37,796 research outputs found

    Understanding face and eye visibility in front-facing cameras of smartphones used in the wild

    Get PDF
    Commodity mobile devices are now equipped with high-resolution front-facing cameras, allowing applications in biometrics (e.g., FaceID in the iPhone X), facial expression analysis, or gaze interaction. However, it is unknown how often users hold devices in a way that allows capturing their face or eyes, and how this impacts detection accuracy. We collected 25,726 in-the-wild photos, taken from the front-facing camera of smartphones as well as associated application usage logs. We found that the full face is visible about 29% of the time, and that in most cases the face is only partially visible. Furthermore, we identified an influence of users' current activity; for example, when watching videos, the eyes but not the entire face are visible 75% of the time in our dataset. We found that a state-of-the-art face detection algorithm performs poorly against photos taken from front-facing cameras. We discuss how these findings impact mobile applications that leverage face and eye detection, and derive practical implications to address state-of-the art's limitations

    Are You in the Line? RSSI-based Queue Detection in Crowds

    Full text link
    Crowd behaviour analytics focuses on behavioural characteristics of groups of people instead of individuals' activities. This work considers human queuing behaviour which is a specific crowd behavior of groups. We design a plug-and-play system solution to the queue detection problem based on Wi-Fi/Bluetooth Low Energy (BLE) received signal strength indicators (RSSIs) captured by multiple signal sniffers. The goal of this work is to determine if a device is in the queue based on only RSSIs. The key idea is to extract features not only from individual device's data but also mobility similarity between data from multiple devices and mobility correlation observed by multiple sniffers. Thus, we propose single-device feature extraction, cross-device feature extraction, and cross-sniffer feature extraction for model training and classification. We systematically conduct experiments with simulated queue movements to study the detection accuracy. Finally, we compare our signal-based approach against camera-based face detection approach in a real-world social event with a real human queue. The experimental results indicate that our approach can reach minimum accuracy of 77% and it significantly outperforms the camera-based face detection because people block each other's visibility whereas wireless signals can be detected without blocking.Comment: This work has been partially funded by the European Union's Horizon 2020 research and innovation programme within the project "Worldwide Interoperability for SEmantics IoT" under grant agreement Number 72315

    EyePACT: eye-based parallax correction on touch-enabled interactive displays

    Get PDF
    The parallax effect describes the displacement between the perceived and detected touch locations on a touch-enabled surface. Parallax is a key usability challenge for interactive displays, particularly for those that require thick layers of glass between the screen and the touch surface to protect them from vandalism. To address this challenge, we present EyePACT, a method that compensates for input error caused by parallax on public displays. Our method uses a display-mounted depth camera to detect the user's 3D eye position in front of the display and the detected touch location to predict the perceived touch location on the surface. We evaluate our method in two user studies in terms of parallax correction performance as well as multi-user support. Our evaluations demonstrate that EyePACT (1) significantly improves accuracy even with varying gap distances between the touch surface and the display, (2) adapts to different levels of parallax by resulting in significantly larger corrections with larger gap distances, and (3) maintains a significantly large distance between two users' fingers when interacting with the same object. These findings are promising for the development of future parallax-free interactive displays

    Real-time human action recognition on an embedded, reconfigurable video processing architecture

    Get PDF
    Copyright @ 2008 Springer-Verlag.In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine (SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. “motion history image”) class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfiured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments.DTI and Broadcom Ltd

    EyeScout: Active Eye Tracking for Position and Movement Independent Gaze Interaction with Large Public Displays

    Get PDF
    While gaze holds a lot of promise for hands-free interaction with public displays, remote eye trackers with their confined tracking box restrict users to a single stationary position in front of the display. We present EyeScout, an active eye tracking system that combines an eye tracker mounted on a rail system with a computational method to automatically detect and align the tracker with the user's lateral movement. EyeScout addresses key limitations of current gaze-enabled large public displays by offering two novel gaze-interaction modes for a single user: In "Walk then Interact" the user can walk up to an arbitrary position in front of the display and interact, while in "Walk and Interact" the user can interact even while on the move. We report on a user study that shows that EyeScout is well perceived by users, extends a public display's sweet spot into a sweet line, and reduces gaze interaction kick-off time to 3.5 seconds -- a 62% improvement over state of the art solutions. We discuss sample applications that demonstrate how EyeScout can enable position and movement-independent gaze interaction with large public displays

    FPGA implementation of real-time human motion recognition on a reconfigurable video processing architecture

    Get PDF
    In recent years, automatic human motion recognition has been widely researched within the computer vision and image processing communities. Here we propose a real-time embedded vision solution for human motion recognition implemented on a ubiquitous device. There are three main contributions in this paper. Firstly, we have developed a fast human motion recognition system with simple motion features and a linear Support Vector Machine(SVM) classifier. The method has been tested on a large, public human action dataset and achieved competitive performance for the temporal template (eg. ``motion history image") class of approaches. Secondly, we have developed a reconfigurable, FPGA based video processing architecture. One advantage of this architecture is that the system processing performance can be reconfigured for a particular application, with the addition of new or replicated processing cores. Finally, we have successfully implemented a human motion recognition system on this reconfigurable architecture. With a small number of human actions (hand gestures), this stand-alone system is performing reliably, with an 80% average recognition rate using limited training data. This type of system has applications in security systems, man-machine communications and intelligent environments
    corecore