
KATHOLIEKE
UNIVERSlTEIT

LEUVEN

OEPARTEMENT TOEGEPASTE
ECONOMISCHE WETENSCHAPPEN

RESEARCH REPORT 0033

IMPROVING THE REUSE POSSIBILITIES OF THE
BEHAVIORAL ASPECTS OF OBJECT-ORIENTED

DOMAIN MODELS

by
M. SNOECK

G. POElS

0/2000/2376/33

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6468778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

· Improving the Reuse Possibilities of the
Behavioral Aspects of Object-Oriented
Domain Models

Monique Snoeck, Geert Poels

MIS Group,

Dept. Applied Economic Sciences, K.U.Leuven,

Naamsestraat 69,

3000 Leuven, Belgium

{monique.snoeck, geert.poels}@econ.kuleuven.ac.be

ABSTRACT. Reuse of domain models is often limited to the reuse of the struc­

tural aspects of the domain (e.g. by means of generic data models). In object­

oriented models, reuse of dynamic aspects is achieved by reusing the methods

of domain classes. Because in the object-oriented approach any behavior is

attached to a class, it is impossible to reuse behavior without at the same time

reusing the class. In addition, because of the message passing paradigm, ob­

ject interaction must be specified as a method attached to one class which is

invoked by another class. In this way object interaction is hidden in the be­

havioral aspects of classes. This makes object interaction schemas difficult to

reuse and customize. The focus of this paper is on improving the reuse of ob­

ject-oriented domain models. This is achieved by centering the behavioral

aspects around the concept of business events.

This paper has been presented at the ER2000 Conference, 9-12 October, Salt Lake City, USA

1. INTRODUCTION

Domain modeling is an essential requirement capturing activity, prior to in­

formation systems modeling. As such, the main objective of any domain

model is to be a vehicle for communication between system developers and

business people, facilitating the mutual perception and understanding of im­

portant aspects of the business reality [17]. Although domain models are the

particular representation of one or more aspects of a specific type of business

(e.g. manufacturing, transportation, ...), the reuse of models from one domain

to another is feasible (and supposedly also beneficial) when domains share a

common knowledge structure. This principle of analogical reuse [13] has

been supported by research contributions from various fields, including analy­

sis patterns [7],[20], generic data models [8],[16], generic components [2],

enumerative and faceted classification schemas [12], and automated pattern

retrieval and synthesis [19]. Most of this work aims at facilitating the reuse of

structural aspects of a domain (e.g. data models). Sometimes, in particular

with respect to object-oriented modeling, it also concerns the reuse of func­

tionality (e.g. object operations). In general however, the proposals that have

been made do not concern the reuse of behavioral aspects related to the inter­

action of domain objects [14]. In object-oriented analysis, reuse is often cen­

tered around the reuse of class definitions. This type of reuse however,

focuses on the reuse of design and code. Reuse at earlier stages of software

development should focus on the reuse of analysis models. In object-oriented

analysis there are typically at least three types of models, one for each view on

the Universe of Discourse: a static model, an interaction model and a behav­

ioral model. The goal of this research is to facilitate the reuse of the latter two

types of models.

In this paper we present some research experiences with analogical reuse in

the context of event-based domain modeling. In an event-based approach, the

dynamic perspective of the domain is modeled by identifying the real-world

events that are relevant to the universe of discourse. Domain objects are mod­

eled in terms of their participation in real-world events (also called business

events). In this way the dynamic perspective is modeled independently and at

a high level of abstraction. This contrasts with the prevalent approach in OOA

2

that models the dynamic perspective through the concept of class-method,

which IS at a lower level of abstraction and subordinated to the concept of

class. An important issue regarding the reuse of event-based domain models

concerns the reuse of the participation of domain objects in real-world events!

both in terms of the effect events have on domain objects as in terms of inter­

action between domain objects. The main focus of this paper is the improved

reuse of such interaction aspects when an event-based approach is taken to

conceptual domain modeling.

Our research concerns both the abstracting and customization of event-based

domain models. W~ use an example throughout the paper to illustrate the pos­

sibilitiesand. particularities of analogical reuse of domain object interaction

schemas. In section 2 we present domain models for a library and a hotel ad­

ministration along with a generic model that is a domain abstraction for these

two analogous domains. The models in this section only represent structural

aspects of the domain and take the form of UML class diagrams. Some issues

regarding generalization and customization are illustrated and discussed. In

section 3 the focus shifts to the modeling of behavioral aspects. First, behav­

ior is added to the generic model following the rules prescribed by a formal

method for object-oriented .enterprise modeling [22],[23]. Next, the reuse of

this behavior is illustrated ~d discussed. Section 4 then investigates the effect

of required customization on the reuse of object interaction schemas. It is

shown that an event-based approach to conceptual domain modeling iinproves

the reuse possibilities of t!Ie object interaction schemas. More in particular,

the effect of customization is shown to be less pervasive in an event-based in­

teraction schema compared to a ·message passing interaction schema. Conclu­

sions are presented in section 5.

2. A GENERIC DOMAIN MODEL FOR PRODUCT USAGE

Consider the following (simplified) domain descriptions for a library and a

hotel administration:

3

"In the library we have a catalogue with titles and for each title the library

has one or more copies. People can register to the library and become

members. Members can borrow and return copies. Loans can be re­

newed. If a book is not on shelf, a reservation can be made for that title:

the first copy that is returned to the library will then be put aside."

" A hotel offers a set of rooms that are categorized into room types.

Customers make reservations for a particular room type. When the reser­

vation is confirmed, a specific room is assigned for the customer's later

stay."

The structural aspects of these domain descriptions are shown in Fig. 1 and

Fig. 2 respectively.

Fig. 1. A simple Library Domain Model

*r-----,
RESER

VATION
*}------'

Fig. 2. A simple Hotel Administration Domain Model

As one can immediately notice, the class diagrams for .the library and the

hotel show a very similar structure. In both types of businesses products are

categorized to product types. Customers can "use" a product during a certrun

4

period of time, after which the product must be returned. Prior to this usage

there mayor may not be an "order" or reservation for the product's type.

The generic domain model for Product Usage is shown in Fig.3 i . In this

model, the association between USAGE_IN1ENTION and PRODUCT represents the

allocation of products to reservations or orders. The association between us­

AGE_INTENTION and USAGE allows tracking how many of the effective usages

are the consequence of a prior usage intention.

[0 .. 1]

*

Fig. 3. A generic domain model for Product Usage

The generic model can also be extended to support multiple branches of one

business. In the model of Fig. 4 we assume that product types are company­

wide. However, the characteristics of a product type can be different from

branch to branch: a double room in New York will have another (higher) price

than a double room in Las Vegas. This requires the introduction of the class

PRODUCT_TYPE_IN_BRANCH. Individual products are the materialization of

such a PRODUCT_TYPE_IN_BRANCH and are as such located in one branch.

Although this generic domain model can be reused in many types of 'renting

business', each domain will have its own particularities that must be taken

1 In the classification framework of Lung and Urban [8] the domain abstraction for a

library system and a hotel reservation system is called 'Object Allocation'. It is de­

scribed as (p. 173) "an analogy for domains that allocate an object to another object

(usually an agent). The allocated objects are returned after a period of time". Other

example domains include car rental and airline reservation systems. Note that Lung

and Urban do not propose generic models for their domain abstractions.

5

care of. Tailoring the generic structural model to the particularities of the own

domain can be done by adding or dropping classes and/or associations, and

by considering additional business rules. For example, in the library we will

probably not be interested in keeping track of how many loans are the conse­

quence of a reservation. As a result, the association between the RESERVATION

class and the LOAN class has not been retained. In the case of the hotel admi­

nistration, the decision whether or not to retain this association depends on the

information needs of the specific company. For instance, the association must

be retained if the hotel manager wishes to know for how many stays there was

a prior reservation.

PRODUCT
TYPE in

BRANCH

BRANCH

* USAGE
I-----l INTENTION

* J---r:["""O.-.1'"'"j...J

*

Fig. 4. An extended generic domain model for Product Usage

As another example, in a car rental domain model, which is another domain

of the type Product Usage, it would also make sense to add an association

between BRANCH and PRODUCT (i.e. a car) that records the current location of a

car. This would allow customers to return the car to another branch than

where it was rented. For example, it would allow customers to rent a car in

the Brussels office and return it in the Paris office. In a library, the concept of

PRODUCT_TYPE_IN_BRANCH makes less sense. It is sufficient to keep track of

the location of each copy by directly linking COpy to LIBRARY (the branch)

(Fig. 5).

6

1---_---1RESERV ATION r*---i

Fig. 5. Extended Library Domain Model

3. ADDING BEHAVIORAL ASPECTS

3.1. Motivation for an event-based approach

In the case of object-oriented conceptual modeling, domain requirements

will be formulated in terms of business or enterprise object types, associations

between these object types and the behavior of business object types. The

definition of desired object behavior is an essential part in the specification

process. On the one hand, we have to consider the behavior of individual ob­

jects. This type of behavior will be specified as methods and statecharts for

object classes. On the other hand, objects have to collaborate and interact.

Typical techniques for modeling object interaction aspects are interaction dia­

grams or sequence charts, and collaboration diagrams.

These techniques are based on the concept of message passing as interaction

mechanism between objects. The main disadvantage of this concept is that in

the context of domain modeling, message passing is too much implementation

biased. We propose an alternative communication paradigm, namely, object

interaction by means of joint involvement in business events. This type of in­

teraction is modeled with an object-event table. Let us illustrate this with an

example. In the context of a library, we can identify (among others) the two

domain object types MEMBER and COPY. A relevant event type in this domain

is the borrowing of a copy. This event affects both domain object types: it

modifies the state of the copy and it modifies the state of the member. When

7

using message passing as interaction mechanism, two scenarios are· possible.

Either the member sends a message to the copy, or the copy sends a message

to the member (see Fig. 6). If in addition LOAN is recogriized as a domain ob­

ject type as well, then the borrow-event will create loan objects. In this case,

three objects are simultaneously involved in one event and should be notified

of the occurrence of the borrow-event. With message passing, this leads to 9

possible interaction scenarios as depicted in Fig. 7. With each additional ob­

ject type, the number of possible message passing scenarios further explodes.

For example, if four objects have to synchronize on the occurrence of one

event, we already have 64 possible message passing scenarios. Of course,

from a systems design perspective, some scenarios can b\! considered more

adequate than others. Domain modeling should however never be concerned

with design aspects and business domain modelers should not be burdened

with design considerations.

(COpy 1 borrow.(MEMBER 1

(COpy 1'" borrow (MEMBER 1

Fig. ~. Two possible scenarios for borrowing a copy

Fig. 7. Possible scenarios when three objects are involved in a single event
(C = COPY, M = MEMBER, L = LOAN)

8

The alternative that we propose in this paper is to model only the essence of

the interaction: some objects are affected by a given event, others are not. To

model which objects are involved in which event types, we can use a very

simple technique: the object-event table. Table 1. shows a possible object­

event table for the library example. The table clearly shows that a cr _member

event affects only the member object, that the acquisition of a copy only af­

fects a copy, but that the borrowing and return of a copy affect a member, a

copy and a loan object.

Table 1. Object-event table for the library

MEMBER COPY LOAN
cr_member x
acquire x
borrow x x x
return x x x
...

The use of the object-event table to model object interaction implies that the

notion of event plays a central role. Some object-oriented analysis methods

agree that events are a fundamental part of the structure of experience

[4][6][21]. Events are atomic units of action: they represent things that hap­

pen in the real world. Without events nothing would happen: they are the way

information and objects come into existence (creating events), the way infor­

mation and objects are modified (modifying events) and disappear from our

Universe of Discourse (ending events). As we are concerned with domain

modeling, we will only consider business events (i.e. real world events) and,

for example, not consider information systems events like keyboard and

mouse actions. The concept of the object-event table allows to model interac­

tion at a much higher level of abstraction than is the case with message pass­

ing. Moreover, the interaction pattern is independent of the number of objects

involved in an event. At domain modeling level, we should not burden our­

selves with event notification schemas. How exactly objects are notified of the

occurrence of an event is a matter of implementation. When using object­

oriented technology this will be done with messages, but when using other

9

technolo'gies, both traditional and modern (e.g. distributed component tech­

nologies), (remote) procedure calls can do as well.

3.2. The generic behavioral schema for Product Usage

The specification of the behavioral aspects of the domain model consists of

one object-event table and a set of lifecycle models, one for each of the do­

main classes. The object event table identifies the relevant event types for the

Universe of Discourse and specifies the involvement of objects in events. In

the object-event table (OET), events are not attached to a single domain class.

One event can affect more than one object. In the object-event table, there is

one column for each domain class and one row for each typ,e of event relevant

to the Universe of Discourse. A row-column intersection is marked with a 'C'

when the event creates an object of the class, with an 'M' when it modifies the

state of an object of the class and with an 'E' when it ends the life of an o.bject

of the class. A marked entry in a column means that, in an object-oriented

implementation of the domain model, the domain class has to be equipped

with a method to implement the effect of the event on the object. In this way

the object-event table identifies the methods that have to be included in the

class definition of domain objects.

For the (extended) generic domain model for Product Usage (Fig. 4) we

identify the following event types:

create_customer, modify3ustomer, end_customer, create_branch, modify_branch,

end:... branch, create_producLtype, rnodify_producLtype, end_producLtype, al/o­

cate-producL type_to_branch, modify_producUype_in_branch,

end_producLtype_in_branch, create...,product, modify_product, end-product,

cr_usage_intention, al/ocate-product, confirm_availability, canceL usage_intention, '

start_usage, normaLreturn, abnormaLreturn, modify_conditions, invoice_usage, re­

ceive-payment, end_usage

The OET is represented in Table 2. A detailed discussion of the rules gov­

erning the construction of this OET is beyond the scope of this paper, but can

10

be found in [22], [23]. We merely note here that each marked entry identifies

a possible place for information gathering. If for example, we wish to keep

track of how many product types are offered in a branch, it makes sense to

mark the entries BRANCHIallocate-producCtype_to_branch and BRANcHlend_

producCtypcin_branch. Similarly, if within the class CUSTOMER we wish to

keep track of the total amount of payments made by this customer (e.g. to

identify "golden" customers, or to specify some discounting rules), we need to

mark the entry CUSTOMER! receive-payment. At implementation time, meth­

ods that are empty because no relevant business rule was identified, can be

removed to increase efficiency.

Table 2. OET for the extended generic domain model for Product Usage.

a: . t; z ::I: Z W t; t; 0 :::;;: ::I: =>-0
0 0 => o·w z => wi= w
I-- Z Ow og:~ 0 (!)z

~ en ~ 00. f[I--CD 0 «w
=> g:~ a: en I-- en
u CD a. =>~ =>

Create customer C
Modify_ customer M
End customer E
Create branch C
Modify_ branch M
End branch E
Create _product Jype C
ModifyJ1roduct Jype M
End _product Jype E
Allocate _prod Jype to branch M M C
Modify_prod Jype in branch M M M
End_product Jjtpe in branch M M E
CreateJ1roduct M M M C
ModifyJ1roduct M M M M
End product M M M E
Cr usage intention M M M M C
Allocate product M M M M M M
Confirm availability M M M M M
Cancel usage intention M M M M E
Start usage M M M M M E C
Normal return M M M M M M
Abnormal return M M M M M M
Modify_ conditions M M M M M M
Invoice usage M M M M M M
Receive _payment M M M M M E
End usage M M M M M E

11

Another behavioral aspect that is modeled concerns the specification of ob­

ject lifecyc1e models. In the library for example, a copy should be returned

before it can be borrowed again. With each class we will thus associate a life­

cycle expression. The default lifecyc1e is that objects are first created (a

choice between the C-entries), then modified an arbitrary number of times (an

iteration of a choice between the M-entries) and finally come to an end (choice

between the E-entries). In most object-oriented methods such lifecyc1es are

represented using state charts. It is however also possible to represent such

lifecycles as regular expressions, using a '+' to denote choice, a '.' to denote

sequence and a '*' to denote iteration. From a mathematical and formal point

of view, regular expressions are equivalent to state charts.

The lifecyc1e expression of a domain class should contain all events for

which an entry has been marked in the corresponding column of the OET. In

addition, the lifecyc1e expression should respect the type of the entries: events

marked with a 'C' should appear as creating events, events .marked with an 'M'

should appear as modifying event types and events marked with an 'E' should

terrnimite the life of the object2. For example the lifecyc1e expression for the

class USAGE is represented in Fig. 8 as state chart and is specified as follows by

means of a regular expression:

USAGE = start_usage. (modify_conditions)* . (normatreturn + abnormatreturn). in­

voice_usage. (receive_payment + end_usage)

2 Additional rules that guarantee consistency between the object-relationship

schema, the object-event table and the lifecycle expressions can be found in [22],

[23].

12

normaCretum,
abnormaCretum

conditions
Fig. 8. State chart for USAGE

That is, after a usage has started, the conditions can be modified (e.g. post-·

poning the return date) zero, once or more times. The product is then returned

either in a normal state or in an abnormal state (e.g. crashed car). The usage is

then invoiced and ends with the payment of the invoice or with the default

end_usage event if the invoice gets never paid. The lifecyc1e for

USAGE_IN1ENTION is:

USAGE_INTENTION = create_usage_intenion. allocate_product. confirm. (cancel

usage_intention + start_usage)

When classes show some parallel behavior the 'II ' symbol is used to denote

parallel composition in regular expressions, such as in the lifecycle of product:

PRODUCT = create_product.

[(modify-product + allocate-product + invoice + receive_ payment + end_usage)*

II (start_usage. (modify_conditions)* . (normatreturn + abnormatreturn))*].

end_product

That is, after a product has been created, its life is determined by two paral­

lel threads. On the one hand there is the usage cycle and on the other hand

there are a number of events that can occur randomly and independent from

the usage cycle. The· life of the product is terminated by the end-product

event. Notice that constraints on event types such as invoice and re­

ceive-payment are already specified in the lifecycle of USAGE and need not be

re-specified in the lifecyc1e of PRODUCT. The equivalent state chart is given in

Fig. 9.

13

starcusage

modify -product.
allocate-product.
invoice,
receive-payment.
end_usage

-c[J::o_dih-
normaLreturn. conditions
abnormaLreturn

Fig. 9. State chart for PRODUCT.

The OET and object lifecycle models of the generic Product Usage model

can be reused in the library, hotel administration and car rental domains.

Again, some tailoring might be needed. For example, the way products are

allocated to an intended transaction is similar in the hotel and car rental do­

mains, but very different from the library domain. In a car rental and hotel

business it is good practice to confirm the reservation to ensure that the re­

quested product (i.e. a car or room) is available on the requested date. In a

library however, such confirmation is not required: the member will simply

receive the first coPy that is returned and no firm assurance can be given on

the data a copy will be available.

Reuse of the behavioral parts of the generic domain model is achieved in

different ways. At the most abstract level behavior is reused by deciding

which events to reuse and how. First, events can be reused as such by simply

renaniing them. For the car rental company, most event types can be reused

by simply renaming them. For example, in the car-rental case cre­

ate...productjype becomes create_car _model, modify"'producc type becomes

modify_car _model and so on. Secondly, events can be refined. In the car­

rental example, the abnormaCretum can be split in two event types:

crash_car and totaCloss. Thirdly, events can be added, e.g. the event type

repair can be added to allow putting a car back in circulation after a crash.

Finally, events can be dropped. For example in a library there is no need to

allocate free books to reservations. Hence, the event types allocate_ product

and confirm_availability are dropped.

14

At a more detailed level of specification individual class behavior is reused

·by refining the life cycle expressions of object types according to the modified

event type definitions. For example, the life cycle of CAR becomes more com­

plex as we want to specify that after a total loss a car can never be rented again

and that after a crash, the car needs repairing.

CAR:::: bUY3ar.

[(modify3ar_details + al/ocate3ar + invoice + receive_ payment + end_renta~*

II (rent. (changeJeturn_date)* . (normal_retwn + crash_car.repair))*

.(1 + (rent. (changeJeturn_date)* .totaUoss)]

. end3ar

In this lifecycle the '1' stands for the empty event. The lifecycle thus speci­

fies that after an arbitrary number of rent -cycles either nothing special happens

or we have one final rent cycle that ends with the total loss of the car. The

equivalent state chart is given in Fig. 10.

rent

modify _car_details,
allocate_car,
invoice,
receive-payment,
end_rental

change_
return_date

total-loss

Fig. 10. State chart for CAR.

In the library example, the life cycle of COpy is refined to specify that after a

copy has been lost it can never be borrowed again:

COpy:::: classify_copy.

[(modify_copy_details + fine + receive_ payment + end_loan)*

II (borrow. (renew)* . return)*.(1 + (borrow. (renew)* .Iose))]

. end_copy

15

4.IMPROVED REUSE OF THE OBJECT INTERACTION SCHEMA

The most important implication of the use of the object-event table resides in

the modeling of object interaction. In the approach proposed in the previous

section, it is assumed that events are broadcasted to objects. This means that

when an event occurs and is accepted, all corresponding methods in the in­

volved objects will be executed simultaneously provided each involved object

is in a state where this event is acceptable. This way of communication is

similar to communication as defined in the process algebras CSP [9] and ACP

[1] and has been formalized in [5], [23]. Message passing is more similar to

the CCS process algebra [15]. There exist various mechanisms for the imple­

mentation of such synchronous execution of methods. For the purpose of

analyzing the effects on reuse, we will assume that there is an event handling

mechanism that filters the incoming events by checking all the constraints this

event must satisfy. If all constraints are satisfied, the event is broadcasted to

the participating objects; if not it is rejected. In either case the invoking class

is notified accordingly of the rejection, acceptation, and successful or unsuc­

cessful execution of the event. This concept is exemplified in Fig. 11. for part

of the generic schema of Fig. 3. For each type of business events, the event

handling layer contains one class that is responsible for handling events of that

type. This class will first check the validity of the event and, if appropriate,

broadcast the event to all involved objects by means of the method 'run'.

In a conventional object-oriented approach, object interaction is achieved by

having objects send messages to each other. This is documented by means of

collaboration diagrams. Because of the absence of the broadcasting paradigm,

events must be routed through the system in such a way that all concerned

objects are notified of the event. As there is no generally accepted schema, the

routing schema must be designed for each type of event individually. An ad­

ditional problem is the identification of the object where the routing will start.

In most examples given in object-oriented analysis textbooks, the business

events are initially triggered by some information system event. For example,

in an ATM system, the withdraw_amount business event is triggered by the

information system event inserccard. Such interactions can be represented

by including information system objects such as user interface objects in the

16

collaboration diagram: From a domain modeling perspective, we would prefer

object 'interaction to be independent from information system services. For

example, the business event withdraw_amount can also be triggered by other

information system services such as the counter application. In order to repre­

sent interaction independent from information system services, in the collabo­

ration diagram below, a dummy class is included that represents the business

event invocation. The routing of the event starts in that class and is then

routed through the domain model in such a way that all domain classes af­

fected by this type of event are 'notified. 'Fig. 12 shows possible interaction

schemas for the cr -product and the allocate-product event types. Notice that

because the allocat'e-product event type affects four different domain classes

for this event type there are 64 possible routing schemas ~hat allow to notify

all 4 objects of the occurrence of an allocate-product event (see discussion in

section 3.1).

New Product
Window

Allocate
Product
Window

INFORMA TJON
'SYSTEM

LAYER

BUSINESS EVENTS
HA.NDLING LA YER

DOMAIN OBJECTS
LAYER

Fig. 11. Part of an event broadcasting schema for the generic schema

17

:AlIocate product
Invocation

(a)

I
I
I

2: Create_product i

I'rod~ I
(b)

1:Allocate_product r--,-,----,-,---,

4: Allocate_
Product

Fig. 12. Collaboration diagrams for the generic schema of Fig. 3.

When the generic schema is customized, object types and event types can be

added to, refined or dropped from the generic schema. Such changes tum out

to be less pervasive for the broadcasting paradigm than for the message pass­

ing paradigm. Let us assume for example that the generic schema is reused for

a Small Car rental Company, were the object class PRODUCT_TYPE is not re­

quired: in this Small Car rental Company reservations are made directly for

individual cars. For the broadcasting schema this means that except for the

removal of the product type domain class, ·all modifications are localized in

the event handling layer. The required modifications are shown as shaded ar­

eas in Fig. 11. The effect on the collaboratiol1 diagrams is more pervasive: the

whole interaction schema must be redesigned (see shaded areas in Fig. 12).

The modification of the interaction schema even requires modifications in

other domain classes. For example, in Fig. 12 (b), the removal of the PRO­

DUCT_ TYPE domain class, requires a modification of the USAGE_IN1ENTION

18

domain class as this class must now propagate the allocate--PToduct event di-
. . ..

rectly to PRODUCT rather than to PRODUCT_TYPE (Le. send a message to

PRODUCT instead of PRODUCT_1YPE). Similarly, adding a domain class has a

more limited effect on the broadcasting schema compared to the classical ap­

proach. Let us for example add the BRANCH and PRODUCT_TYPE_IN_BRANCH

domain classes such as to obtain the generic schema of Fig. 4. In the broad­

casting schema the effect for the existing classes is limited to the event han­

dling layer as exemplified in Fig. 13. For the conventional interaction schema

documented with collaboration diagrams, the effect is again more pervasive.

Depending on the new routing schema for events, the modifications also

propagate to one or· more existing domain classes. Fig. 14 shows ail example

of a new collaboration diagram for the allocate--product event type, which re­

quires a modification of the PRODUCT domain class.

New Product
Type Window

New Product
Window

Allocate
Product
Window

Fig. 13. Effect of adding the domain classes BRANCH and PRODUCT_ TYPE_

IN_BRANCH to the event broadcasting schema for the generic schema

19

:Allocate product
Invocation 1 :Allocate_produc

:product type L .
'-------' ",_~:~~~:~~~~roduct

I.· :branch .~--------------- :producttypein
. branch

. 6: Allocate_Product --

Fig. 14. Modified collaboration diagram for allocate-PToduct

5. CONCLUSIONS

In this paper we considered various issues related to the generalization of

'analogous' domain models and the customizationof the resulting generic do­

main models. The example indicates that the reuse of both structural and be­

havioral aspects of domain models is certainly possible. The most difficult

part to reuse is the object interaction aspect [14]. It is a well-known fact that if

no special effort is taken to minimize the number of collaborations, interaction

diagrams quickly take an aspect of spaghetti [25]. In addition, when interac­

tion between domain object classes is not centered around the concept of busi­

ness events, it is hidden in the methods of object classes. It then is very

difficult to evaluate the impact of customization on the interaction schema.

Depending on the chosen scenario for event propagation, one or more domain

classes will require some adaptation to implement the modified scenario. The

use of the broadcasting paradigm simplifies the reuse of object interaction as­

pects substantially. Moreover, the required modifications are more systematic

and hence easier to trace, and the domain classes are better isolated from

modifications such as the addition or removal of domain classes.

It is also important to notice that the broadcasting paradigm allows a system

with a layered structure as shown in Fig. 11: information system objects and

domain objects are kept in separate layers, with the event handling layer

playing the role of "event broker" [24]. These layers also reflect an appropri-

20

ate separation of concerns, namely the separation of domain knowledge and

business rules from information system support. In addition, as the services of

objects in a layer are only used by objects of an upper layer, modifications in

the upper layer do not propagate to lower layers. This not only makes cus­

tomization of generic models easier, but also facilitates system maintenance.

Because of the modeling of business events as first-class citizens in the do­

main model, the reuse of behavior can be considered by looking only at the

event types. In a way, the choice of columns and rows in the OET to reuse

can be done independently of each other. In a classical approach you would

choose the classes in the structural model and hope that they contain the re­

quired behavior.

It must be noticed that the reuse of domain models cannot be considered on

its own. Domain models must be seen as reusable software requirements. De­

fining a domain model is part of the requirements engineering step in the de­

velopment of an information system: all business rules described in the

domain model have to be supported by the information system. Methods such

as JSD [10], OO-SSADM [21], Syntropy [4], Catalysis [6], and MERODE

[23][22] even explicitly define domain modeling as a separate step in the de­

velopment process. Jacobson [11] assumes the existence of a domain model

that serves as a basis to identify entity objects. As such object interaction

schemas, which capture a major part of the business rules governing a domain,

can be considered as reusable specifications. The event-based approach to

conceptual domain modeling assumed in this paper greatly enhances their re­

use possibilities.

The generic domain model presented in this paper models domains of the

type Product Usage, included as the domain abstraction Object Allocation in

the classification framework of Lung and Urban [12]. We have worked on,

and continue to work on, generic models for other domain abstractions. A re­

lated topic of research is the definition of distance measures for event-based,

object-oriented domain models [18]. Such measures, similar in concept to the

similarity measures for components of Castano et al. [3], allow to quantify and

evaluate the conceptual distance between domains. This information can for

21

instance be used to decide whether analogical reuse is feasible, i.e. whether it

·is worth reusing from a generic domain model.

Acknowledgements

Geert Poels is a Postdoctoral Fellow of the Fund for Scientific Research -

Flanders (Belgium)(F.W.O) and wishes to acknowledge the financial support

of the Fund for Scientific Research.

6. REFERENCES

[1] Baeten, J.C.M.: Procesalgebra: een formalisme voor parallelle, communicerende

processen. Kluwer programrnatuurkunde, Kluwer Deventer (1986)

[2] Castano, S., De Antonellis, v.: The P Reuse Environment for Requirements En­

gineering. ACM SIGSOFT Software Eng. Notes 19 (1994) 62-65

[3] Castano, S., De Antonellis, V., Pernici, B.: Building Reusable Components in the

Public Administration Domain. In: Proc. ACM SIGSOFT Symposium Software

Reusability (SSR'95). Seattle (1995) 81-87

[4] Cook, S., Daniels, J.: Designing object systems: object-oriented modeling with

Syntropy. Prentice Hall (1994)

[5] Dedene, G., Snoeck, M.: Formal deadlock elimination in an object oriented con­

ceptual schema. Data and Knowledge Eng. 15 (1995) 1-30

[6] D'Souza, D.F., Wills, AC.: Objects, components, and frameworks with UML: the

catalysis approach. Addison-Wesley (1998)

[7] Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley (1997)

[8] Hay, D.C.: Data Model Patterns: Conventions of Thought. Dorset House Publish­

ers, New York (1996) .

[9] Hoare, C. A. R.: Communicating Sequential Processes. Prentice-Hall (1985)

[10] Jackson, M.A.: System Development. Prentice Hall (1983)

[11] Jacobson, 1. et al.: Object-Oriented Software Engineering, A use Case Driven

Approach. Addison-Wesley (1992)

22

[12] Lung, C.-H., Urban, J.E.: An Approach to the Classification of Domain Models

in Support of Analogical Reuse. In: Proc. ACM SIGSOFT Symposium Software

Reusability (SSR'95). Seattle (1995) 169-178

[13] Maiden, N.A., Sutcliffe, AG.: Exploiting Reusable Specifications Through

Analogy. Communications of the ACM 35 (1992) 55-64

[14] Mili, H., Mili, F., Mili, A: Reusing Software: Issues and Research Directions.

IEEE Trans. Software Eng. 21 (1995) 528-561

[15] Milner R.: A calculus of communicating systems. Springer Berlin, Lecture Notes

in Computer Science (1980)

[16] Mineau, G.W., Godin, R.: Automatic structuring of knowledge bases by con­

ceptual clustering. IEEE Trans. Data and Knowledge Eng. 7 (1995) 824-829

[17] Nellborn, c.: Business and Systems Development: Opportunities for an Inte­

grated Way-of-Working. In: Nilsson, AG., Tolis, C., Nellborn, C. (eds.): Per­

spectives on Domain modeling: understanding and Changing Organisations.

Springer Verlag, Berlin (1999)

[18] Poels, G., Viaene, S., Dedene, G.: Distance Measures for Information System

Reengineering. In: Proc. 12th Int'l Conf. Advanced Systems Eng. (CAiSE*OO).

Stockholm (2000) 387-400

[19] Purao, S., Storey, V.C.: Intelligent Support for Retrieval and Synthesis of Pat­

terns for Object-Oriented Design. In: Proc. 16th Int'l Conf. Conceptual Modeling

(ER'97). Los Angeles (1997) 30-42

[20] Robertson, S.: Mastering the Requirements Process. Addison-Wesley (1999)

[21] Robinson, K., Berrisford, G.: Object-oriented SSADM. Prentice Hall (1994)

[22] Snoeck, M., Dedene, G.: Existence Dependency: the key to semantic integrity

between structural and behavioral aspects of object types. IEEE Trans. Software

Eng. 24 (1998) 233-251

[23] Snoeck, M., Dedene, G., Verhelst, M., Depuydt, A: Object-oriented Enterprise

Modeling with MERODE. University Press, Leuven (1999)

[24] Snoeck, M., Poelmans, S., Dedene, G., A Layered Software Specification Ar­

chitecture. In: Proc. 19th Int'l Conf. Conceptual Modeling (ER2000). Salt Lake

City (2000)

[25] Wirfs-Brock, R., Johnson, R.E.: Surveying current research in 00 design.

Communications of the ACM 33 (1990) 105-124

23

