific technical 

constraints, to maximize net operating revenue for the year of 2016 at 393 LMP 

locations. We note that 35 locations have LMP data for less than 8784 hours thus are not 

included in the annual net operating revenue comparison. For the remaining 358 

locations, results show that annual net operating revenue of battery storage varies 

substantially across locations from $11,177 to $39,677 (Figure 4.3). Battery storage 

located in and around the states of Illinois, Indiana, and Louisiana are found to generally 

make more annual net operating revenue than in other states. This is unsurprising because 

in Figure 4.2 we observe greater LMP variability in and around these states than in other 

states. To predict where new battery storage would be deployed first, we present 9 

locations where battery storage can make the most annual net operating revenue for more 

than $ 25,000 in Figure 4.4. We find the locations are in the states of Illinois, Indiana, 

Iowa, Wisconsin, and Louisiana. It is noted that the California Ridge Wind Farm 

physically locates in Champaign County, Illinois, but its production is purchased by the 

Tennessee Valley Authority (TVA) company, so its LMP is shown at TVA’s bus station 

in Tennessee instead of wind farm in Illinois (Tennessee Valley Authority, 2012). All of 

the 9 locations are found to be generators (GEN), including 6 coal-fired generating units, 
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1 peaking natural gas turbine, 1 hydroelectric station, and 2 wind farms. We also present 

annual net CO2, SO2, and NOx emissions resulting from the optimal operation of battery 

storage at each of those location (Figure 4.4). Because seven out of the nine locations are 

in the Central subregion of MISO, annual net emissions of battery storage at these 

locations are found much higher than at the other two locations: CO2 emissions ranging 

from 178 to 191 metric tons (compared to -22 and 77 metric tons at the other two 

locations), SO2 emissions ranging from 318 to 353 kg (compared to -61 and 138 kg at the 

other two locations), and NOx emissions ranging from 73 to 96 kg (compared to -399 and 

48 kg at the other two locations). 

 

 
Figure 4. 3. Annual maximized net operating revenue of battery storage at 358 locations throughout MISO 
geographical footprint. 
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Figure 4. 4. Nine locations where battery storage can make annual net operating revenue for more than 
$ 25,000 in MISO. 
Note that #8 California Ridge Wind Farm is physically located in Champaign County, Illinois, but its 
production is purchased by the company Tennessee Valley Authority (TVA), so its LMP is shown in 
TVA’s bus station in Tennessee instead of the wind farm in Illinois (Tennessee Valley Authority, 2012). 

 
4.3.2 Annual net emissions 
 

In Figure 4.5, we present the annual net CO2, SO2, and NOx emissions associated 

with deploying revenue-maximizing battery storage across 358 LMP locations in MISO. 

Emissions are expressed in metric tons for CO2 (Figure 4.5A), kg for SO2 (Figure 4.5B), 

and kg for NOx (Figure 4.5C). Battery storage located in MISO’s North and Central 

subregions are found causing increase in annual net CO2, SO2, and NOx emissions, 

whereas battery storage located in the South subregion are found leading to reduction in 

annual CO2, SO2, and NOx emissions. This is because in the North and Central 

subregions, emission rates of grid marginal generation (i.e. MEFs) are higher during the 

daily periods of low LMP when the batteries charge and lower during daily periods of 

high LMP when the batteries discharge (Figure 4.6-4.10), which means battery storage’s 

economically optimal operation essentially displaces low-emission electricity with high-

emission electricity in the grid. In the South subregion, however, MEFs are lower during 

the charging hours of battery storage but higher during the discharging hours of battery 

storage; therefore, battery storage that moves electricity in an economically optimal 



 52 

pattern actually displaces high-emission electricity with low-emission electricity (Figure 

4.6-4.10). 

Annual net CO2 emissions resulting from the optimal operation of battery storage 

vary between 75 and 89 metric tons in the North subregion, between 178 and 194 metric 

tons in the Central subregion, and between -30 and -10 metric tons in the South subregion 

(Figure 4.5). Battery storage in North causes moderate increases in annual CO2 emissions 

primarily because both battery-charging and -discharging hours have a good mixture of 

high and low MEFs for CO2 (Figure 4.8), which leads to the overall difference in MEFs 

for CO2 not varying greatly between battery-charging and -discharging hours. In Central, 

MEFs for CO2 during battery-charging hours are generally higher than those during 

battery-discharging hours (Figure 4.8), so the operation of battery storage has the greatest 

annual net CO2 emissions. In contrast, MEFs for CO2 in South are found to be lower 

during battery-charging hours but higher during battery-discharging hours (Figure 4.8), 

so battery storage in South are capable of reducing annual CO2 emissions. 

Annual net SO2 emissions induced by battery storage range from 127 to 157 kg in 

the North subregion, from 318 to 372 kg in the Central subregion, and from -87 to -2 kg 

in the South subregion (Figure 4.5). Similar to the temporal trend of MEFs for CO2, 

MEFs for SO2 do not vary greatly between battery-charging and -discharging hours in 

North but are clearly higher during battery-charging hours and lower during battery-

discharging hours in Central (Figure 4.9). Therefore, annual net SO2 emissions in North 

are found relatively moderate compared to those in Central. The temporal trend of MEFs 

for SO2 is reversed again in South (Figure 4.9) and leads to decrease in annual SO2 

emissions. 

Annual net NOx emissions caused by battery storage vary between 48 and 61 kg in 

the North subregion, between 73 and 96 kg in the Central subregion, and between -428 

and -328 kg in the South subregion (Figure 4.5). Battery storage in North and Central are 

associated with less than 100 kg increase in annual net NOx emissions because MEFs for 

NOx do not varying strongly between battery-charging and -discharging hours in the two 

subregions (Figure 4.10). In South, however, MEFs for NOx vary significantly between 

battery-charging and -discharging hours (Figure 4.10), which results in considerable 

reduction in annual NOx emissions. Because NOx emissions are most damaging in 
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summer, the environmental benefit of deploying battery storage in South becomes more 

valuable as battery storage can displace high-NOx marginal generation in summer 

afternoons with energy stored during low-NOx night hours. 

 

 
Figure 4. 5. Annual net CO2 (A), SO2 (B), and NOx emissions (C) associated with the revenue-maximizing 
operation of battery storage across 358 locations in MISO. 

 

 
Figure 4. 6. Battery storage charging patterns in the North, Central, and South subregions in MISO. 
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Figure 4. 7. Battery storage discharging patterns in the North, Central, and South subregions in MISO. 

 

 
Figure 4. 8. Marginal emission factors (MEFs) for CO2 in MISO’s North, Central, and South subregional 
grids. 
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Figure 4. 9. Marginal emission factors (MEFs) for SO2 in MISO’s North, Central, and South subregional 
grids. 

 

 
Figure 4. 10. Marginal emission factors (MEFs) for NOx in MISO’s North, Central, and South subregional 
grids. 

 
4.3.3 Economic feasibility 
 

Like any energy technology, battery storage adoption is significantly dependent on 

its economic feasibility, which is particularly determined by a series of factors including 
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annual cash inflow, capital cost, internal rate of return (IRR), and investment time 

horizon. Our revenue-maximizing model reveals that the annual financial return of a 0.5 

MW/2.1 MWh battery storage, assuming it arbitrages as a price taker, varies between 

$11,000 and $40,000 in the MISO market in 2016. Capital cost of the battery storage was 

$990,000 when it started to deliver in September 2016, then it dropped by 10% to 

$891,300 two months later (Lambert, 2016). As its price continues to fall, battery storage 

will soon be able to compete widely against other resources in the market. In order to 

assess the economic feasibility of the battery storage under different investment 

strategies, we conduct a sensitivity analysis of the capital cost needed to secure the return 

on investment under a 20-year time horizon, given different levels of annual cash flow 

and investment IRR. A U.S. Dollar annual inflation rate of 2% is used to estimate future 

annual cash flow of the battery storage investment (Statista, 2018). In Figure 4.11, we 

observe that the capital cost of battery will need to be lower than $ 630,000 to secure the 

return on investment under a 20-year time horizon if the investors require an annual IRR 

of 5%; or lower than $ 225,000 to secure the return under the same time horizon if the 

investors require an annual IRR of 20%. These desired capital costs seem to be dramatic 

reductions from the battery’s announced price in 2016, but with continued decrease in 

price and government subsidies for battery technologies (Hart & Sarkissian, 2016), the 

investment under a 20-year time horizon may become economically feasible in the next 

decade.  
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Figure 4. 11. Capital cost required for 0.5 MW/2.1 MWh battery storage to secure the return of investment 
under a 20-year time horizon. 

4.4 Discussion 
 

Grid services, economic benefits, and environmental impacts of energy storage are 

well studied, but there is a lack of information available to better forecast where future 

storage is likely to be sited. As policies incentivize or mandate installation of energy 

storage, stakeholders are concerned about where and how energy storage should be 

deployed to participate in the current electricity market. To address these concerns, we 

apply spatiotemporal, real-time LMP data in a revenue-maximizing model to assess and 

evaluate the operational decisions of battery storage in the MISO electricity wholesale 

market. Our findings demonstrate specific locations where battery storage can be most 

profitable in MISO, which offers policy implications for promoting and deploying 

storage technologies. It is noted that we model the battery storage at small capacity (2.1 

MWh) and as price takers when arbitraging in the market. Factors like larger capacity or 

renewable integration will change the current economics of battery storage. 

Thanks to the high spatial and temporal resolution of our real-time LMP data, we 

are able to simulate optimal operation and compare annual net operating revenue of 

battery storage at 393 different locations throughout MISO. Because we have the 

geographic coordinates associated with the locational marginal prices, the results from 
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the revenue-maximizing model intuitively display which locations are the most profitable 

for battery storage and offer guidance for stakeholders regarding where to expect or 

invest in new storage. In addition, we estimate annual net CO2, SO2, and NOx emissions 

resulting from deploying battery storage at the 393 locations based upon the subregional 

grids in MISO. Results show some heterogeneity in economics and emissions: battery 

storage installed in the North and Central subregions of MISO cause increases in CO2, 

SO2, and NOx emissions, while those in the South subregion lead to reduction in the 

emissions. However, many of the most profitable locations for battery storage are in the 

Central subregion. Although profitability and environmental impacts are critical factors 

for evaluating storage projects, there are other valuable services storage technologies can 

provide, such as mitigating grid congestion and adding operating reserve in ancillary 

service markets. These services are not examined in this study but could be further 

analyzed using the spatiotemporal, real-time LMP data. 

This study gives a glimpse of where the economics of wholesale power are most 

favorable in the MISO market to attract storage projects. But there are many other 

revenue streams for storage in addition to arbitraging electricity prices. For example, 

ancillary services be attractive to investors and require new policies. As more energy 

storage enters the market, frequent intersections between policy and technology will 

occur. Regulators would anticipate new storage projects implemented in various forms: 

privately-owned energy storage, for example, would grow and become complementary 

for or competitive against utility-owned storage. Grid operators would foresee more 

distributed storage appear as they are coupled with small-scale renewables like rooftop 

photovoltaics and operate completely behind the meter. Consequently, institutional 

framework, as well as market design and tariff structure, is extremely important. 

It should be noted that findings about annual net operating revenue in this study 

only hold when battery storage operates as a price taker. As more storage are introduced 

into the grid, real-time price volatility would decrease and lead to narrower room for 

storage to capture arbitrage opportunities. Similarly, when more renewable resources 

become integrated with storage, the price-taking assumption of storage will become less 

realistic. Our sensitivity analysis about economic feasibility of battery storage looks at 

annual income cashflow ranging from $10,000 to $40,000, which, to some extent, 
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imitates the reduced arbitrage opportunities for storage in the future. It is clear that as 

annual net operating revenue shrinks, the capital cost of battery has to be further lowered 

in order to secure financial return of the investment. Therefore, effective incentives and 

significant cost reductions are extremely important for the prosperity of battery storage 

industry. 

Energy storage can stimulate development of renewable energy primarily because 

renewable generation is variable and tend to cause increased price fluctuations, while 

energy storage can hedge the variability of renewable generation and tend to suppress 

price fluctuations. Although additional energy storage may lead to an increase in system-

wide emissions, the induced renewable generation could displace emission-heavy, fossil-

fueled power production and neutralize the direct emission effect of storage. 

Policymakers should be cognizant of the fact that financial profitability of energy storage 

may be diminished by growing renewable generation, but environmental benefits of 

energy storage are dependent on its ability to facilitate new renewable power generation. 
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Chapter 5 

Conclusion 
This dissertation has demonstrated the approaches to explore possible solutions for 

decarbonization and modernization of electricity systems by considering aspects of 

materiality, comparability and multi-metric dimensionality in the design of methods and 

utilization of spatiotemporal data. The improved methods and spatiotemporal data enable 

comprehensive inspection of current systems in terms of generation profile and emission 

intensity and empower thorough examination of advanced technologies with regard to 

environmental and economic effects. Consequently, this research provides critical 

implications for policy and practice and significantly expands the literature about 

electricity system and energy policy. 

The MISO electricity system is studied from different perspectives in the three 

separate case studies. In the first case study, the assessment of conventional and 

expanded marginal emission factors reveals crucial gaps between current metrics and 

what is needed to accurately and comprehensively measure emission intensity of 

electricity generation in the MISO system. The MEFs only considering emitting 

resources may provide a good estimate for the MISO grid and in the Central and South 

subregional grids because the share of renewable generation in these grids is relatively 

low; however, neglecting nonemitting sources can significantly overestimate MEFs for 

CO2, SO2, and NOx in the North subregional grid where wind has contributed remarkably 

to the grid generation. Our expanded MEFs considering both emitting and nonemitting 

sources on the margin accounts for the increasing renewable installation and 

dispatchment in the grid and provides more accurate estimates of the avoided emissions 

from interventions including bulk energy storage, PHEVs, and demand response. 

Findings in this study have important implications for regional electricity system policy 

making. 

The second case study demonstrates an application of the expanded MEFs to the 

electricity consumption by residential heating and cooling technologies. By considering 

regional climate differences and regional grid fuel mix differences, energy use and CO2 

emissions related to the GSHP and conventional HVAC systems are investigated in a 
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system-in-house scenario context. Results show that GSHPs consume less energy than 

the conventional systems but not necessarily reducing CO2 emissions in all scenarios 

because the grid fuel mix varies drastically across space and time in certain locations. 

Findings reveal that applying EFs with higher spatial and temporal resolutions and using 

MEFs instead of AEFs both give more accurate emission estimates. Using static AEFs is 

found overestimating total emissions compared to using MEFs. This study emphasizes 

the importance of applying accurate EFs to emissions performance assessment and 

recommends policymaking to properly incentivize the technologies that meet today’s grid 

realities and renewable-integrated grid of tomorrow. 

The third case study explores the possibility of energy storage technologies 

participating in the MISO wholesale electricity market. By utilizing spatiotemporal, real-

time locational marginal prices (LMP) of electricity, annual net operating revenues and 

emissions are estimated for grid-scale battery storage that arbitrage as price takers in the 

MISO market at various locations. Benefiting from the unique LMP data set that has the 

finest temporal resolution (five-minute) and exact geographic information (latitude and 

longitude) for the pricing metrics, findings in this study illustrate specific locations where 

battery storage can be most profitable. This offers projection of future storage siting and 

has significant implications for policy and practice. Affected by regulatory mandates, 

energy storage technologies will thrive via many other revenue streams, such as 

frequency control and capacity reserve. The fine spatial and temporal granularity the 

LMP data could assist further investigation on how energy storage can compete against 

conventional generation. 

Overall, this dissertation address sustainability challenges in the MISO electricity 

system in three approaches, including measuring emissions from generation and demand, 

assessing economic feasibility of advanced technologies, and discussing policy 

implications of different strategies. Although several limitations and areas of uncertainty 

exist within each of the approaches, as described in the respective case studies, these 

approaches provide a viable path forward for improving measurement criteria for 

electricity systems and assisting policymaking for advanced technologies to enable 

system decarbonization and modernization. To further understand the broader 

implications of the proposed methods and demonstrated findings, future research should 
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focus on expanding the assessments to additional electricity systems and markets. 

Improved transparency of data and information disclosure will enable proper assessment 

of policy and technology interventions in terms of their societal impacts and will help to 

inform effective investment and policy decisions. 
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A1. MISO and its subregions 
There are three subregions (North, Central and South) of the Midcontinent Independent 
System Operator (MISO) system. The North subregion includes Iowa, Minnesota, 
Montana, North Dakota, South Dakota, and Manitoba, Canada; the Central subregion 
includes Indiana, Illinois, Kentucky, Michigan, Missouri, and Wisconsin; and the South 
subregion includes Arkansas, Louisiana, Mississippi, and Texas. The map of MISO and 
its subregions is available here: http://www.misomtep.org/miso-overview-mtep15/. 
 
Table A1 presents the total generation and the fuel mix for MISO and each subregion, 
based on 2014 MISO Hourly Fuel Mix data. The Central subregion has the largest total 
generation among all subregions, which is more than the sum of North’s and South’s total 
generation. Coal and gas are the dominant fossil-fuel sources; hydropower accounts for a 
very minor share; nuclear contributes between 12.77% and 26.05%; and wind power is 
significant in the North subregion (22.50%). 
 
Table A 1.  Total generation and fuel mix in 2014 by MISO and its subregions 

 MISO North Central South 
Total Generation 

(TWh) 
633 137 330 166 

Coal 57.69% 57.73% 74.99% 23.82% 
Natural Gas 15.47% 2.65% 7.49% 41.80% 

Hydro 1.27% 1.14% 1.28% 1.36% 
Nuclear 16.21% 12.77% 12.90% 26.05% 
Other 3.02% 3.22% 0.96% 6.97% 
Wind 6.34% 22.50% 2.39% NA 

 
A2. Linear regression details of the expanded MEFs 
For MISO and its subregions, Figure A1 shows the change in emissions (CO2, SO2, and 
NOX) as a function of change in system generation (emitting and non-emitting sources). 
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Figure A 1. Estimates of the expanded MEFs in 2014 for MISO and its subregions. 

Each point is the difference in emissions and generation between one hour and the next. 
 
A3. Temporal trends of MEFs 
Time of day trends by year and season of the expanded and the conventional MEFs are 
shown in Figure A2. 
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Figure A 2. Hourly trends of the expanded and conventional MEFs in 2014 for MISO and 
its subregions. Annual trend covers all twelve months. Summer trend covers June, July, 

and August. Winter trend covers November, December, and January. 
 
A4. Sensitivity analysis on the MEFs based on simulated 
subregional electricity net interchange rates 
We perform a sensitivity analysis on the expanded and conventional MEFs in response to 
simulated hourly electricity net interchange for the North, Central, and South subregions 
in MISO. We presumed six levels of the net interchange rate (5%, 10%, 15%, 20%, 25%, 
and 30%) and apply them to the linear regression equations on an hourly basis. The levels 
are set based on the rates found in existing research that characterizes the net interchange 
or import between MISO and neighboring ISO/RTOs, which range from 2% to 24% and 
indicate most of the electricity that is used within MISO is generated within MISO 
(according to the eGRID report by Diem and Quiroz, 2012). Thus, we only inspect 
effects of the subregional net interchange within MISO but not the regional net 
interchange between MISO and neighboring ISO/RTOs. 
 
Due to transmission and efficiency constraints, there usually is very rare or no electricity 
interchange between the North and South subregion, therefore we assume the North and 
South subregion only imports from and exports to the Central subregion, while the 
Central subregion imports and exports to both North and South subregions. Detailed 
results of the sensitivity analysis are shown in Table A2.  
 
Table A 2. Results of the sensitivity analysis on MEFs 
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Expanded MEF South 0.62 1.38 1.51 

Conventional MEF MISO 0.78 2.67 1.33 

Conventional MEF North 0.86 2.54 1.87 

Conventional MEF Central 0.85 3.47 1.12 

Conventional MEF South 0.62 1.38 1.51 
Expanded ~ Conventional MEFs diff.% 

MISO 2.78% 3.13% 2.60% 

Expanded ~ Conventional MEFs diff.% 
North 27.68% 27.78% 31.14% 

Expanded ~ Conventional MEFs diff.% 
Central 3.73% 3.87% 3.52% 

Expanded ~ Conventional MEFs diff.% 
South 0.01% 0.02% 0.01% 

5% net 
interchang

e rate 

Expanded MEF MISO 0.76 2.59 1.30 

Expanded MEF North 0.70 2.15 1.43 

Expanded MEF Central 0.82 3.29 1.10 

Expanded MEF South 0.63 1.50 1.48 

Conventional MEF MISO 0.78 2.67 1.33 

Conventional MEF North 0.86 2.62 1.79 

Conventional MEF Central 0.85 3.41 1.14 

Conventional MEF South 0.63 1.51 1.48 
Expanded ~ Conventional MEFs diff.% 

MISO 2.78% 3.13% 2.60% 

 Expanded ~ Conventional MEFs diff.% 
North 22.12% 21.91% 25.46% 

Expanded ~ Conventional MEFs diff.% 
Central 3.48% 3.64% 3.25% 

Expanded ~ Conventional MEFs diff.% 
South 0.16% 0.24% 0.07% 

10% net 
interchang

e rate 

Expanded MEF MISO 0.76 2.59 1.30 

Expanded MEF North 0.73 2.29 1.42 

Expanded MEF Central 0.81 3.24 1.12 

Expanded MEF South 0.64 1.62 1.45 

Conventional MEF MISO 0.78 2.67 1.33 

Conventional MEF North 0.86 2.69 1.72 

Conventional MEF Central 0.84 3.35 1.15 

Conventional MEF South 0.65 1.63 1.46 
Expanded ~ Conventional MEFs diff.% 

MISO 2.78% 3.13% 2.60% 

Expanded ~ Conventional MEFs diff.% 
North 17.99% 17.61% 21.15% 

Expanded ~ Conventional MEFs diff.% 
Central 3.28% 3.44% 3.03% 

Expanded ~ Conventional MEFs diff.% 
South 0.32% 0.44% 0.15% 

15% net 
interchang

e rate 

Expanded MEF MISO 0.76 2.59 1.30 

Expanded MEF North 0.74 2.41 1.41 

Expanded MEF Central 0.81 3.18 1.14 
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Expanded MEF South 0.66 1.73 1.43 

Conventional MEF MISO 0.78 2.67 1.33 

Conventional MEF North 0.86 2.76 1.66 

Conventional MEF Central 0.84 3.29 1.17 

Conventional MEF South 0.66 1.74 1.43 
Expanded ~ Conventional MEFs diff.% 

MISO 2.78% 3.13% 2.60% 

Expanded ~ Conventional MEFs diff.% 
North 14.90% 14.44% 17.85% 

Expanded ~ Conventional MEFs diff.% 
Central 3.10% 3.28% 2.85% 

Expanded ~ Conventional MEFs diff.% 
South 0.47% 0.62% 0.24% 

20% net 
interchang

e rate 

Expanded MEF MISO 0.76 2.59 1.30 

Expanded MEF North 0.76 2.52 1.39 

Expanded MEF Central 0.81 3.14 1.15 

Expanded MEF South 0.67 1.83 1.40 

Conventional MEF MISO 0.78 2.67 1.33 

Conventional MEF North 0.85 2.82 1.61 

Conventional MEF Central 0.83 3.23 1.18 

Conventional MEF South 0.67 1.84 1.41 
Expanded ~ Conventional MEFs diff.% 

MISO 2.78% 3.13% 2.60% 

Expanded ~ Conventional MEFs diff.% 
North 12.56% 12.08% 15.29% 

Expanded ~ Conventional MEFs diff.% 
Central 2.96% 3.14% 2.70% 

Expanded ~ Conventional MEFs diff.% 
South 0.61% 0.80% 0.34% 

25% net 
interchang

e rate 

Expanded MEF MISO 0.76 2.59 1.30 

Expanded MEF North 0.77 2.60 1.38 

Expanded MEF Central 0.80 3.09 1.17 

Expanded MEF South 0.68 1.92 1.38 

Conventional MEF MISO 0.78 2.67 1.33 

Conventional MEF North 0.85 2.87 1.56 

Conventional MEF Central 0.83 3.18 1.20 

Conventional MEF South 0.68 1.94 1.39 
Expanded ~ Conventional MEFs diff.% 

MISO 2.78% 3.13% 2.60% 

Expanded ~ Conventional MEFs diff.% 
North 10.77% 10.30% 13.29% 

Expanded ~ Conventional MEFs diff.% 
Central 2.83% 3.02% 2.58% 

Expanded ~ Conventional MEFs diff.% 
South 0.75% 0.96% 0.43% 

30% net 
interchang

e rate 

Expanded MEF MISO 0.76 2.59 1.30 

Expanded MEF North 0.78 2.68 1.36 

Expanded MEF Central 0.80 3.04 1.18 
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Expanded MEF South 0.68 2.00 1.37 

Conventional MEF MISO 0.78 2.67 1.33 

Conventional MEF North 0.85 2.92 1.52 

Conventional MEF Central 0.82 3.13 1.21 

Conventional MEF South 0.69 2.02 1.37 
Expanded ~ Conventional MEFs diff.% 

MISO 2.78% 3.13% 2.60% 

Expanded ~ Conventional MEFs diff.% 
North 9.38% 8.93% 11.70% 

Expanded ~ Conventional MEFs diff.% 
Central 2.73% 2.92% 2.48% 

Expanded ~ Conventional MEFs diff.% 
South 0.89% 1.11% 0.53% 

 
Based on the results in Table A2, we create Figure A3 to compare the difference between 
the expanded and conventional MEFs at 0% and 30% subregional net interchange rates. 
As shown in Figure A3, even if the subregional net interchange rate reaches 30%, the 
difference between the expanded and conventional MEFs is still notable in the wind-rich 
North subregion. 

 
(A) 
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(B) 

 
(C) 

Figure A 3. Difference between the expanded and conventional MEFs for CO2 (A), SO2 
(B), and NOX (C) at 0% and 30% subregional net interchange rates. 

 
We also examine and compare the spatiotemporal trends of the expanded MEFs at 0% 
and 30% subregional net interchange rates (Figure A4). In Figure A4 (A), we illustrate 
the difference (in tons/MWh) between the expanded MEFs at 0% and 30% subregional 
net interchange rates (MEFs at 30% minus MEFs at 0%), and it shows fairly small 
differences for the North, Central, and South subregions. In Figure A4 (B), we illustrate 
the percentage difference between the expanded MEFs at 0% and 30% subregional net 
interchange rates (MEFs at 30% minus MEFs at 0%), and it shows fairly small 
differences for the North, Central, and South subregions except for the 5am in January in 
North. 
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(A) 

 
(B) 

Figure A 4. Difference (in tons/MWh) (A) and percentage difference (B) between the 
expanded MEFs at 0% and 30% subregional net interchange rates 
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Appendix B 
 
 
Multi-Regional Energy and Emissions 
Assessment on Electrification of Residential 
Energy Consumption for Space Conditioning 
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B1. Hourly Heating and Cooling Energy Use Simulation 
Table B 1 Parameters in the BEopt model. 
Highlighted selections indicate different parameters for low-, med-, and high-efficient 
houses. 

Parameters Low-Efficient House Med-Efficient House High-Efficient House 

Building    

Orientation North North North 

Neighbors None None None 

Walls    

Wood Stud R-11 Fiberglass Batt, 
2x4, 16 in o.c. 

R-19 Fiberglass Batt, 
2x4, 16 in o.c. 

R-21 Fiberglass Batt, 
2x4, 16 in o.c. 

Double Wood Stud None None None 

Steel Stud None None None 

CMU None None None 

SIP None None None 

ICF None None None 

Other None None None 

Wall Sheating OSB OSB R-5 XPS 

Exterior Finish Vinyl, Light Vinyl, Light Vinyl, Light 

Ceilings/Roofs    

Unfinished Attic Ceiling R-13 Cellulose, 
Vented 

Ceiling R-38 Cellulose, 
Vented 

Ceiling R-49 Cellulose, 
Vented 

Roof Material Asphalt Shingles, 
Medium 

Asphalt Shingles, 
Medium 

Asphalt Shingles, 
Medium 

Radiant Barrier None None None 

Foundation/Floors    

Slab 4ft R5 Exterior XPS 4ft R10 Exterior XPS 4ft R15 Exterior XPS 

Carpet 80% Carpet 80% Carpet 80% Carpet 

Thermal Mass    

Floor Mass Wood Surface Wood Surface Wood Surface 

Exterior Wall Mass 1/2 in. Drywall 1/2 in. Drywall 1/2 in. Drywall 

Partition Wall Mass 1/2 in. Drywall 1/2 in. Drywall 1/2 in. Drywall 

Ceiling Mass 1/2 in. Drywall 1/2 in. Drywall 1/2 in. Drywall 

Windows & Doors    

Window Areas F15 B15 L15 R15 F15 B15 L15 R15 F15 B15 L15 R15 

Windows Clear, Double, Non-
metal, Air 

Low-E, Double, Non-
metal, Arg, M-Gain 

Low-E, Double, 
Insulated, Arg, M-Gain 

Interior Shading Apr-Sep = 0.5, Oct-Mar 
= 0.95 

Apr-Sep = 0.5, Oct-Mar 
= 0.95 

Apr-Sep = 0.5, Oct-Mar 
= 0.95 

Door Area 40 ft^2 40 ft^2 40 ft^2 

Doors Fiberglass Fiberglass Fiberglass 

Eaves 2 ft 2 ft 2 ft 

Overhangs 2ft, All Stories, All 
Windows 

2ft, All Stories, All 
Windows 

2ft, All Stories, All 
Windows 

Airflow    
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Air leakage 7 ACH50 5 ACH50 3 ACH50 

Mechanical Ventilation 2010, Exhaust 2010, Exhaust 2010, Exhaust 

Natural Ventilation Cooling Months Only, 
7 days/wk 

Cooling Months Only, 
7 days/wk 

Cooling Months Only, 
7 days/wk 

Space Conditioning    

Central Air Conditioner SEER 13 SEER 13 SEER 13 

Room Air Conditioner None None None 

Furnace Gas, 90% AFUE Gas, 90% AFUE Gas, 90% AFUE 

Boiler None None None 

Electric Baseboard None None None 

Air Source Heat Pump None None None 

Mini-Split Heat Pump None None None 

Ground Source Heat Pump (low) EER 16.6, COP 3.6, 
Low-k soil, Std grout 

EER 16.6, COP 3.6, 
Low-k soil, Std grout 

EER 16.6, COP 3.6, 
Low-k soil, Std grout 

Ground Source Heat Pump (med) EER 19.4, COP 3.8, 
Low-k soil, Std grout 

EER 19.4, COP 3.8, 
Low-k soil, Std grout 

EER 19.4, COP 3.8, 
Low-k soil, Std grout 

Ground Source Heat Pump (high) EER 20.2, COP 4.2, 
Low-k soil, Std grout 

EER 20.2, COP 4.2, 
Low-k soil, Std grout 

EER 20.2, COP 4.2, 
Low-k soil, Std grout 

Ducts In Finished Space In Finished Space In Finished Space 

Ceiling Fan National Average National Average National Average 

Dehumidifier None None None 

Space Conditioning Schedules    

Cooling Set Point 76 F 76 F 76 F 

Heating Set Point 71 F 71 F 71 F 

Humidity Set Point None None None 

Water Heating    

Water Heater Gas Standard Gas Standard Gas Standard 

Distribution Uninsulated, 
TrunkBranch, Copper 

Uninsulated, 
TrunkBranch, Copper 

Uninsulated, 
TrunkBranch, Copper 

Solar Water Heating None None None 

Solar Water Heating Azimuth Back Roof Back Roof Back Roof 

Solar Water Heating Tilt Roof Pitch Roof Pitch Roof Pitch 

Lighting    

Lighting 34% CFL Hardwired, 
34% CFL Plugin 

34% CFL Hardwired, 
34% CFL Plugin 

34% CFL Hardwired, 
34% CFL Plugin 

Appliances & Fixtures    

Refrigerator Top freezer, EF = 17.6 Top freezer, EF = 17.6 Top freezer, EF = 17.6 

Cooking Range Electric Electric Electric 

Dishwasher 318 Rated kWh 318 Rated kWh 318 Rated kWh 

Clothes Washer Standard Standard Standard 

Clothes Dryer Electric Electric Electric 

Hot Water Fixtures 1.00 1.00 1.00 

Appliances & Fixtures Schedules    

Refrigerator Schedule Standard Standard Standard 

Cooking Range Schedule Standard Standard Standard 
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Clothes Dryer Schedule Standard Standard Standard 

Miscellaneous    

Plug Loads 1.00 1.00 1.00 

Extra Refrigerator None None None 

Freezer None None None 

Pool Heater None None None 

Pool Pump None None None 

Hot Tub/Spa Heater None None None 

Hot Tub/Spa Pump None None None 

Well Pump None None None 

Gas Fireplace None None None 

Gas Grill None None None 

Gas Lighting None None None 

Miscellaneous Schedules    

Plug Loads Schedule Standard Standard Standard 

Extra Refrigerator Schedule Standard Standard Standard 

Freezer Schedule Standard Standard Standard 

Pool Heater Schedule Standard Standard Standard 

Pool Pump Schedule Standard Standard Standard 

Hot Tub/Spa Heater Schedule Standard Standard Standard 

Hot Tub/Spa Pump Schedule Standard Standard Standard 

Well Pump Schedule Standard Standard Standard 

Gas Fireplace Schedule Standard Standard Standard 

Gas Grill Schedule Standard Standard Standard 

Gas Lighting Schedule Standard Standard Standard 

Power Generation    

PV System None None None 

PV Azimuth Back Roof Back Roof Back Roof 

PV Tilt Roof, Pitch Roof, Pitch Roof, Pitch 

 
B2 Annual CO2 Emissions 
Table B 2. Annual emissions calculated using the MISO AEF in Minneapolis, St. Louis, 
and New Orleans. 
First number in brackets is heating CO2 emissions; second number in brackets is cooling 
CO2 emissions. 

  Minneapolis St. Louis New Orleans 

1984 sf 
low-eff 
house 

GFAC 5790 (5410, 381) 3997 (3071, 926) 2620 (613, 2007) 
low-eff GSHP 6088 (5810, 277) 3831 (3037, 793) 2633 (542, 2091) 
med-eff GSHP 5792 (5546, 246) 3588 (2895, 693) 2360 (518, 1842) 
high-eff GSHP 5330 (5092, 237) 3320 (2653,666) 2260 (475, 1784) 

1984 sf GFAC 3889 (3617, 272) 2694 (1992, 702) 1975 (326, 1649) 
low-eff GSHP 4067 (3871, 196) 2504 (1915, 590) 2001 (280, 1721) 
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med-eff 
house 

med-eff GSHP 3868 (3694, 174) 2337 (1823, 514) 1779 (267, 1512) 
high-eff GSHP 3560 (3392, 168) 2161 (1668, 493) 1709 (245, 1464) 

1984 sf 
high-eff 
house 

GFAC 2694 (2427, 267) 1940 (1279, 661) 1759 (160, 1598) 
low-eff GSHP 2716 (2527, 190) 1819 (1239, 580) 1839 (140, 1698) 
med-eff GSHP 2576 (2409, 167) 1683 (1179, 504) 1628 (134, 1494) 
high-eff GSHP 2368 (2207, 161) 1562 (1079, 484) 1569 (123, 1446) 

 
Table B 3. Annual emissions calculated using the subregional AEFs in Minneapolis, St. 
Louis, and New Orleans. 
First number in brackets is heating CO2 emissions; second number in brackets is cooling 
CO2 emissions. 

  Minneapolis St. Louis New Orleans 

1984 sf 
low-eff 
house 

GFAC 5732 (5410, 323) 4173 (3071, 1102) 2164 (613, 1551) 
low-eff GSHP 5163 (4927, 235) 4558 (3614, 944) 2035 (419, 1616) 
med-eff GSHP 4912 (4703, 208) 4270 (3445, 825) 1824 (400, 1424) 
high-eff GSHP 4520 (4318, 201) 3950 (3157, 793) 1747 (367, 1379) 

1984 sf 
med-eff 
house 

GFAC 3848 (3617, 231) 2828 (1992, 835) 1600 (326, 1275) 
low-eff GSHP 3449 (3283, 167) 2980 (2278, 702) 1547 (217, 1330) 
med-eff GSHP 3280 (3133, 147) 2781 (2170, 611) 1375 (207, 1168) 
high-eff GSHP 3019 (2877, 142) 2571 (1985, 586) 1321 (189, 1131) 

1984 sf 
high-eff 
house 

GFAC 2653 (2427, 226) 2066 (1279, 787) 1396 (160, 1235) 
low-eff GSHP 2303 (2143, 161) 2164 (1474, 691) 1421 (108, 1313) 
med-eff GSHP 2184 (2043, 142) 2003 (1403, 600) 1258 (103, 1155) 
high-eff GSHP 2009 (1872, 137) 1859 (1284, 576) 1213 (95, 1118) 

 
Table B 4. Annual emissions calculated using the spatiotemporal AEFs in Minneapolis, 
St. Louis, and New Orleans. 
First number in brackets is heating CO2 emissions; second number in brackets is cooling 
CO2 emissions. 

  Minneapolis St. Louis New Orleans 

1984 sf 
low-eff 
house 

GFAC 5782 (5410, 373) 4215 (3701, 1144) 2214 (613, 1601) 
low-eff GSHP 4985 (4713, 272) 4503 (3522, 980) 2081 (413, 1668) 
med-eff GSHP 4740 (4499, 241) 4214 (3357, 857) 1864 (395, 1469) 
high-eff GSHP 4364 (4131, 232) 3900 (3077, 823) 1785 (362, 1423) 

1984 sf 
med-eff 
house 

GFAC 3884 (3617, 267) 2862 (1992, 869) 1636 (326, 1310) 
low-eff GSHP 3337 (3144, 193) 2952 (2221, 731) 1579 (213, 1366) 
med-eff GSHP 3171 (3001, 171) 2752 (2115, 637) 1403 (203, 1200) 
high-eff GSHP 2920 (2755, 165) 2456 (1935, 611) 1348 (186, 1162) 

1984 sf 
high-eff 
house 

GFAC 2688 (2427, 261) 2099 (1279, 820) 1426 (160, 1265) 
low-eff GSHP 2241 (2055, 186) 2158 (1438, 720) 1450 (106, 1344) 
med-eff GSHP 2123 (1960, 164) 1995 (1369, 626) 1284 (101, 1183) 
high-eff GSHP 1954 (1796, 158) 1852 (1252, 600) 1238 (93, 1145) 

 
Table B 5. Annual emissions calculated using the spatiotemporal MEFs in Minneapolis, 
St. Louis, and New Orleans. 
First number in brackets is heating CO2 emissions; second number in brackets is cooling 
CO2 emissions. 
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  Minneapolis St. Louis New Orleans 

1984 sf 
low-eff 
house 

GFAC 5699 (5410, 290) 3993 (3071, 922) 2637 (613, 2024) 
low-eff GSHP 4966 (4755, 211) 4324 (3532, 792) 2618 (514, 2105) 
med-eff GSHP 4726 (4539, 187) 4059 (3366, 692) 2345 (491, 1854) 
high-eff GSHP 4349 (4168, 181) 3751 (3085, 665) 2246 (450, 1796) 

1984 sf 
med-eff 
house 

GFAC 3827 (3617, 209) 2699 (1992, 707) 1977 (326, 1651) 
low-eff GSHP 3326 (3175, 151) 2826 (2231, 596) 1986 (267, 1719) 
med-eff GSHP 3164 (3030, 134) 2643 (2124, 519) 1765 (254, 1510) 
high-eff GSHP 2912 (2783, 129) 2441 (1943, 498) 1695 (233, 1462) 

1984 sf 
high-eff 
house 

GFAC 2632 (2427, 205) 1948 (1279, 669) 1756 (160, 1596) 
low-eff GSHP 2233 (2087, 146) 2034 (1445, 588) 1825 (133, 1692) 
med-eff GSHP 2118 (1989, 129) 1887 (1376, 512) 1616 (127, 1489) 
high-eff GSHP 1947 (1823, 124) 1749 (1259, 491) 1557 (117, 1441) 
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Appendix C 
 
 
Locating Locational Marginal Prices in the 
Midcontinent Independent System Operator 
(MISO): Economic and Environmental Impacts 
of Emerging Grid-scale Electricity Storage 
across the Landscape 
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C1 Battery storage net operating revenue optimization results 
Table C 1. Summary of battery storage net operating revenue optimization. 

LMP name LMP 
type Hour 

Annual 
net 

operating 
revenue 

($) 

Annual 
CO2 (MT) 

Annual 
SO2 (kg) 

Annual 
NOx (kg) Fuel type 

ALTE.COLUMBA
L1 GEN 8784 17207 190 356 91 Coal 

ALTE.COLUMBA
L2 GEN 8784 17202 190 356 91 Coal 

ALTE.EDGG4G4 GEN 8784 15501 189 358 87 Coal 
ALTE.EDGG5G5 GEN 8784 15485 189 358 87 Coal 

ALTW.ALTW LZN 8784 22636 79 147 50 N/A 

ALTW.BRLGTN5 GEN 8784 33428 77 138 48 Coal 

ALTW.DAEC GEN 8784 23311 78 153 54 Nuclear 
ALTW.FPL_DAE
C GEN 8784 23311 78 153 54 Nuclear 

ALTW.JOUNEAL
S4 GEN 8784 16167 76 142 51 Coal 

ALTW.LANSIN4 GEN 8784 24291 85 157 59 Coal 
ALTW.OTTUMW
1 GEN 8784 22486 80 137 59 Coal 

AMIL.ALSEYCT
G1 GEN 8784 30381 184 318 73 Gas 

(peaking) 
AMIL.BALDWI51 GEN 8784 12312 190 362 80 Coal 

AMIL.BALDWI52 GEN 8784 12312 190 362 80 Coal 
AMIL.BALDWI53 GEN 8784 12312 190 362 80 Coal 

AMIL.CLINTO51 GEN 8784 17674 188 350 83 Nuclear 

AMIL.COFFEEN1 GEN 8784 13804 187 350 80 Coal 

AMIL.COFFEEN2 GEN 8784 13967 188 350 80 Coal 
AMIL.DUCKCRK
1 GEN 8784 24163 188 350 87 Coal 

AMIL.EDWARDS
2 GEN 8784 18806 190 357 83 Coal 

AMIL.EDWARDS
3 GEN 8784 18798 190 358 82 Coal 

AMIL.HAVANA8
6 GEN 8784 24580 187 341 87 Coal 

AMIL.HENNEPN
82 GEN 8784 21306 189 346 85 Coal 

AMIL.NEWTON2
1 GEN 8784 13879 182 343 82 Coal 

AMIL.NEWTON2
2 GEN 8040 12737 152 292 61 Coal 

AMIL.PPI GEN 8784 15460 187 360 81 N/A 
AMIL.PSGC1.AM
P GEN 8784 12406 191 360 80 Coal 
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AMIL.PTWF GEN 8784 21773 179 323 89 Wind 

AMIL.STWF GEN 8784 28071 178 325 84 Wind 
AMIL.WOODRW
85 GEN 5857 7996 109 225 47 Coal 

AMMO.CALLAW
AY1 GEN 8784 13340 190 355 77 Nuclear 

AMMO.LABADIE
1 GEN 8784 12558 190 355 80 Coal 

AMMO.LABADIE
2 GEN 8784 12529 190 355 80 Coal 

AMMO.LABADIE
3 GEN 8784 12528 190 355 80 Coal 

AMMO.LABADIE
4 GEN 8784 12554 190 355 80 Coal 

AMMO.MERAME
C3 GEN 8784 12607 190 358 79 Coal 

AMMO.MERAME
C4 GEN 8784 12611 190 358 80 Coal 

AMMO.RUSHIS1 GEN 8784 12297 190 362 82 Coal 

AMMO.RUSHIS2 GEN 8784 12314 191 363 82 Coal 

AMMO.SIOUX1 GEN 8784 12753 192 360 79 Coal 
AMMO.SIOUX2 GEN 8784 12677 191 361 80 Coal 

AMMO.UE LZN 8784 12775 192 360 78 N/A 

AMMO.UE.AZ LZN 8784 12772 192 359 79 N/A 

AMMO.WVPA LZN 8784 12510 191 362 81 N/A 
AMMO.WVPA LZN 8784 12510 191 362 81 N/A 

ARKANSAS.HUB HUB 8784 12473 -22 -51 -416 N/A 

BREC.COLE1 GEN 8784 15520 188 363 88 Coal 

BREC.COLE2 GEN 8784 15520 188 363 88 Coal 
BREC.COLE3 GEN 8784 15520 188 363 88 Coal 

BREC.GREEN1 GEN 8784 15202 187 358 86 Coal 

BREC.GREEN2 GEN 8784 15202 187 358 86 Coal 

BREC.HMP1 GEN 8784 15202 187 358 86 Coal 
BREC.HMP2 GEN 8784 15202 187 358 86 Coal 

BREC.WILSON1 GEN 8784 17597 190 367 91 Coal 

CIN.CAYUGA.1 GEN 8784 39677 191 348 90 Coal 

CIN.CAYUGA.2 GEN 8784 21021 188 341 91 Coal 
CIN.CC.SUGRCK GEN 8784 17604 185 344 94 Gas 

CIN.CC.WR1 GEN 3651 7798 46 69 27 Coal 

CIN.DEI.AZ LZN 8784 20850 192 362 88 N/A 

CIN.GIBSON.1 GEN 8784 14637 186 358 89 Coal 
CIN.GIBSON.2 GEN 8784 14637 186 358 89 Coal 

CIN.GIBSON.3 GEN 8784 15103 184 356 89 Coal 



 95 

CIN.GIBSON.4 GEN 8784 14637 186 358 89 Coal 

CIN.GIBSON.5 GEN 8784 14637 186 358 89 Coal 

CIN.PSI LZN 8784 20846 192 363 88 N/A 

CIN.WABRIVR.6 GEN 8784 27450 190 353 88 Coal 
CLEC.ACA11 GEN 8784 15596 -27 -61 -421 Gas 

CLEC.ACA12 GEN 8784 15596 -27 -61 -421 Gas 

CLEC.ACA13 GEN 8784 15596 -27 -61 -421 Gas 

CLEC.CPS6 GEN 8784 14730 -26 -64 -417 Gas 
CLEC.CPS6ST GEN 8784 14867 -26 -64 -419 Gas 

CLEC.CPS71 GEN 8784 14730 -26 -64 -417 Gas 

CLEC.CPS72 GEN 8784 14730 -26 -64 -417 Gas 

CLEC.CPS7ST GEN 8784 14867 -26 -64 -419 Gas 
CLEC.DPS GEN 8784 14942 -14 -36 -405 Lignite 

CLEC.HUNTER3 GEN 5857 8727 -52 -217 -314 Gas 

CLEC.HUNTER5 GEN 730 993 11 43 -11 Gas 

CLEC.MPS3 GEN 8784 13781 -23 -60 -413 Gas 
CLEC.NPS1 GEN 8784 13778 -23 -61 -414 Gas 

CLEC.RPS2 GEN 8784 13773 -23 -60 -414 Coal/Gas 
CLEC.RPS2.LAF
A GEN 8784 13773 -23 -60 -414 Coal/Gas 

CLEC.RPS2.LEPA GEN 8784 13773 -23 -60 -414 Coal/Gas 

CLEC.TPS1 GEN 8784 17855 -27 -64 -420 Gas 
CLEC.TPS3 GEN 8784 17733 -27 -63 -419 Gas 

CLEC.TPS4 GEN 8784 17750 -27 -63 -419 Gas 

CONS.AZ LZN 8784 18724 189 353 82 N/A 
CONS.CAMPBEL
L1 GEN 8784 18088 184 342 80 Coal 

CONS.CAMPBEL
L2 GEN 8784 18147 185 342 81 Coal 

CONS.CAMPBEL
L3 GEN 8784 17039 185 343 80 Coal 

CONS.CC.COVER
3 GEN 3651 4150 45 69 26 Gas 

CONS.CC.MICHP GEN 8784 16667 182 338 77 Gas 

CONS.CC.PLYM GEN 8784 19562 191 349 86 Gas 
CONS.CC.ZEELA
2 GEN 8784 16975 185 343 81 Gas 

CONS.CETR LZN 8784 18750 190 355 83 N/A 
CONS.FILERCIT
Y GEN 8784 16909 184 339 79 Coal 

CONS.KARN1 GEN 8784 19769 185 344 79 Coal 

CONS.KARN2 GEN 8784 19765 185 344 79 Coal 

CONS.MCV.MCV GEN 8784 17190 187 349 83 Gas 
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CONS.PALISA2A
1 GEN 8784 17476 187 348 83 Nuclear 

CONS.WPSC_2.A
Z LZN 8784 18936 190 355 83 N/A 

CWLD.CWLD GEN 8784 14150 194 362 77 Gas 
CWLP.DALLMA8
4 GEN 8784 21127 186 345 79 Coal 

DECO.AZ LZN 8784 18324 190 355 82 N/A 
DECO.BLR1.DEM
O GEN 8784 17556 188 354 81 Coal 

DECO.BLR2.DEM
O GEN 8784 17545 188 355 82 Coal 

DECO.CC.DIG2 GEN 8784 18556 189 354 82 Gas 

DECO.CC.DIG3 GEN 8784 18556 189 354 82 Gas 

DECO.FERMI2 GEN 8784 17506 189 356 84 Nuclear 

DECO.MONROE1 GEN 8784 17273 190 357 83 Coal 
DECO.MONROE2 GEN 8784 17240 190 357 83 Coal 

DECO.MONROE3 GEN 8784 17704 189 355 82 Coal 

DECO.MONROE4 GEN 8784 17721 190 355 82 Coal 

DECO.NEC LZN 8784 18303 190 355 82 N/A 
DECO.RVRRGE2 GEN 8040 17206 160 303 61 Coal 

DECO.RVRRGE3 GEN 8784 19170 189 357 82 Coal 

DECO.STCLAIR6 GEN 8784 18877 189 354 81 Coal 

DECO.STCLAIR7 GEN 8784 17570 188 353 81 Coal 
DECO.TRNCNL9 GEN 8784 17858 189 356 82 Coal 

DPC.DPC GEN 8784 18719 193 365 92 Landfill 
Gas 

DPC.DPC GEN 8784 18719 193 365 92 Landfill 
Gas 

DPC.GENOA3 GEN 8784 28102 191 348 96 Coal 

DPC.JPM GEN 8784 19973 188 348 94 Coal 
EAI.AECCBAILE
Y GEN 8784 16277 -22 -58 -400 Gas 

EAI.AECCHYDR
O2 GEN 8784 17287 -21 -53 -395 Hydro 

EAI.AECCHYDR
O9 GEN 8784 13078 -22 -56 -409 Hydro 

EAI.AECCMCCL
LN GEN 8784 12405 -22 -65 -406 Gas 

EAI.AECCMGVC
T1 GEN 8784 12069 -19 -36 -413 Gas 

EAI.AECCMGVC
T2 GEN 8784 12069 -19 -36 -413 Gas 

EAI.AECCMGVM
ST GEN 8784 12069 -19 -36 -413 Gas 

EAI.ANO1 GEN 8784 14417 -20 -48 -407 Nuclear 

EAI.ANO2 GEN 8784 14425 -20 -48 -407 Nuclear 
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EAI.BLAKELY1 GEN 8784 13683 -20 -35 -415 Hydro 

EAI.BLAKELY2 GEN 8784 13683 -20 -35 -415 Hydro 

EAI.CARPEN1 GEN 8784 12796 -17 -23 -412 Hydro 

EAI.CARPEN2 GEN 8784 12791 -17 -24 -410 Hydro 
EAI.CWAYLD GEN 8784 14339 -23 -55 -412 Waste 

EAI.CWL_A GEN 8784 14346 -21 -54 -412 Gas 

EAI.CWL_B GEN 8784 14346 -21 -54 -412 Gas 

EAI.CWL_C GEN 8784 14346 -21 -54 -412 Gas 
EAI.CWL_D GEN 8784 14346 -21 -54 -412 Gas 

EAI.CWL_E GEN 8784 14346 -21 -54 -412 Gas 

EAI.DEGRAY1 GEN 8784 12339 -17 -33 -393 Hydro 

EAI.DEGRAY2 GEN 8784 12339 -17 -33 -393 Hydro 
EAI.H_SPR1_CT1 GEN 8784 11996 -20 -34 -414 Gas 

EAI.H_SPR1_CT2 GEN 8784 11996 -20 -34 -414 Gas 

EAI.H_SPR1_ST GEN 8784 11996 -20 -34 -414 Gas 

EAI.INDEPEND1 GEN 8784 11348 -26 -83 -387 Coal 
EAI.INDEPEND2 GEN 8784 11370 -24 -61 -410 Coal 

EAI.LK_CATH4 GEN 8784 12859 -19 -29 -410 Gas 
EAI.MABELV1_C
T GEN 3651 2891 -37 -217 -117 Gas 

EAI.MABELV3_C
T GEN 3651 2891 -37 -217 -117 Gas 

EAI.PBENRGY_C
T GEN 8784 12610 -17 -43 -391 Gas 

EAI.PBENRGY_S
T GEN 8784 12612 -17 -43 -391 Gas 

EAI.PLUM_1C GEN 8784 12435 -22 -55 -413 Coal 
EAI.PLUM_PPEA GEN 8784 12435 -22 -55 -413 Coal 
EAI.PLUM1A_TE
A GEN 1440 660 -9 -53 -71 Coal 

EAI.PUPP_2A GEN 3651 2716 -35 -207 -119 Gas 

EAI.PUPP_2B GEN 3651 2716 -35 -207 -119 Gas 
EAI.PUPP_2C GEN 3651 2716 -35 -207 -119 Gas 

EAI.PUPP_3A GEN 3651 2716 -35 -207 -119 Gas 

EAI.PUPP_3B GEN 3651 2716 -35 -207 -119 Gas 

EAI.PUPP_3C GEN 3651 2716 -35 -207 -119 Gas 
EAI.PUPP_4A GEN 3651 2716 -35 -207 -119 Gas 

EAI.PUPP_4B GEN 3651 2716 -35 -207 -119 Gas 

EAI.PUPP_4C GEN 3651 2716 -35 -207 -119 Gas 

EAI.PUPP1_CT1 GEN 3651 2716 -35 -207 -119 Gas 
EAI.PUPP1_CT2 GEN 3651 2716 -35 -207 -119 Gas 

EAI.PUPP1_ST GEN 3651 2716 -35 -207 -119 Gas 
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EAI.REMMEL123 GEN 8784 12729 -18 -29 -408 Hydro 

EAI.WH_BLUFF1 GEN 8784 11229 -20 -38 -409 Coal 

EAI.WH_BLUFF2 GEN 8784 11126 -19 -33 -406 Coal 

EES.ACAD2_CT1 GEN 8784 15994 -26 -60 -423 Gas 
EES.ACAD2_CT2 GEN 8784 15994 -26 -60 -423 Gas 

EES.ACAD2_ST GEN 8784 15994 -26 -60 -423 Gas 

EES.AXIALL GEN 8784 16599 -24 -47 -418 Gas 

EES.BURAS8_CT GEN 8784 20604 -30 -75 -428 Gas 
EES.CALCAS1_C
T GEN 8784 23233 -24 -51 -416 Gas 

EES.CALCAS2_C
T GEN 8784 23233 -24 -51 -416 Gas 

EES.CARV_A GEN 8784 24279 -28 -76 -414 Gas 

EES.CARV_BC GEN 8784 24279 -28 -76 -414 Gas 

EES.CONC GEN 8784 15897 -14 -2 -408 Gas 
EES.CYPRESS1C
T GEN 8784 17047 -22 -38 -414 N/A 

EES.CYPRESS2C
T GEN 8784 17046 -22 -38 -414 N/A 

EES.DOWCHEM GEN 8784 19259 -17 -66 -328 Gas 

EES.ENCO GEN 8784 22059 -28 -72 -410 Gas 

EES.ESSO GEN 8784 22127 -28 -72 -412 Gas 
EES.EVRGRN_L
D LZN 8784 23789 -28 -77 -415 N/A 

EES.EWOM_RS GEN 8784 16599 -24 -47 -418 Gas 

EES.EXXOBMT GEN 8784 17169 -18 -22 -414 Gas 

EES.EXXON GEN 8784 22102 -28 -72 -412 Gas 

EES.FRONT_TX1 GEN 8784 24207 -10 -19 -387 Gas 
EES.FRONT_TX2 GEN 8784 24207 -10 -19 -387 Gas 

EES.L_CREEK1 GEN 8784 18936 -21 -42 -409 Gas 

EES.L_CREEK2 GEN 8784 18921 -21 -40 -408 Gas 

EES.L_GYPSY2 GEN 8784 21039 -27 -67 -422 Gas 
EES.L_GYPSY3 GEN 8784 21529 -28 -68 -422 Gas 

EES.LONSTR1 GEN 8784 16736 -23 -47 -417 N/A 

EES.MICHOUD2 GEN 3651 4336 -42 -238 -123 Gas 

EES.MICHOUD3 GEN 3651 4323 -42 -238 -123 Gas 
EES.NELSON1 GEN 8784 16516 -24 -49 -417 Coal 

EES.NELSON2 GEN 8784 16520 -24 -49 -418 Coal 

EES.NELSON4 GEN 8784 16488 -24 -47 -418 Coal 

EES.NELSON6 GEN 8784 16471 -23 -46 -418 Coal 
EES.NINEMILE3 GEN 3651 4314 -42 -239 -122 Gas 

EES.NINEMILE4 GEN 8784 20089 -30 -75 -428 Gas 
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EES.NINEMILE5 GEN 8784 20087 -30 -75 -428 Gas 

EES.OUACHITA1 GEN 8784 14614 -17 -59 -379 Gas 

EES.OUACHITA2 GEN 8784 14614 -17 -59 -379 Gas 

EES.OUACHITA3 GEN 8784 14614 -17 -59 -379 Gas 
EES.PERVL1 GEN 8784 14529 -17 -61 -380 Gas 

EES.PERVL2_CT GEN 8784 14529 -17 -61 -380 Gas 

EES.RICE1 GEN 8784 19846 -26 -57 -423 Agricultur
al waste 

EES.RVRBEND1 GEN 8784 21012 -27 -71 -410 Nuclear 

EES.SABINE1 GEN 8784 15688 -14 -5 -408 Gas 
EES.SABINE2 GEN 5857 10047 -44 -171 -306 Gas 

EES.SABINE3 GEN 8784 15564 -15 -7 -409 Gas 

EES.SABINE4 GEN 8784 17153 -19 -24 -408 Gas 

EES.SABINE5 GEN 8784 17124 -19 -23 -406 Gas 
EES.SABINECO GEN 8784 15962 -14 -2 -409 Gas 
EES.SAM_DAM_
12 GEN 8784 18420 -19 -45 -409 Hydro 

EES.SAN_JC1_CT GEN 8784 18914 -19 -33 -409 Gas 
(peaking) 

EES.SAN_JC2_CT GEN 8784 18914 -19 -33 -409 Gas 
(peaking) 

EES.STERL7 GEN 8784 14593 -20 -63 -390 Gas 
(peaking) 

EES.TAFTCOGE
N GEN 8784 21294 -24 -54 -414 Gas 

EES.TLD_CLECO
1 GEN 8784 15304 -20 -57 -413 Hydro 

EES.TLD_CLECO
2 GEN 8784 15304 -20 -57 -413 Hydro 

EES.TOL_BEND1 GEN 8784 15304 -20 -57 -413 Hydro 

EES.TOL_BEND2 GEN 8784 15304 -20 -57 -413 Hydro 

EES.UCB GEN 8784 21308 -24 -55 -415 N/A 

EES.VIDALIA GEN 8784 31571 -22 -61 -399 Hydro 
EES.W_GLEN2 GEN 3651 4466 -42 -235 -122 Gas 

EES.W_GLEN4 GEN 3651 4569 -43 -239 -123 Gas 

EES.WATRFD1 GEN 8784 21330 -25 -56 -415 Gas 

EES.WATRFD2 GEN 8784 21330 -25 -56 -414 Gas 
EES.WATRFD3 GEN 8784 21110 -24 -53 -415 Nuclear 
EES.WATRFD4_
CT GEN 8784 21325 -24 -55 -415 Oil 

(peaking) 
EMBA.ATTALA1 GEN 8784 16278 -19 -87 -357 Gas 
EMBA.B_WILSO
N1 GEN 8784 20124 -23 -63 -400 Gas 

EMBA.B_WILSO
N2 GEN 8784 18504 -23 -62 -403 Gas 
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EMBA.G_ANDR
US1 GEN 8784 15975 -25 -65 -406 Gas 

EMBA.G_GULF_
A GEN 8784 18218 -23 -62 -401 Nuclear 

EMBA.G_GULF_
L GEN 8784 18218 -23 -62 -401 Nuclear 

EMBA.G_GULF_
M GEN 8784 18218 -23 -62 -401 Nuclear 

EMBA.G_GULF_
N GEN 8784 18218 -23 -62 -401 Nuclear 

EMBA.HEND1 GEN 8784 20986 -21 -70 -381 Gas 

EMBA.HEND2 GEN 8784 20986 -21 -70 -381 Gas 
EMBA.HINDS1_S
T GEN 8784 18733 -23 -64 -399 Gas 

EMBA.RX_BRN3 GEN 8784 21263 -21 -54 -396 Gas 

EMBA.RX_BRN4 GEN 8784 21238 -21 -54 -396 Gas 
GRE.COALC1_A
C GEN 8784 16547 76 128 52 Coal 

GRE.COALC2_A
C GEN 8784 16344 75 131 52 Coal 

GRE.STANTO1 GEN 8784 16443 77 128 53 Coal 
HE.MEROM1 GEN 8784 15977 185 348 93 Coal 

HE.MEROM2 GEN 8784 15977 185 348 93 Coal 

HE.RATTS1 GEN 3651 4615 46 77 30 Coal 

HE.WORTH2 GEN 8784 16662 184 350 92 Gas 
ILLINOIS.HUB HUB 8784 17898 187 357 81 N/A 

INDIANA.HUB HUB 8784 19659 192 369 88 N/A 

IPL.16PETEE1 GEN 8784 15206 187 359 89 Coal 

IPL.16PETEE2 GEN 8784 15184 187 359 89 Coal 
IPL.16PETEE3 GEN 8784 15217 187 359 89 Coal 

IPL.16PETEE4 GEN 8784 15216 187 359 89 Coal 

IPL.16STOU7O7 GEN 8784 21446 192 363 90 Coal 

IPL.IPL LZN 8784 21818 192 363 90 N/A 
LAFA.BONIN2 GEN 8784 16310 -27 -61 -425 Gas 

LAFA.BONIN3 GEN 8784 16282 -27 -60 -424 Gas 

LAFA.HARGIS1 GEN 8784 16345 -27 -61 -425 Gas 

LAFA.HARGIS2 GEN 8784 16345 -27 -61 -425 Gas 
LAFA.LABBE1 GEN 8784 16109 -26 -59 -424 Gas 

LAFA.LABBE2 GEN 8784 16109 -26 -59 -424 Gas 

LAFA.LAFA LZN 8784 16328 -27 -61 -424 N/A 

LAGN.BC1T_3 GEN 8784 20550 -27 -74 -401 Gas 
LAGN.BC1T_4 GEN 8784 20550 -27 -74 -401 Gas 

LAGN.BC2_1 GEN 8784 15221 -27 -68 -411 Coal 
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LAGN.BC2_2 GEN 8784 15198 -27 -69 -411 Coal 

LAGN.BC2_3 GEN 8784 15221 -27 -68 -411 Coal 

LAGN.BCI_1 GEN 8784 20550 -27 -74 -401 Gas 

LAGN.BCI_2 GEN 8784 20550 -27 -74 -401 Gas 

LAGN.BYCT1 GEN 8784 16662 -25 -56 -421 Gas 
(peaking) 

LAGN.BYCT2 GEN 8784 16655 -25 -56 -421 Gas 
(peaking) 

LAGN.BYCT3 GEN 8784 16660 -25 -56 -421 Gas 
(peaking) 

LAGN.BYCT4 GEN 8784 16659 -25 -56 -421 Gas 
(peaking) 

LAGN.CTW1 GEN 8784 15918 -23 -39 -420 Gas 

LAGN.CTW2 GEN 8784 16097 -23 -39 -420 Gas 

LAGN.CTW3 GEN 8784 16098 -23 -39 -420 Gas 
LAGN.CTW4 GEN 8784 16098 -23 -39 -420 Gas 

LAGN.STET1 GEN 8784 16180 -13 -67 -350 Gas 

LAGN.STET10 GEN 8784 16180 -13 -67 -350 Gas 

LAGN.STET2 GEN 8784 16180 -13 -67 -350 Gas 
LAGN.STET3 GEN 8784 16180 -13 -67 -350 Gas 

LAGN.STET4 GEN 8784 16180 -13 -67 -350 Gas 

LAGN.STET6 GEN 8784 16180 -13 -67 -350 Gas 

LAGN.STET7 GEN 8784 16180 -13 -67 -350 Gas 
LAGN.STET8 GEN 8784 16180 -13 -67 -350 Gas 

LAGN.STET9 GEN 8784 16180 -13 -67 -350 Gas 
LEPA.CC.MGC_0
1 GEN 2075 7303 -15 1 -186 Gas 

LEPA.HOUMA_G
14 GEN 8784 20884 -26 -60 -419 Gas 

LEPA.HOUMA_G
15 GEN 8784 20884 -26 -60 -419 Gas 

LEPA.HOUMA_G
16 GEN 8784 20884 -26 -60 -419 Gas 

LEPA.LEPA LZN 8784 19859 -25 -59 -408 N/A 
LEPA.MGC_UNT
01 GEN 2460 5483 23 120 -70 Gas 

LEPA.MURRAY GEN 8784 31571 -22 -61 -399 Hydro 

LOUISIANA.HUB HUB 8784 23215 -29 -72 -425 N/A 

MDU.LEWIS1 GEN 8784 20224 85 129 56 Coal 
MDU.TATANKA
1 GEN 8784 15387 78 137 54 Wind 

MEC.LOUISA_1 GEN 8784 19915 76 151 50 Coal 

MEC.NEALN_2 GEN 3651 5169 3 8 -9 Coal 

MEC.NEALN_3 GEN 8784 16180 75 141 50 Coal 
MEC.NEALS_4 GEN 8784 16167 76 142 51 Coal 
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MEC.OTTUMWA
1 GEN 8784 22487 80 137 59 Coal 

MEC.PPWIND GEN 8784 18862 89 152 61 Wind 

MEC.WSEC3 GEN 8784 16696 80 144 55 Coal 

MEC.WSEC4 GEN 8784 16709 80 143 54 Coal 

MHEB GEN 8784 14782 76 143 49 Hydro 
MICHIGAN.HUB HUB 8784 18045 190 354 82 N/A 

MINN.HUB HUB 8784 16083 82 153 53 N/A 

MP.BOS233 GEN 8784 14718 78 142 51 Coal 

MP.MP_BOS4 GEN 8784 14691 78 142 51 Coal 
MPW.UNIT_9 GEN 8784 24964 77 143 48 Coal 

NIPS.BAILLP8 GEN 8784 25679 190 344 86 Coal 

NIPS.CC.WHITN GEN 8784 20635 192 355 90 Gas 

NIPS.MICHCP12 GEN 8784 16878 189 356 87 Coal 
NIPS.NIPS LZN 8784 21345 191 353 84 N/A 

NIPS.SCHAHP14 GEN 8784 17875 188 343 84 Coal 

NIPS.SCHAHP15 GEN 8784 17875 188 343 84 Coal 

NIPS.SCHAHP17 GEN 8784 17875 188 343 84 Coal 
NIPS.SCHAHP18 GEN 8784 17875 188 343 84 Coal 

NSP.AZ LZN 8784 16048 82 152 54 N/A 
NSP.CC.HIBRDG
1 GEN 8784 16158 81 150 55 Coal 

NSP.KING1 GEN 8784 16616 81 152 54 Coal 
NSP.MNTCEL1 GEN 8784 15843 76 147 49 Nuclear 

NSP.NSP LZN 8784 16029 82 152 54 N/A 

NSP.PRISL1 GEN 8784 16759 88 154 59 Nuclear 

NSP.PRISL2 GEN 8784 16754 88 154 59 Nuclear 
NSP.SHERCO1 GEN 8784 13717 76 151 49 Coal 

NSP.SHERCO2 GEN 8784 13738 75 151 48 Coal 

OTP.BIGSTON1 GEN 8784 14517 79 142 55 Coal 

OTP.CENTER1 GEN 8784 16731 76 131 54 Coal 
OTP.MPC GEN 8784 15358 77 140 52 Wind 
OTP.MPC.LANG
DN GEN 8784 16007 79 127 55 Wind 

SIGE.10ABBGN1 GEN 8784 14824 182 351 85 Coal 

SIGE.10ABBGN2 GEN 8784 14823 182 351 85 Coal 

SIGE.10CULGN3 GEN 8784 14423 181 345 85 Coal 
SIGE.WAR4ALC
OA GEN 8784 14426 181 344 85 Coal 

SIGE.WAR5SIGE GEN 8784 14427 181 344 85 Coal 
SIGE.WARR4SIG
E GEN 8784 14426 181 344 85 Coal 
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SIPC.5MRN_PN1
4 GEN 8784 13677 187 354 79 Coal 

SME.BATESV_1 GEN 8784 13940 -15 -36 -383 Gas 

SME.BATESV_2 GEN 8784 13940 -15 -36 -383 Gas 

SME.BATESV_3 GEN 8784 13940 -15 -36 -383 Gas 

SME.BENN_GT GEN 8784 14901 -27 -65 -426 Gas 
SME.GRANDGU
LF GEN 8784 18233 -23 -62 -402 Nuclear 

SME.MORROW_
1 GEN 8784 15628 -27 -64 -424 Coal 

SME.MORROW_
2 GEN 8784 15628 -27 -64 -424 Coal 

SME.MOS_3 GEN 8784 15180 -25 -63 -419 Gas 

SME.MOS_4 GEN 8784 15278 -25 -65 -420 Gas 

SME.MOS_5 GEN 8784 15278 -25 -65 -420 Gas 
SME.MOS_CTG_
1 GEN 8784 15278 -25 -65 -420 Gas 

SME.MOS_CTG_
2 GEN 8784 15278 -25 -65 -420 Gas 

SME.MOS_STG_1 GEN 8784 15180 -25 -63 -419 Gas 

SME.MOS_STG_2 GEN 8784 15180 -25 -63 -419 Gas 

SME.PAULDING GEN 8784 14957 -26 -65 -427 Oil 
SME.PLUMPOIN
T GEN 8784 12434 -22 -55 -413 Coal 

SME.SLVRCRK_
1 GEN 8784 17014 -27 -69 -423 Gas 

SME.SLVRCRK_
2 GEN 8784 17014 -27 -69 -423 Gas 

SME.SLVRCRK_
3 GEN 8784 17014 -27 -69 -423 Gas 

SME.SYLV_1 GEN 8784 14672 -24 -63 -417 Gas 

SME.SYLV_2 GEN 8784 14672 -24 -63 -417 Gas 
SME.SYLV_3 GEN 8784 14672 -24 -63 -417 Gas 

SMP.OWEF GEN 8784 19463 79 144 54 N/A 

TEXAS.HUB HUB 8784 17228 -19 -25 -414 N/A 

TVA.CALRIDGE GEN 8784 25708 182 327 89 Wind 
TVA.WHITEOAK GEN 8784 19712 187 349 82 Wind 

UPPC.ESC GEN 280 514 10 18 7 Coal 

UPPC.ESCCT GEN 3651 5905 49 79 30 Coal 
UPPC.INTEGRAT
D GEN 280 513 10 18 7 Hydro 

UPPC.WARDEN GEN 8784 22911 194 371 92 Biomass 
WEC.CC.PORTW
1 GEN 8784 15056 187 351 86 Gas 

WEC.CC.PORTW
2 GEN 8784 15056 187 351 86 Gas 
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WEC.ERG2 GEN 8784 15083 186 362 85 Coal 
WEC.OAKCREK
C5 GEN 8784 15145 186 361 86 Coal 

WEC.OKCGC6 GEN 8784 15108 186 360 86 Coal 

WEC.OKCGC7 GEN 8784 15110 186 360 86 Coal 

WEC.OKCGC8 GEN 8784 15109 186 360 86 Coal 
WEC.PLEASA142 GEN 8784 15386 186 357 86 Coal 

WEC.PLPRG41 GEN 8784 15386 186 357 86 Coal 

WEC.PTBHGB1 GEN 8784 16240 190 355 87 Nuclear 

WEC.PTBHGB2 GEN 8784 16241 190 355 87 Nuclear 
WEC.S LZN 8784 15425 190 368 87 N/A 
WPS.COLUMBIA
1 GEN 8784 17207 190 356 91 Coal 

WPS.COLUMBIA
2 GEN 8784 17202 190 356 91 Coal 

WPS.DPC.WEST
N4 GEN 8784 17459 192 366 89 Coal 

WPS.WESTON3 GEN 8784 17987 192 365 91 Coal 

WPS.WESTON4 GEN 8784 17459 192 366 89 Coal 
WPS.WPSM LZN 8784 20117 194 372 92 N/A 

 


