687 research outputs found

    Modeling and performance evaluation of stealthy false data injection attacks on smart grid in the presence of corrupted measurements

    Full text link
    The false data injection (FDI) attack cannot be detected by the traditional anomaly detection techniques used in the energy system state estimators. In this paper, we demonstrate how FDI attacks can be constructed blindly, i.e., without system knowledge, including topological connectivity and line reactance information. Our analysis reveals that existing FDI attacks become detectable (consequently unsuccessful) by the state estimator if the data contains grossly corrupted measurements such as device malfunction and communication errors. The proposed sparse optimization based stealthy attacks construction strategy overcomes this limitation by separating the gross errors from the measurement matrix. Extensive theoretical modeling and experimental evaluation show that the proposed technique performs more stealthily (has less relative error) and efficiently (fast enough to maintain time requirement) compared to other methods on IEEE benchmark test systems.Comment: Keywords: Smart grid, False data injection, Blind attack, Principal component analysis (PCA), Journal of Computer and System Sciences, Elsevier, 201

    Defense by Deception against Stealthy Attacks in Power Grids

    Get PDF
    Cyber-physical Systems (CPSs) and the Internet of Things (IoT) are converging towards a hybrid platform that is becoming ubiquitous in all modern infrastructures. The integration of the complex and heterogeneous systems creates enormous space for the adversaries to get into the network and inject cleverly crafted false data into measurements, misleading the control center to make erroneous decisions. Besides, the attacker can make a critical part of the system unavailable by compromising the sensor data availability. To obfuscate and mislead the attackers, we propose DDAF, a deceptive data acquisition framework for CPSs\u27 hierarchical communication network. Each switch in the hierarchical communication network generates a random pattern of addresses/IDs by shuffling the original sensor IDs reported through it. During the data acquisition from remotely located sensors to the central controller, the switches craft the network packets by replacing a few sensors\u27 associated addresses/IDs with the generated deceptive IDs and by adding decoy data for the rest. While misleading the attackers, the control center must retrieve the actual data to operate the system correctly. We propose three remapping mechanisms (e.g., seed-based, prediction-based, and hybrid) and compare their robustness against different stealthy attacks. Due to the deception, artfully altered measurements turn into random data injections, making it easy to remove them as outliers. As the outliers and the estimated residuals contain the potential attack vectors, DDAF can detect and localize the attack points and the targeted sensors by analyzing this information. DDAF is generic and scalable to be implemented in any hierarchical CPSs network. Experimental results on the standard IEEE 14, 57, and 300 bus power systems show that DDAF can detect, mitigate, and localize up-to 100% of the stealthy cyberattacks. To the best of our knowledge, this is the first framework that implements complete randomization in the data acquisition of the hierarchical CPSs

    Machine Learning Based Detection of False Data Injection Attacks in Wide Area Monitoring Systems

    Get PDF
    The Smart Grid (SG) is an upgraded, intelligent, and a more reliable version of the traditional Power Grid due to the integration of information and communication technologies. The operation of the SG requires a dense communication network to link all its components. But such a network renders it prone to cyber attacks jeopardizing the integrity and security of the communicated data between the physical electric grid and the control centers. One of the most prominent components of the SG are Wide Area Monitoring Systems (WAMS). WAMS are a modern platform for grid-wide information, communication, and coordination that play a major role in maintaining the stability of the grid against major disturbances. In this thesis, an anomaly detection framework is proposed to identify False Data Injection (FDI) attacks in WAMS using different Machine Learning (ML) and Deep Learning (DL) techniques, i.e., Deep Autoencoders (DAE), Long-Short Term Memory (LSTM), and One-Class Support Vector Machine (OC-SVM). These algorithms leverage diverse, complex, and high-volume power measurements coming from communications between different components of the grid to detect intelligent FDI attacks. The injected false data is assumed to target several major WAMS monitoring applications, such as Voltage Stability Monitoring (VSM), and Phase Angle Monitoring (PAM). The attack vector is considered to be smartly crafted based on the power system data, so that it can pass the conventional bad data detection schemes and remain stealthy. Due to the lack of realistic attack data, machine learning-based anomaly detection techniques are used to detect FDI attacks. To demonstrate the impact of attacks on the realistic WAMS traffic and to show the effectiveness of the proposed detection framework, a Hardware-In-the-Loop (HIL) co-simulation testbed is developed. The performance of the implemented techniques is compared on the testbed data using different metrics: Accuracy, F1 score, and False Positive Rate (FPR) and False Negative Rate (FNR). The IEEE 9-bus and IEEE 39-bus systems are used as benchmarks to investigate the framework scalability. The experimental results prove the effectiveness of the proposed models in detecting FDI attacks in WAMS

    The Impact of Stealthy Attacks on Smart Grid Performance: Tradeoffs and Implications

    Full text link
    The smart grid is envisioned to significantly enhance the efficiency of energy consumption, by utilizing two-way communication channels between consumers and operators. For example, operators can opportunistically leverage the delay tolerance of energy demands in order to balance the energy load over time, and hence, reduce the total operational cost. This opportunity, however, comes with security threats, as the grid becomes more vulnerable to cyber-attacks. In this paper, we study the impact of such malicious cyber-attacks on the energy efficiency of the grid in a simplified setup. More precisely, we consider a simple model where the energy demands of the smart grid consumers are intercepted and altered by an active attacker before they arrive at the operator, who is equipped with limited intrusion detection capabilities. We formulate the resulting optimization problems faced by the operator and the attacker and propose several scheduling and attack strategies for both parties. Interestingly, our results show that, as opposed to facilitating cost reduction in the smart grid, increasing the delay tolerance of the energy demands potentially allows the attacker to force increased costs on the system. This highlights the need for carefully constructed and robust intrusion detection mechanisms at the operator.Comment: Technical report - this work was accepted to IEEE Transactions on Control of Network Systems, 2016. arXiv admin note: substantial text overlap with arXiv:1209.176
    corecore