2,462 research outputs found

    Procrastination in the Workplace: Evidence from the U.S. Patent Office

    Get PDF
    Despite much theoretical attention to the concept of procrastination and much exploration of this phenomenon in laboratory settings, there remain few empirical investigations into the practice of procrastination in real world contexts, especially in the workplace. In this paper, we attempt to fill these gaps by exploring procrastination among U.S. patent examiners. We find that nearly half of examiners’ first substantive reports are completed immediately prior to the operable deadlines. Moreover, we find a range of additional empirical markers to support that this “end-loading” of reviews results from a model of procrastination rather than various alternative time-consistent models of behavior. In one such approach, we take advantage of the natural experiment afforded by the Patent Office’s staggered implementation of its telecommuting program, a large-scale development that we theorize might exacerbate employee self-control problems due to the ensuing reduction in direct supervision. Supporting the procrastination theory, we estimate an immediate spike in application end-loading and other indicia of procrastination upon the onset of telecommuting. Finally, contributing to a growing empirical literature over the efficiency of the patent examination process, we assess the consequences of procrastination for the quality of the reviews completed by the affected examiners. This analysis suggests that the primary harm stemming from procrastination is delay in the ultimate application process, with rushed reviews completed at deadlines resulting in the need for revisions in subsequent rounds of review. Our findings imply that nearly 1/6 of the annual growth in the Agency’s much-publicized backlog may be attributable to examiner procrastination

    Value of Reliability: High Occupancy Toll Lanes, General Purpose Lanes, and Arterials

    Get PDF
    In the Minneapolis-St. Paul region (Twin Cities), the Minnesota Department of Transportation (MnDOT) converted the Interstate 394 High Occupancy Vehicle (HOV) lanes to High Occupancy Toll (HOT) lanes (or MnPASS Express Lanes). These lanes allow single occupancy vehicles (SOV) to access the HOV lanes by paying a fee. This fee is adjusted according to a dynamic pricing system that varies with the current demand. This paper estimates the value placed by the travelers on the HOT lanes because of improvements in travel time reliability. This value depends on how the travelers regard a route with predictable travel times (or small travel time variability) in comparison to another with unpredictable travel times (or high travel time variability). For this purpose, commuters are recruited and equipped with Global Positioning System (GPS) devices and instructed to commute for two weeks on each of three plausible alternatives between their home in the western suburbs of Minneapolis eastbound to work in downtown or the University of Minnesota: I-394 HOT lanes, I-394 General Purpose lanes (untolled), and signalized arterials close to the I-394 corridor. They are then given the opportunity to travel on their preferred route after experiencing each alternative. This revealed preference data is then analyzed using mixed logit route choice models. Three measures of reliability are explored and incorporated in the estimation of the models: standard deviation (a classical measure in the research literature); shortened right range (typically found in departure time choice models); and interquartile range (75th - 25th percentile). Each of these measures represents distinct ways about how travelers deal with different sections of reliability. In all the models, it was found that reliability was valued highly (and statistically significantly), but differently according to how it was defined. The estimated value of reliability in each of the models indicates that commuters are willing to pay a fee for a reliable route depending on how they value their reliability savings.time reliability, GPS, route choice, random utility, I-394 HOT, MnPass, mixed logit

    Modeling the Effect of a Road Construction Project on Transportation System Performance

    Get PDF
    Road construction projects create physical changes on roads that result in capacity reduction and travel time escalation during the construction project period. The reduction in the posted speed limit, the number of lanes, lane width and shoulder width at the construction zone makes it difficult for the road to accommodate high traffic volume. Therefore, the goal of this research is to model the effect of a road construction project on travel time at road link-level and help improve the mobility of people and goods through dissemination or implementation of proactive solutions. Data for a resurfacing construction project on I-485 in the city of Charlotte, North Carolina (NC) was used evaluation, analysis, and modeling. A statistical t-test was conducted to examine the relationship between the change in travel time before and during the construction project period. Further, travel time models were developed for the freeway links and the connecting arterial street links, both before and during the construction project period. The road network characteristics of each link, such as the volume/ capacity (V/C), the number of lanes, the speed limit, the shoulder width, the lane width, whether the link is divided or undivided, characteristics of neighboring links, the time-of-the-day, the day-of-the-week, and the distance of the link from the road construction project were considered as predictor variables for modeling. The results obtained indicate that a decrease in travel time was observed during the construction project period on the freeway links when compared to the before construction project period. Contrarily, an increase in travel time was observed during the construction project period on the connecting arterial street links when compared to the before construction project period. Also, the average travel time, the planning time, and the travel time index can better explain the effect of a road construction project on transportation system performance when compared to the planning time index and the buffer time index. The influence of predictor variables seem to vary before and during the construction project period on the freeway links and connecting arterial street links. Practitioners should take the research findings into consideration, in addition to the construction zone characteristics, when planning a road construction project and developing temporary traffic control and detour plans

    Dynamical Modeling of Cloud Applications for Runtime Performance Management

    Get PDF
    Cloud computing has quickly grown to become an essential component in many modern-day software applications. It allows consumers, such as a provider of some web service, to quickly and on demand obtain the necessary computational resources to run their applications. It is desirable for these service providers to keep the running cost of their cloud application low while adhering to various performance constraints. This is made difficult due to the dynamics imposed by, e.g., resource contentions or changing arrival rate of users, and the fact that there exist multiple ways of influencing the performance of a running cloud application. To facilitate decision making in this environment, performance models can be introduced that relate the workload and different actions to important performance metrics.In this thesis, such performance models of cloud applications are studied. In particular, we focus on modeling using queueing theory and on the fluid model for approximating the often intractable dynamics of the queue lengths. First, existing results on how the fluid model can be obtained from the mean-field approximation of a closed queueing network are simplified and extended to allow for mixed networks. The queues are allowed to follow the processor sharing or delay disciplines, and can have multiple classes with phase-type service times. An improvement to this fluid model is then presented to increase accuracy when the \emph{system size}, i.e., number of servers, initial population, and arrival rate, is small. Furthermore, a closed-form approximation of the response time CDF is presented. The methods are tested in a series of simulation experiments and shown to be accurate. This mean-field fluid model is then used to derive a general fluid model for microservices with interservice delays. The model is shown to be completely extractable at runtime in a distributed fashion. It is further evaluated on a simple microservice application and found to accurately predict important performance metrics in most cases. Furthermore, a method is devised to reduce the cost of a running application by tuning load balancing parameters between replicas. The method is built on gradient stepping by applying automatic differentiation to the fluid model. This allows for arbitrarily defined cost functions and constraints, most notably including different response time percentiles. The method is tested on a simple application distributed over multiple computing clusters and is shown to reduce costs while adhering to percentile constraints. Finally, modeling of request cloning is studied using the novel concept of synchronized service. This allows certain forms of cloning over servers, each modeled with a single queue, to be equivalently expressed as one single queue. The concept is very general regarding the involved queueing discipline and distributions, but instead introduces new, less realistic assumptions. How the equivalent queue model is affected by relaxing these assumptions is studied considering the processor sharing discipline, and an extension to enable modeling of speculative execution is made. In a simulation campaign, it is shown that these relaxations only has a minor effect in certain cases

    Pooling versus model selection for nowcasting with many predictors: an application to German GDP

    Get PDF
    This paper discusses pooling versus model selection for now- and forecasting in the presence of model uncertainty with large, unbalanced datasets. Empirically, unbalanced data is pervasive in economics and typically due to di¤erent sampling frequencies and publication delays. Two model classes suited in this context are factor models based on large datasets and mixed-data sampling (MIDAS) regressions with few predictors. The specification of these models requires several choices related to, amongst others, the factor estimation method and the number of factors, lag length and indicator selection. Thus, there are many sources of mis-specification when selecting a particular model, and an alternative could be pooling over a large set of models with different specifications. We evaluate the relative performance of pooling and model selection for now- and forecasting quarterly German GDP, a key macroeconomic indicator for the largest country in the euro area, with a large set of about one hundred monthly indicators. Our empirical findings provide strong support for pooling over many specifications rather than selecting a specific model. --casting,forecast combination,forecast pooling,model selection,mixed - frequency data,factor models,MIDAS

    A Multi-Contextual Approach to Modeling the Impact of Critical Highway Work Zones in Large Urban Corridors

    Get PDF
    Accurate Construction Work Zone (CWZ) impact assessments of unprecedented travel inconvenience to the general public are required for all federally-funded highway infrastructure improvement projects. These assessments are critical, but they are also very difficult to perform. Most existing prediction approaches are project-specific, shortterm, and univariate, thus incapable of benchmarking the potential traffic impact of CWZs for highway construction projects. This study fills these gaps by creating a big-data-based decision-support framework and testing if it can reliably predict the potential impact of a CWZ under arbitrary lane closure scenarios. This study proposes a big-data-based decision-support analytical framework, “Multi-contextual learning for the Impact of Critical Urban highway work Zones” (MICUZ). MICUZ is unique as it models the impact of CWZ operations through a multi-contextual quantitative method utilizing sensored big transportation data. MICUZ was developed through a three-phase modeling process. First, robustness of the collected sensored data was examined through a Wheeler’s repeatability and reproducibility analysis, for the purpose of verifying the homogeneity of the variability of traffic flow data. The analysis results led to a notable conclusion that the proposed framework is feasible due to the relative simplicity and periodicity of highway traffic profiles. Second, a machine-learning algorithm using a Feedforward Neural Networks (FNN) technique was applied to model the multi-contextual aspects of iii long-term traffic flow predictions. The validation study showed that the proposed multi-contextual FNN yields an accurate prediction rate of traffic flow rates and truck percentages. Third, employing these predicted traffic parameters, a curve-fitting modeling technique was implemented to quantify the impact of what-if lane closures on the overall traffic flow. The robustness of the proposed curve-fitting models was then scientifically verified and validated by measuring forecast accuracy. The results of this study convey the fact that MICUZ would recognize how stereotypical regional traffic patterns react to existing CWZs and lane closure tactics, and quantify the probable but reliable travel time delays at CWZs in heavily trafficked urban cores. The proposed framework provides a rigorous theoretical basis for comparatively analyzing what-if construction scenarios, enabling engineers and planners to choose the most efficient transportation management plans much more quickly and accurately

    Localization Precise in Urban Area

    Get PDF
    Nowadays, stand-alone Global Navigation Satellite System (GNSS) positioning accuracy is not sufficient for a growing number of land users. Sub-meter or even centimeter accuracy is becoming more and more crucial in many applications. Especially for navigating rovers in the urban environment, final positioning accuracy can be worse as the dramatically lack and contaminations of GNSS measurements. To achieve a more accurate positioning, the GNSS carrier phase measurements appear mandatory. These measurements have a tracking error more precise by a factor of a hundred than the usual code pseudorange measurements. However, they are also less robust and include a so-called integer ambiguity that prevents them to be used directly for positioning. While carrier phase measurements are widely used in applications located in open environments, this thesis focuses on trying to use them in a much more challenging urban environment. To do so, Real Time-Kinematic (RTK) methodology is used, which is taking advantage on the spatially correlated property of most code and carrier phase measurements errors. Besides, the thesis also tries to take advantage of a dual GNSS constellation, GPS and GLONASS, to strengthen the position solution and the reliable use of carrier phase measurements. Finally, to make up the disadvantages of GNSS in urban areas, a low-cost MEMS is also integrated to the final solution. Regarding the use of carrier phase measurements, a modified version of Partial Integer Ambiguity Resolution (Partial-IAR) is proposed to convert as reliably as possible carrier phase measurements into absolute pseudoranges. Moreover, carrier phase Cycle Slip (CS) being quite frequent in urban areas, thus creating discontinuities of the measured carrier phases, a new detection and repair mechanism of CSs is proposed to continuously benefit from the high precision of carrier phases. Finally, tests based on real data collected around Toulouse are used to test the performance of the whole methodology

    BBR-S:A Low-Latency BBR Modification for Fast-Varying Connections

    Get PDF
    • …
    corecore