114,297 research outputs found

    Executable Model Synthesis and Property Validation for Message Sequence Chart Specifications

    Get PDF
    Message sequence charts (MSC’s) are a formal language for the specification of scenarios in concurrent real-time systems. The thesis addresses the synthesis of executable object-oriented design-time models from MSC specifications. The synthesis integrates with the software development process, its purpose being to automatically create working prototypes from specifications without error and create executable models on which properties may be validated. The usefulness of existing algorithms for the synthesis of ROOM (Real-Time Object Oriented Modeling) models from MSC’s has been evaluated from the perspective of an applications programmer ac-cording to various criteria. A number of new synthesis features have been proposed to address them, and applied to a telephony call management system for illustration. These include the specification and construction of hierarchical structure and behavior of ROOM actors, views, multiple containment, replication, resolution of non-determinism and automatic coordination. Generalizations and algorithms have been provided. The hierarchical actor structure, replication, FSM merging, and global coordinator algorithms have been implemented in the Mesa CASE tool. A comparison is made to other specification and modeling languages and their synthesis, such as SDL, LSC’s, and statecharts. Another application of synthesis is to generate a model with support for the automated validation of safety and liveness properties. The Mobility Management services of the GSM digital mobile telecommunications system were specified in MSC’s. A Promela model of the system was then synthesized. A number of optimizations have been proposed to reduce the complexity of the model in order to successfully perform a validation of it. Properties of the system were encoded in Linear Temporal Logic, and the Promela model was used to automatically validate a number of identified properties using the model checker Spin. A ROOM model was then synthesized from the validated MSC specification using the proposed refinement features

    A Rewriting-Logic-Based Technique for Modeling Thermal Systems

    Full text link
    This paper presents a rewriting-logic-based modeling and analysis technique for physical systems, with focus on thermal systems. The contributions of this paper can be summarized as follows: (i) providing a framework for modeling and executing physical systems, where both the physical components and their physical interactions are treated as first-class citizens; (ii) showing how heat transfer problems in thermal systems can be modeled in Real-Time Maude; (iii) giving the implementation in Real-Time Maude of a basic numerical technique for executing continuous behaviors in object-oriented hybrid systems; and (iv) illustrating these techniques with a set of incremental case studies using realistic physical parameters, with examples of simulation and model checking analyses.Comment: In Proceedings RTRTS 2010, arXiv:1009.398

    Improving the reuse possibilities of the behavioral aspects of object-oriented domain models.

    Get PDF
    Reuse of domain models is often limited to the reuse of the structural aspects of the domain (e.g. by means of generic data models). In object-oriented models, reuse of dynamic aspects is achieved by reusing the methods of domain classes. Because in the object-oriented approach any behavior is attached to a class, it is impossible to reuse behavior without at the same time reusing the class. In addition, because of the message passing paradigm, object interaction must be specified as a method attached to one class which is invoked by another class. In this way object interaction is hidden in the behavioral aspects of classes. This makes object interaction schemas difficult to reuse and customize. The focus of this paper is on improving the reuse of object-oriented domain models. This is achieved by centering the behavioral aspects around the concept of business events.Model; Models;

    Towards a cloud‑based automated surveillance system using wireless technologies

    Get PDF
    Cloud Computing can bring multiple benefits for Smart Cities. It permits the easy creation of centralized knowledge bases, thus straightforwardly enabling that multiple embedded systems (such as sensor or control devices) can have a collaborative, shared intelligence. In addition to this, thanks to its vast computing power, complex tasks can be done over low-spec devices just by offloading computation to the cloud, with the additional advantage of saving energy. In this work, cloud’s capabilities are exploited to implement and test a cloud-based surveillance system. Using a shared, 3D symbolic world model, different devices have a complete knowledge of all the elements, people and intruders in a certain open area or inside a building. The implementation of a volumetric, 3D, object-oriented, cloud-based world model (including semantic information) is novel as far as we know. Very simple devices (orange Pi) can send RGBD streams (using kinect cameras) to the cloud, where all the processing is distributed and done thanks to its inherent scalability. A proof-of-concept experiment is done in this paper in a testing lab with multiple cameras connected to the cloud with 802.11ac wireless technology. Our results show that this kind of surveillance system is possible currently, and that trends indicate that it can be improved at a short term to produce high performance vigilance system using low-speed devices. In addition, this proof-of-concept claims that many interesting opportunities and challenges arise, for example, when mobile watch robots and fixed cameras would act as a team for carrying out complex collaborative surveillance strategies.Ministerio de Economía y Competitividad TEC2016-77785-PJunta de Andalucía P12-TIC-130

    Embedding object-oriented design in system engineering

    Get PDF
    The Unified Modeling Language (UML) is a collection of techniques intended to document design decisions about software. This contrasts with systems engineering approaches such as for exampleStatemate and the Yourdon Systems Method (YSM), in which the design of an entire system consisting of software and hardware can be documented. The difference between the system- and the software level is reflected in differences between execution semantics as well as in methodology. In this paper, I show how the UML can be used as a system-level design technique. I give a conceptual framework for engineering design that accommodates the system- as well as the software level and show how techniques from the UML and YSM can be classified within this framework, and how this allows a coherent use of these techniques in a system engineering approach. These ideas are illustrated by a case study in which software for a compact dynamic bus station is designed. Finally, I discuss the consequences of this approach for a semantics of UML constructs that would be appropriate for system-level design
    corecore